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Abstract: In this work, we present a simulation software that permits designing and testing several
types of controllers based on both classical and modern control theory. It has been created using
Easy JavaScript Simulations, since this software permits implementing interactive simulations of
physical systems in a quick and intuitive way. This laboratory contains a SISO (Single-Input and
Single-Output) and a MIMO (Multiple-Input and Multiple-Output) plant, which are hydraulic
and nonlinear, thus the linear model (linearized equations) and the original model (nonlinerized
equations) have been implemented. The user can choose any of these physical systems and they have
the options to control them using either continuous-time or discrete-time controllers. All parameters
of the plant are fully configurable by the user. After that, the controller can be designed and tested.
This simulation software offers several configurations: (a) PID (Proportional, Integral and Derivative
controller); (b) state feedback; (c) observer and state feedback; and (d) integral controller, observer
and state feedback control. The evolution of the controlled system is visualized using an animation
of the virtual plant and a graphical representation of the evolution of the most important variables.
In this paper, the steps for the implementation of this simulation software are detailed.

Keywords: virtual laboratories; control systems; mathematical model; Easy JavaScript Simulations;
modern control; classical control

1. Introduction

Laboratory exercises are a fundamental part of education curricula in scientific and technological
fields, such as computer science, engineering, natural sciences and others [1]. Students get theoretical
knowledge in the classroom. However, laboratories are necessary to gain practical knowledge and
experience [2]. The work in a traditional laboratory presents some disadvantages such as time and
place restrictions for both students and academic staff. Another one is that this laboratory involves
high costs associated with equipment [3], since the cost of purchasing and maintaining the necessary
equipment is usually high, and often several units of the equipment must be available [4].

Other educational resources can be employed as an alternative or supplement to real laboratories.
For instance, remote laboratories [5–7] use real plants and physical devices which are operated at
distance [8]. This type of laboratory overcomes some of the traditional laboratory disadvantages.
For instance, it is not necessary to find space for students to access the equipment. In addition, remote
laboratories are cheaper than traditional ones, since having several units is not a requirement [9].
However, it means that only one student can access a particular equipment at a time. Besides,
the implementation of this option can be complex, especially with regard to the communication and
sensory-control hardware and software required [10].
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On the contrary, the virtual laboratories [11–14] provide a cost-efficient alternative and several
students can use the same virtual equipment at the same time. In addition, the student can access
anytime and anywhere. Other advantage of the virtual system is that it permits configuring the
parameters of the plant, which is often not possible in real systems. This type of laboratories constitute
a useful teaching and learning environment where the physical system is virtualized by means of a
series of simulations [15], thus the plant is not real. They can be implemented as desktop programs
(running on the user’s operating system) or web-based applications (running on the user’s web
browser) [16]. Nowadays, simulations have evolved into interactive graphical user interfaces where
students can manipulate the experiment parameters and explore their evolution. This allows students
to study different systems and, with basic programming skills, change the mathematical model or
construct a new one [17]. It is worth highlighting that this simulation platform has been implemented
as a supplementary tool, not an alternative tool. Thanks to it, students can familiarize with the
calculation and initial implementation of controllers, before going to the real laboratory (where only a
reduced number of sessions will be necessary).

Many examples of virtual laboratories in the field of control education can be found in the
literature [18–20]. Most of them are designed to put into practice classical control techniques, based
on the use of the transfer function. Modern control techniques, based on the use of the state-space
representation, can be advantageous in some cases. The modern control is applicable to multiple-input,
multiple-output (MIMO) systems, which may be linear or nonlinear, time invariant or time variant,
while the classical control is typically applicable to linear time invariant single-input, single-output
(SISO) systems [21].

In this work, we present a simulation software, implemented to ease the understanding of modern
control techniques by the students. The software Easy Java/JavaScript Simulations (EJsS) [22,23] has
been used to create the simulation software. EJsS is a free authoring tool designed for science students,
teachers and researchers, and it permits creating simulations in a quick and simple way [24].

In comparison to other tools, EJsS presents several advantages for the development of simulation
applications. The main one is that this tool does not focus on the technical programming aspects, but in
the simulation itself. As a matter of fact, EJsS separates the design of the platform into modular parts:
the implementation of the model (variables and evolution) and the visualization of the simulated model
(view). Another advantage is that it simplifies the creation of a graphical user interface for simulations;
EJsS offers a complete set of interactive components easily configurable to build it, according to the user
needs of interactivity and visualization [25,26]. As mentioned above, the aim of this work is to create a
simulation software which the students can run in a web browser from their house, hence EJsS has
been chosen since it permits building it without the need for having a high knowledge about HTML
programming. The implement is easy to replicate so other studies could use these developments to
implement new simulation software with other plants or control methods.

The present paper continues and expands the work developed by Payá et al. [27], in which a
virtual laboratory to control two different plants using controllers based either on classical or modern
control theory is presented. However, the plants included are linear and SISO systems, and only
continuous-time control is allowed. For this reason, the simulation software developed in the present
paper includes new plants and control modes, in such a way that students can address more challenging
problems. More concisely, two hydraulic plants are included and several control modes are available,
based either on classical or on modern theory. The main contributions of this platform with respect to
the previous work are threefold. (a) Either continuous-time or discrete-time controllers can be designed
and tested in all cases. (b) A plant with multiple inputs and outputs is included, so that students can
put into practice their knowledge in MIMO controllers. (c) Both plants are originally nonlinear systems;
once the controller is designed, the student has the possibility of visualizing the behavior of the initially
nonlinear system after adding the controller. It can be seen in the work developed by Galan et al. [28],
since a hydraulic plant has been implemented and the behavior of the linear and original model are
visualized. However, this virtual plant has only a single input and a single output and the options
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implemented to control it are manual control, PI/P controller and an on–off controller. Therefore,
the work presented in the present paper offers a wider range of techniques, including state-space
methods, to control a hydraulic system, and additionally one of the plants is a MIMO system.

In broad lines, the student has to complete the next steps to fully control a plant through this
platform. These steps are developed in subsequent sections. First, the student must obtain the
mathematical model of the original nonlinear system. All parameters that define the plant are fully
configurable. Second, they must linearize the model around a working point to obtain either the
transfer function or the state-space representation, depending on the control technique to use. Third,
the kind of controller must be chosen. The options that our platform offers are classic and modern
control. Within the classic control, students can design a PID controller while, in the case of modern
control, the dynamics of the system can be controlled using state feedback and the user can also add
a state observer and/or an integral controller to track the reference input. Fourth, once the type of
control has been chosen, its parameters must be calculated. Thus far, the student has to model and
design the control system manually, which allows them to put in practice the concepts studied in the
classroom. Fifth, they can introduce the values of the controller in the platform and check if the system
behaves according to the specifications. To this purpose, a simulation of the behavior of the system is
shown and the user can introduce different reference inputs. Since the plants included in the platform
are nonlinear and controllers are often obtained from the linearized model, it is interesting to check if
the controller works correctly when used to control the original nonlinear plant. This platform permits
visualizing both the linearized and the nonlinear model response. The behavior of the controlled
system is shown using a virtual plant and a graphical representation of some relevant variables.

The main objective of the paper is to show the implementation that has been carried out in
detail, focusing on the most relevant parts, providing all the necessary information so that other
researchers can implement virtual laboratories in control engineering, based on these concepts.
Additionally, the interface of the platform is shown and the modes of use, from the students’ point of
view is remarked.

The remainder of the paper is structured as follows. In Section 2, the tool Easy Javascript
Simulations is briefly presented. The implementation of the equations of the first plant, which is a SISO
system, is described in Section 3 and the implementation of the controllers is detailed in Section 4. After
that, Sections 5 and 6 show the modeling of the second plant (MIMO system) along with the controllers.
Section 7 presents the graphical interface of the platform and the results of some simulations. Finally,
the conclusion and future works are outlined in Section 8.

The user can access this simulation software entering [29]. In addition, some laboratory guides
are included on this platform website.

The previous sections contain the most relevant parts of the codes to carry out the implementation,
the variables that appear are defined in Appendix A for a better understanding.

2. Easy JavaScript Simulations

In this section, Easy JavaScript Simulations (EJsS), which is the tool used to implement the
simulation software, is briefly presented. Easy Java Simulations (EJS) permits creating interactive
simulations of a physical system, showing the evolution of one or several variables that describe its
state. The mathematical relations that define this state can be introduced in the platform in a relatively
straightforward way. Therefore, EJsS eases the process to implement a virtual laboratory [22].

From release 5.0, the simulation can be created using also JavaScript and HTML5. In this work,
the platform is implemented by means of JavaScript, due to the advantages it presents in comparison
with Java. For instance, JavaScript simulations are more accessible since they can be run directly in
standard web browsers. Besides, there are some technological devices that do not support Java applets,
so in these cases JavaScript Simulations are a good solution.

This tool is based on the model–control–view paradigm, thus the simulation is divided into three
parts that are deeply interconnected. The first one (model) describes the phenomenon or physical
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system by means of a set of variables and relationships among these variables. The second part
(control) defines the user’s actions to have an influence upon the simulation. Finally, the third part
(action) shows a graphical representation of the different states that the system may present.

To implement new simulations, EJsS offers a sequence of work panels (specifically three) that
permit designing the model and its graphical user interface. They are denominated: Description,
Model and View or HtmlView, being the last two the most important ones.

The Model panel is dedicated to define the mathematical model of the system. First, the variables
and parameters that describe them must be declared and initialized. Then, the equations which
determine how their values change in time have to be introduced. Finally, it is necessary to establish
the behavior of the variables when the user interacts and modifies one or more of their values. To these
purposes, the Model panel has six subpanels available, which are denominated Variables, Initialization,
Evolution, Fixed Relations, Custom and Elements.

The evolution subpanel provides two ways to implement the equations that describe the evolution
in time: by means of direct mathematical expressions or first-order differential equations. On the one
hand, the first alternative is carried out in a page of code, and it only requires instructions in JavaScript
language. On the other hand, the second alternative can be performed by creating a page of EDOs
(Ordinary Differential Equation). Apart from the equations, three parameters must be defined in this
page, which affect how the simulation is computed and displayed. They are the increment, the number
of Frames Per Second (FPS) and the number of Steps Per Display (SPD). The last one determines how
many steps must advance the evolution of the model before refreshing the graphical representation.
To solve these differential equations, a solver algorithm must be chosen.

The View/HtmlView panel permits building the graphical user interface by selecting elements
from palettes and adding them to the view’s tree of elements. It determines the user interaction with
the model and shows a schematic or realistic representation of the phenomenon or system. In the case
of HtmlView, the interface elements present CSS properties.

3. Implementation of the First Plant (SISO System). Mathematical Model

The first system implemented in the simulation software is a SISO system (Single-Input and
Single-Output). As commented above, the tool EJsS has been used. Section 3.1 describes succinctly
this system. After that, the next subsections present the implementation of the system equations in
EJsS. First, Section 3.2 details the steps for the linearized version, and then Section 3.3 for the original
nonlinear model. Section 3.4 describes the implementation of the saturation block.

3.1. System Description

The plant is composed of two consecutive tanks, as shown in Figure 1. The first one is supplied
by a flow q1(t) which is the system input. The output variable is the height of the second tank h2(t).

The parameters of the process are the cross section of each tank (A1 and A2) and the discharge
coefficients (r1 and r2). The user can freely configure these parameters before starting any simulation.

Furthermore, the variables are the input flow q1(t), the flow from the first to the second tank q2(t),
the output flow of the second tank q3(t), the fluid level of the first tank h1(t) and the fluid level of the
second tank h2(t). Once the parameters and variables are defined, the equations of this system are:

q2(t) = r1
√

h1(t)− h2(t) (1)

q3(t) = r2
√

h2(t) (2)

A1 · dh1(t)
dt

= q1(t)− q2(t) (3)

A2 · dh2(t)
dt

= q2(t)− q3(t) (4)
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In this hydraulic system, one can consider the fluid heights of both tanks as the physical state
variables. In addition, it is worth highlighting the fact that this plant is nonlinear. For this reason,
if linear techniques are used to calculate the controller, the student must linearize it around a working
point, obtaining either its transfer function or its state space representation. Both the linearized
system and the original nonlinear model have been implemented in the same HTML page. The user
can choose the type of equations to be used for the simulation (linearized or original model) at the
parameters window. The plant can be controlled in either continuous- or discrete-time. For this reason,
two different HTML pages have been created.

In brief, the user will open one or another page depending on the kind of controller (continuous-
or discrete-time). Then, they will choose the set of equations (original nonlinear or linearized) to
simulate. The codes to carry out the implementation of this system are shown in the next sections,
with the purpose of easing the understanding of them and the replication or implementation of new
laboratories. All the variables and parameters that appear are defined in Appendix A.1.

h2 (t)

q2 (t)

h1 (t)

q1(t)

q3 (t)

Figure 1. First plant (SISO system).

3.2. Implementation of the Linearized Model

To implement both models, the first step is to define the parameters and variables which
characterize each mathematical model. That is to say, in the case of the original nonlinear system, it is
necessary to define the variables of the plant and, in the case of the linearized system, the working
point and the incremental variables around it must be defined.

Apart from the variables of the plant, there are some other variables, e.g. time, which has been
initialized to zero for starting the simulation at that instant of time, and its differential, which is
necessary to write the differential equations. As described in the next sections, the controllers included
in the platform are obtained from the linearized system. Therefore, they work with incremental
variables. For this reason, it is necessary to obtain the incremental value of the reference height
(h2ref_inc), whose value is introduced by the user (h2ref). The code is shown in Listing 1. It has been
implemented in the fixed relations panel, since it does not depend on the simulated model.

Listing 1. Fixed relations panel (SISO).

h2ref_inc=h2ref-h20;

Once all the variables are defined, the equations that describe the behavior of the system must
be introduced in the evolution method panel. This subsection focuses on the implementation of
the linearized model; thus, the defined equations to define are those obtained after linearizing the
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equations of Section 3.1 around a working point. The equations of the plant are continuous-time,
consequently are included on an ODE page, as shown in Table 1. To solve the differential equations,
the Runge–Kutta method has been selected [30].

Table 1. Differential equations of linearized system (linear SISO).

State Derivative
dh1_inc(t)

dt height1_L(h1_inc, h2_inc, q1_inc)
dh2_inc(t)

dt height2_L(h1_inc, h2_inc)

As shown in Table 1, two functions have been created in the custom methods panel and they are
invoked from the ODE page to compute the differential equations. These functions are included in
Listings 2 and 3.

The first function, whose code is shown in Listing 2, receives the values of the incremental
variables of the first tank height (h1_inc), second tank height (h2_inc) and the input flow (q1_inc).
The first derivative of h1_inc is calculated using Equation (3), but, before that, the incremental flow
between both tanks (q2_inc) must be obtained by means of Equation (1) after linearized.

The code implemented in each function must limit that the final height of the fluid cannot be
negative, since it is physically impossible. Therefore, when it happens, the height is saturated to zero
and the differential equation is solved considering it. In other words, a lower limit must be defined for
both heights. In the case of the linearized model, the heights (h1_inc and h2_inc) will not be lower
than their value at the operating point (h10 and h20), but with negative sign.

Listing 2. Function to obtain the height of the first tank h1: height1_L (linear SISO).

function height1_L (h1_inc,h2_inc,q1_inc) {
if(h1_inc<-h10){

h1_inc=-h10;
}
if(h2_inc<-h20){

h2_inc=-h20;
}
//flow between both tanks
q2_inc=((r1*h1_inc*(1/(2*Math.sqrt(h10-h20))))-(r1*h2_inc*(1/(2*Math.sqrt(h10-h20)))));
return((1/A1)*(q1_inc-q2_inc)); //compute first derivative of H1

}

The code implemented in the second function, as shown in Listing 3, computes the incremental
variables of the flow between both tanks (q2_inc) and the output flow of the second tank (q3_inc),
the last one by means of Equation (2) but linearized. Finally, Equation (4) is used to obtain the first
derivative of the second tank height.



Electronics 2019, 8, 1205 7 of 28

Listing 3. Function to obtain the height of the second tank h2: height2_L (linear SISO).

function height2_L (h1_inc,h2_inc){
if(h1_inc<-h10){

h1_inc=-h10;
}
if(h2_inc<-h20){

h2_inc=-h20;
}
//flow between both tanks
q2_inc=((r1*h1_inc*(1/(2*Math.sqrt(h10-h20))))-(r1*h2_inc*(1/(2*Math.sqrt(h10-h20)))));
// tank 2 output flow
q3_inc=r2*(1/(2*Math.sqrt(h20)))*h2_inc;
return((1/A2)*(q2_inc-q3_inc)); // compute first derivative of H2

}

To end the implementation of the linearized model, it is necessary to take it into account that
the evolution of some variables must be shown to the user. However, the values obtained with these
equations are incremental, so the working point must be added to these values. Consequently, a code
page (Listing 4) has been created, on which these operations are carried out.

Listing 4. Code page: Linearized system (linear SISO).

h1=h1_inc+h10;
h2=h2_inc+h20;
q1=q1_inc+q10;

3.3. Implementation of the Original Nonlinear Model.

The original nonlinear model is composed of the equations shown in Section 3.1. They are
continuous-time differential equations; thus, an ODE page (Table 2) has been created to solve them.

Table 2. Differential equations of original system (nonlinear SISO).

State Derivative
dh1_inc(t)

dt height1_NL(h1, h2, q1)

dh2_inc(t)
dt height2_NL(h1, h2)

As in the case of the linearized model, two functions, whose codes are shown in Listings 5 and 6,
have been created to define the equations of this model and the behavior of the fluid heights. Their
values cannot be negative, so the lower value of these variables is set to zero, when the equations are
solved. Besides, a difference between both heights appear in a square root, as shown as Equation (1).
For this reason, the result of this difference must be checked too. If the fluid height of the first tank
h1(t) is lower than the fluid height of the second tank h2(t), then the direction of the flow between
both tanks q2(t) is opposite. In other words, the fluid will flow from the second tank to the first one.
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Listing 5. Function to obtain the height of the first tank h1: height1_NL (nonlinear SISO).

function height1_NL (h1, h2, q1) {
if (h1<0){

h1=0;
}
if(h2<0){

h2=0;
}
if (h1 < h2) {

q2=-r1*Math.sqrt(h2-h1);
else {

q2=r1*Math.sqrt(h1-h2);
}
h1_inc=h1-h10; ; // compute the incremental value of h1
return (1/A1)*(q1-q2);

}

Listing 6. Function to obtain the height of the second tank h2: height2_L (nonlinear SISO).

function height2_NL (h1, h2) {
if (h1<0){

h1=0;
}
if(h2<0){

h2=0;
}
if (h1 < h2) {

q2=-r1*Math.sqrt(h2-h1);
else {

q2=r1*Math.sqrt(h1-h2);
}
h2_inc=h2-h20; ; // compute the incremental value of h1
return (1/A2)*(q2-r2*Math.sqrt(h2));

}

An important aspect is that the controllers included in the platform are calculated from the
linearized plant, hence the variables involved in the controller must be incremental.

To carry out the control, the feedback of some variables is necessary. In other words, these variables
are inputs to the controller, thus the working point must be subtracted from their values to obtain
the incremental variables. On the contrary, the operating point will be added to the output variables
of the controller, that is to say, to the calculated control action. These operations are carried out on a
code page.

3.4. Saturation

Sometimes, the control action takes values which are not admissible when a system is controlled,
since their values are limited in the real system. For this reason, an optional saturation block has been
implemented for the control action. The user can activate it and set the maximum and minimum
values of these variables (control action). The code to perform this behavior is implemented in each of
the code pages created for each of the control techniques.

As shown in Listing 7, some new variables have been defined in a variable page to describe the
behavior of the saturation block. For example, two boolean variables (sat_upper and sat_low) that
determine if the user has activated the upper and/or lower saturation by means of a checkbox.
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Listing 7. Code page: Saturation block (SISO).

if(sat_upper){
if (q1_inc+q10 > value_sat_upper){

q1_inc=value_sat_upper-q10;
}

}
if(sat_low){

if(q1_inc+q10 < value_sat_low){
q1_inc=value_sat_low-q10;

}
}

4. Implementation of the First Plant (SISO System). Controllers

The purpose of this work consists in developing a simulation software that permits controlling
some virtual systems, such as the plants described in the previous section. Several kinds of control
techniques have been included in the platform, based on both classic and modern approaches.
For example, Figure 2 shows the block diagram of a PID controller.

REFERENCE SYSTEMI

P

+
+
+

+

-

D

q1 (t) h2 (t)e (t)h2ref (t)

Figure 2. Control schema: PID controller.

This section describes in detail the different kinds of controllers that the student can define,
and how they are implemented in the platform. More information about the implementation of the
controllers can be found in [21,31]. Section 4.1 focuses on the implementation of the controllers based
on classical theory (continuous-/discrete-time) and Section 4.2 describes the implementation of the
controllers based on modern theory (continuous-/discrete-time).

4.1. Classical Control Theory

This subsection presents the implementation of the PID controller. To describe the behavior of this
kind of controller, first some parameters must be defined, such as the proportional (kp), derivative (kd)
and integral (kint) constants, as well as the error signal (error), and its derivative (derror) and integral
(ei). All these variables are included on the page of variables.

The platform permits controlling the system in either continuous- or discrete-time, so this
subsection is divided into two parts.

4.1.1. Continuous-Time

The control action is obtained as a result of adding the integral, proportional and derivative
actions that constitute the PID controller. The integral action must be expressed as a differential
equation so that EJsS can calculate it. Therefore, to include it in the platform, we use the inverse
operation, as shown in Table 3. If the result of integrating the error is derived, the error is obtained.
This equation is defined in the ODE page corresponding to this type of control and with the differential
equations of the plant.
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Table 3. ODE page of classical control (SISO system).

State Derivative
dei

dtime error

By contrast, the derivative and proportional parts have been implemented on a code page
(Listing 8), as well as the final equation of the controller. The error signal is the difference between the
incremental value of the reference and the incremental value of the output. In this platform, the first
one is assumed to be a constant. Therefore, the derivative of the error is the value of the first derivative
of the output (h2_d) with negative sign.

The equations of the control block do not depend on the model being used; however, it is
important to calculate the derivative of the error (h2_d), thus its calculation is implemented in the
function corresponding to the height of the second tank.

Listing 8. Code page: Continuous-time PID controller (SISO system).

error=h2ref_inc-h2_inc;
derror=-h2_d; // value computed in function height2
q1_inc=kp*error+kint*ei+kd*derror; //control action

4.1.2. Discrete-Time

The philosophy to implement the discrete controller changes substantially with respect to the
method presented in the previous subsection for the continuous-time controller, because the system
now contains both a continuous-time part (the plant) and a discrete-time part (the controller).

Therefore, the behavior of the discrete-time controller must be implemented on a code page,
as shown in Listing 9, in such a way that only the differential equations of the plant are included in the
ODE page.

The controller only makes calculations at specific moments of time (sampling instants). Thus,
the code must check if the simulation time coincides with a sampling instant. In this case, the values of
the variables will be kept until the next sampling instant (a zero-order hold is used to reconstruct the
control action).

Listing 9. Code page: Discrete-time PID controller (SISO system).

if ((Math.round(time/dt))% (Ts/dt) === 0){
//Derivative
derror=(h2ref_inc-h2_inc)-error; //error[k]-error[k-1]
//Proportional
error=h2ref_inc-h2_inc;
//Integral
ei=error+ei; //error[k]+error[1:k-1]
q1_inc=kp*error+ki*ei+kd*derror;

}
else{

error=error;
derror=derror;
ei=ei;
q1_inc=q1_inc;
h2_inc=h2_inc;

}
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In this case, the integral part is obtained using the product of the integral constant and the sum of
the values of the error signal, since the beginning of the simulation until the actual sampling instant.
Additionally, the derivative of the error signal is calculated as the difference between its current value
and its value at the previous sampling instant.

4.2. Modern Control Theory

This subsection presents the modern theory control systems included in the platform, which are
the main contribution of this paper along with the implementation of the discrete-time controllers using
EJsS. The user can choose among: (a) state feedback; (b) observer and state feedback; and (c) integral
controller, observer and state feedback control. To show the complete implementation, the steps for
the deployment of the second option, whose block diagram is shown in Figure 3, is presented next as
an example. However, all the possible combinations are available on the platform.

To implement the equations, it is essential to define all the parameters and variables beforehand.
For this control, the parameters are the input matrix; a column matrix with two components (B1 and
B2); the feedback matrix, whose size is 2 × 2 (components r11, r12, r21 and r22); the estimated state
variables (Xe1 and Xe2); the observer matrix, with size 2 × 1 (components Ko1 and Ko2); the state
feedback matrix, whose size is 1 × 2 (components Kc1 and Kc2); and an input gain (scalar Ks) to set
the steady state.

REFERENCE SYSTEMKs

B

Ko

+
+
+

ò

A – Ko · C

Kc

-

h2ref (t) h2 (t)q1 (t)

Xe (t)

Figure 3. Control schema: Observed state feedback.

4.2.1. Continuous-Time

In this kind of control, there are two differential equations (observer block), thus these are
included on an ODE page (Table 4). The equation to obtain the control action is defined on a code page
(Listing 10).

Table 4. ODE page of the control through observed state feedback (SISO system).

State Derivative
dXe1
dtime B1 ∗ q1_inc + r11 ∗ Xe1 + r12 ∗ Xe2 + Ko1 ∗ h2_inc
dXe2
dtime B2 ∗ q1_inc + r21 ∗ Xe1 + r22 ∗ Xe2 + Ko2 ∗ h2_inc

Listing 10. Code page: Continuous-time control through observed state feedback (SISO system).

q1_inc=(h2ref_inc*Ks) - ((Kc1*Xe1) + (Kc2*Xe2));
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4.2.2. Discrete-Time

In this case, all equations of the controller must be described using code pages (Listing 11),
including the equations that define the observer. Therefore, it is necessary to define two additional
variables (Xe1_1 and Xe2_1), which are the estimated state variables in the next sampling instant.
The estimated state variables (Xe1 and Xe2) will have the values of these ones in the next
sampling instant.

Listing 11. Code page: Discrete-time control through observed state feedback (SISO system).

if ((Math.round(time/dt3))% (Ts3/dt3) === 0){
Xe1_1=(h2_inc*Ko1)+(q1_inc*H1)+(Xe1*r11)+(Xe2*r12);
Xe2_1=(h2_inc*Ko2)+(q1_inc*H2)+(Xe1*r21)+(Xe2*r22);
q1_inc=(h2ref_inc*Ks)-((Kc1*Xe1)+(Kc2*Xe2));
Xe1=Xe1_1;
Xe2=Xe2_1;

}
else{

Xe1=Xe1_1;
Xe2=Xe2_1;
q1_inc=q1_inc;
h2_inc=h2_inc;

}

5. Implementation of the Second Plant (MIMO System): Mathematical Model

Many physical systems have multiple inputs and/or multiple outputs. These are known as
MIMO systems. This kind of system presents the complexity that an input variable can affect to several
output variables. In advanced control subjects, students must learn how to control such systems and
put these concepts into practice. For this reason, one of these systems has been implemented in the
platform, so that the student can design several control systems and visualize the evolution of the
controlled system. Section 5.1 describes succinctly this system. After that, the next subsections present
the implementation of the equations of the system in EJsS. First, Section 5.2 details the steps for the
linearized version, and then Section 5.3 for the original nonlinear model. Section 5.4 describes the
implementation of the saturation block.

5.1. System Description

This plant consists of a valve and pump that distributes water to two tanks, as shown in Figure 4.
The position of the valve determines how the flow from the pump is divided between both tanks.

The parameters of the process are the cross section of each tank (A1 and A2), the cross section of
their respective outlet pipes (B1 and B2), the constant gain of the pump (Kp) and the acceleration of
gravity (g).

On the other hand, the variables are the voltage applied to pump V(t), the valve opening
γ(t)ε [0, 1], the input flow to tank 1 qe1(t), the output flow from the tank 1 qs1(t), the input flow to
tank 2 qe2(t), output flow from the tank 2 qs2(t) and the height of fluid in each tank h1(t) and h2(t).
Once the parameters and variables are defined, the equations of this system are:

qe1(t) = Kp · V(t) · (1 − γ(t)) (5)

qe2(t) = Kp · V(t) · γ(t) (6)

qs1(t) = B1 ·
√

2 · g · h1(t) (7)
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qs2(t) = B2 ·
√

2 · g · h2(t) (8)

A1 · dh1(t)
dt

= qe1(t)− qs1(t) (9)

A2 · dh2(t)
dt

= qe2(t)− qs2(t) (10)

The input variables are the voltage V(t) applied to the pump and the valve opening γ(t).
The variables to control are the fluid height of both tanks (h1(t) and h2(t)). To obtain a linear state
space representation, the equations must be linearized around a working point, since it is a nonlinear
system. The codes to carry out the implementation of this system are shown in the next sections,
with the purpose of easing the understanding of them, all variables and parameters that appear are
defined in Appendix A.2.

V(t)

A1

qe1(t)

h1(t)

qs2(t)h2(t)

qe2(t)

qs1(t)

γ(t)

B1

A2 B2

Kp

1-γ(t)

Figure 4. MIMO physical system.

5.2. Implementation of the Linearized Model

To begin with the implementation, it is necessary to declare the variables that appear in both the
original and the linearized model (incremental variables), the value of the variables in the working
point, the time variable and its differential. After that, the equations that define the behavior of the
system must be implemented.

This subsection focuses on the linearized model that is obtained after linearizing the equations
shown in Section 5.1. To implement it, the evolution and custom panel have been used.

The functions created are invoked by the ODE page, as shown in Table 5, to calculate the first
derivative of each state variable, using the Runge–Kutta method.

The height of fluid in each tank cannot be negative, thus the code implemented in these functions
must test if it is happening as shown in Listings 12 and 13. In this case, the variables are incremental
(case of the linearized model). Therefore, the value of the incremental height (h1_inc and h2_inc) could
not be lower than the working point (h10 and h20) with negative sign.
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Table 5. Differential equations of the linearized system (linear MIMO).

State Derivative
dh1_inc
dtime height1_L(h1_inc, gamma_inc, V_inc)

dh2_inc
dtime height2_L(h2_inc, gamma_inc, V_inc)

Listing 12. Function to obtain the height of fluid in the first tank h1: height1_L (linear MIMO).

function height1_L (h1_inc, gamma_inc, V_inc) {
if(h1_inc<-h10){

h1_inc=-h10;
}
qe1_inc=-Kp*V0*gamma_inc+Kp*(1-gamma0)*V_inc; // input flow
qs1_inc=B1*Math.sqrt(g/(2*h10))*h1_inc; // output flow
return((1/A1)*(qe1_inc-qs1_inc));

}

Listing 13. Function to obtain the height of fluid in the second tank h2: height2_L (linear MIMO).

function height2_L (h2_inc, gamma_inc, V_inc) {
if(h2_inc<-h20){

h2_inc=-h20;
}
qe2_inc=-Kp*V0*gamma_inc+Kp*gamma0*V_inc;
qs2_inc=B2*Math.sqrt(g/(2*h20))*h2_inc;
return((1/A2)*(qe2_inc-qs2_inc));

}

Finally, the values of the variables are incremental and the evolution of some of them must be
shown to the user, thus their value in the working point must be added to those variables, as shown
in Listing 14.

Listing 14. Page code: Linearized system (linear MIMO).

h1=h1_inc+h10;
h2=h2_inc+h20;
gamma=gamma_inc+gamma0;
V=V_inc+V0;

5.3. Implementation of the Original Nonlinear Model

This model is implemented using an ODE page (Table 6) to solve the continuous-time differential
equations, as well as a function for each state variable (Listings 15 and 16), which will be invoked by
the ODE page.

Table 6. Differential equations of the original system (nonlinear MIMO).

State Derivative
dh1

dtime height1_NL(h1, gamma, V)

dh2
dtime height2_NL(h2, gamma, V)

The code implemented in each function computes the corresponding first derivative by means of
the equations shown in Section 5.1, as can be seen in Listings 15 and 16.
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Listing 15. Function to obtain the height of fluid in the first tank h1: height1_NL (nonlinear MIMO).

function height1_NL (h1, gamma, V) {
if (h1<0){

h1=0;
}
qe1=Kp*V*(1-gamma);
qs1=B1*Math.sqrt(2*g*h1);
h1_d=(1/A1)*(qe1-qs1); //save the first derivative value of h1
h1_inc=h1-h10; // compute the incremental value of h1
return((1/A1)*(qe1-qs1));

}

Listing 16. Function to obtain the height of of fluid in the second tank h2: height2_NL
(nonlinear MIMO).

function height2_NL (h2,gamma,V) {
if (h2<0){

h2=0;
}
qe2=Kp*V*gamma;
qs2=B2*Math.sqrt(2*g*h2);
h2_d=(1/A2)*(qe2-qs2); //save the first derivative value of h2
h2_inc=h2-h20; // compute the incremental value of h2
return((1/A2)*(qe2-qs2));

}

5.4. Saturation

As mentioned above, sometimes the values of the control action are limited in the real plant.
For example, the valve opening γ(t) can only take values between 0 and 1 in this plant, thus a
saturation block has been created to this variable. In addition, the saturation of the pump voltage is
implemented, but, in this case, it will only be active when the student determines it. Therefore, he/she
must introduce the upper and/or lower limit values.

This part has been included as code on each page created for the different types of control. As can
be seen in Listing 17, two boolean variables (sat_V_upper and sat_V_low) have been created to indicate
if the upper and/or lower saturation of the pump voltage is activated.
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Listing 17. Code page: Saturation block (MIMO).

// valve constant (gamma) saturation
if (gamma_inc+gamma0 > value_gamma_sat_upper){

gamma_inc=value_gamma_sat_upper-gamma0;
}
if (gamma_inc+gamma0 < value_gamma_sat_low){

gamma_inc=value_gamma_sat_low-gamma0;
}
// voltage applied to pump (V) saturation
if (sat_V_upper){

if (V_inc+V0 > value_V_sat_upper){
V_inc=value_V_sat_upper-V0;

}
}
if(sat_V_low){

if(V_inc+V0 < value_V_sat_low){
V_inc=value_V_sat_low-V0;

}
}

6. Implementation of the Second Plant (MIMO System): Controllers

Several kinds of control techniques have been included in this simulation software, in this case
to control a virtual MIMO system. The user can choose between techniques based on classic and on
modern theory. This section describes how the controllers are implemented in EJsS. More information
about the implementation of the controllers can be found in [21,31].

Section 6.1 focuses on the implementation of the controllers based on classical theory
(continuous-/discrete-time) and Section 6.2 describes the implementation of the controllers based on
modern theory (continuous-/discrete-time).

6.1. Classical Control Theory

This subsection, as mentioned above, presents the implementation of the PID controller. This kind
of controller works in closed-loop, thus its input is the error signal. The product of this signal and a
gain Kp represents the proportional part. On the other hand, the derivative of the error signal times a
gain Kd is the derivative part. Finally, the product of the integral of the error and a gain Ki represents
the integral part. The output of the PID controller is the addition of all these parts.

To begin with its implementation, it is necessary to define the proportional (kp1 and kp2),
derivative (kd1 and kd2) and integral (ki1 and ki2) constants, as well as the error signal (error) ,
its derivative (derror) and integral (ei), and all variables that allow us to describe behavior of this kind
of controller. All these variables are included on the page of variables.

6.1.1. Continuous-Time

The integral part of the controller has been defined on an ODE page (Table 7), since it has been
expressed as a differential equation considering that the derivative and integral are inverse operations.

Table 7. ODE page of classical control (MIMO system).

State Derivative
dei_1
dtime error1
dei_2
dtime error2
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By contrast, the rest of the necessary equations are defined on a code page (Listing 18)
corresponding to this type of control. The derivative of each error signal is equal to the derivative of its
corresponding state variable with negative sign, since the incremental reference values are considered
constant. In this platform, the values of these variables (h1_d and h2_d) are assigned every time that
the functions are invoked. This is due to the fact that their values depend on the model being used.

Listing 18. Code page: Continuous-time PID controller (MIMO system).

error1=h1ref_inc-h1_inc;
error2=h2ref_inc-h2_inc;
derror1=-h1_d; // first derivative value of h1
derror2=-h2_d; // first derivative value of h2
V_inc=kp1*error1+ki1*ei1+kd1*derror1;
gamma_inc=kp2*error2+ki2*ei2+kd2*derror2;

6.1.2. Discrete-Time

In this case, all the equations which are necessary to implement the controller are included on
a code page (Listing 19). These equations will only be run when the simulation time is equal to a
sampling instant.

Listing 19. Code page: Discrete-time PID controller (MIMO system).

if ((Math.round(time/dt))% (Ts/dt) === 0){
//Derivative
derror1=(h1ref_inc-h1_inc)-error1;
derror2=(h2ref_inc-h2_inc)-error2;
//Proportional
error1=h1ref_inc-h1_inc;
error2=h2ref_inc-h2_inc;
//Integral
ei1=error1+ei1;
ei2=error2+ei2;
V_inc=kp1*error1+ki1*ei1+kd1*derror1;
gamma_inc=kp2*error2+ki2*ei2+kd2*derror2;

}
else{

V_inc=V_inc;
gamma_inc=gamma_inc;
derror1=derror1;
derror2=derror2;
error1=error1;
error2=error2;
ei1=ei1;
ei2=ei2;

}

6.2. Modern Control Theory

This subsection presents the modern control systems included in the platform. The MIMO plant
can be controlled using one of the next options: (a) state feedback; (b) observer and state feedback; and
(c) integral controller, observer and state feedback control. All of them are included in the simulation
software, however, in this paper, only the implementation of the second option is shown. To begin, the
parameters and the variables of this control must be defined, as the input matrix [B11, B12; B21, B22],
the feedback matrix [r11, r12; r21, r22], the estimated state variables [Xe1; Xe2], the observer matrix
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[Ko11, Ko12; Ko21, Ko22], the state feedback matrix [Kc11, Kc12; Kc21, Kc22] and the steady gain matrix
[Ks11, Ks12; Ks21, Ks22]. Additionally, the equations that describe the behavior of the controller must
be defined. However, the way to implement them depends on the kind of control: continuous-time or
discrete-time, as described in the next subsections.

6.2.1. Continuous-Time

In this type of control, there are two differential equations belonging to the observer part, which are
used to calculate the estimated state variables. These equations have been defined on an ODE page,
as shown in Table 8. By contrast, the equations to calculate the control action are included on a code
page, whose implementation can be seen in Listing 20.

Table 8. ODE page of discrete observer state feedback control (MIMO system).

State Derivative
dXe1
dtime (B11 ∗ V_inc + B12 ∗ gamma_inc) + (r11 ∗ Xe1) + (r12 ∗ Xe2) + (Ko11 ∗ h1_inc + Ko12 ∗ h2_inc)
dXe2
dtime (B21 ∗ V_inc + B22 ∗ gamma_inc) + (r21 ∗ Xe1) + (r22 ∗ Xe2) + (Ko21 ∗ h1_inc + Ko22 ∗ h2_inc)

Listing 20. Code page: Observer state feedback control (MIMO system).

V_inc=(Ks11*h1ref_inc)+(Ks12*h2ref_inc)-(Kc11*Xe1+Kc12*Xe2);
gamma_inc=Ks21*h1ref_inc+Ks22*h2ref_inc-Kc21*Xe1+Kc22*Xe2;

6.2.2. Discrete-Time

The implementation of this discrete-time controller is carried out on a code page, as already
mentioned for the previous plant. This code can be seen in Listing 21.

Listing 21. Code page: Discrete observer state feedback control (MIMO system).

if ((Math.round(time/dt3))% (Ts3/dt3) === 0){
V_inc=(Ks11*h1ref_inc)+(Ks12*h2ref_inc)-(Kc11*Xe1+Kc12*Xe2);
gamma_inc=(Ks21*h1ref_inc)+(Ks22*h2ref_inc)-(Kc21*Xe1+Kc22*Xe2);
//first derivative value of the first estimated state
Xe1_1=(H11*V_inc+H12*gamma_inc)+(r11*Xe1)+(r12*Xe2)+(Ko11*h1_inc+Ko12*h2_inc);
//first derivative value of the second estimated state
Xe2_1=(H21*V_inc+H22*gamma_inc)+(r21*Xe1)+(r22*Xe2)+(Ko21*h1_inc+Ko22*h2_inc);
// save these values
Xe1=Xe1_1;
Xe2=Xe2_1;

}
else{

Xe1=Xe1_1;
Xe2=Xe2_1;
gamma_inc=gamma_inc;
V_inc=V_inc;
h1_inc=h1_inc;
h2_inc=h2_inc;

}
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7. Results of the Simulation

This section explains how the HTML pages created must be used. In addition, results obtained
with both the linearized and the original model are shown. The system selected to perform this analysis
is the MIMO system controlled discrete-time.

Firstly, the student will see a main window which includes an image of the system, a menu and a
title indicating if the control is continuous- or discrete-time. There are several options in the menu:
(a) parameters; (b) classic control; or (c) state-space control. The user will select the first one (Figure 5)
to define the values of each parameter, as well as the working point. In addition, the model to be used
in the simulation (linearized or original equations) can be selected here.

In this window, the user can choose the type of control, for instance state-space control choosing
between state feedback control, observer and state feedback control or integral controller, observer
and state feedback control. In this article, the second option has been selected. Once the controller
has been chosen, the user must calculate the parameters of this control, so the response of the system
meets determined specifications.

Figure 5. Configuration of the parameters and operating point.

To design the controller, the user must linearize the system around the working point introduced,
and obtain the state space representation. After that, it must be discretized with a specific sampling time
and considering a zero-order hold. Finally, the parameters values must be calculated and introduced
in the window of the selected controller, as shown in Figure 6. In the top of this window, there is a
button at left for going back to the menu and another at the left which permits accessing the simulation
window. The control schema is visualized in the center and the student must write the value of all
parameters at the bottom of this window.

In this case, these parameters are the state feedback matrix Kc, the matrices of the observer (Ko, H,
G − Ko · C) and the input gain matrix Ks. Besides, the sample time must be introduced since the
controller is discrete-time.
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On the other hand, there is an optional block corresponding to the voltage saturation of the pump
V(t). The user can determine the maximum and minimum values of the control action signal and
activate the saturation by means of a selector.

Figure 6. Configuration of the control system.

The next step is to click on the “simulate” button. In the right half of this window, the evolution
of some relevant variables can be observed through drawing elements (Figure 7). In addition, there is
a slider and a parsed field, which permits changing the SPD (Steps Per Display) value. The user
can increase its value with the purpose that the system could advance multiple times before the
visualization is redrawn. On the left half, there are four buttons to choose the variables which will
be visualized, a graphic that shows the evolution of the selected variable and a set of buttons (play,
pause and reset).

On the bottom of this screen, the user can introduce the reference value of each output and their
values are shown versus the simulation time. After that, the play button must be clicked for the
simulation start.

The reset button must be clicked if we want the value of each variable to be set to its initial value.
The back button does this as well, but also returns to the menu.

On the platform website [29], the student can find more information about this simulation
software, and also some laboratory guides where all steps are described to take advantage of this
tool. In addition, some guidelines to calculate each controller are included. First, the user is proposed
to follow these steps with a set of default parameters and, once he/she knows how use it, there are
proposed a variety of exercises, thus the student calculates the parameters of each controller and then
he/she simulates it in the tool and checks the performance of the controlled system.
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Figure 7. Simulation of the controlled system.

In this example, the system is controlled using the observer and state feedback control,
whose parameters are shown in Figure 6 (default values). The user introduces a value of 5.5 m
for the H1 reference and 2.5 for the H2 reference. Subsequently, the behavior of the system is shown
in Figure 8.

Figure 8. The evolution of the outputs considering the equations of the linearized system.
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The user can change the graphic using the buttons on the top, with the purpose of visualizing
the evolution of the variable that he/she wants. The available options are the control action signals
(Figure 9) and the evolution of the outputs separately or in the same graphic.

Figure 9. The evolution of the control actions considering the equations of the linearized system.

Thus far, the student has been able to observe if the controller designed works correctly for the
linearized model. In this example, both heights (the outputs of the system) stabilize for the reference
values introduced. As discussed in this article, the student will also be able to see if the same happens
with the original (nonlinear) model.

For comparative purposes, Figure 10 shows the evolution of the output when the same controller
is used, considering the equations of the original (nonlinear) plant. Figure 11 shows the evolution of
the control action in this case. Comparing the output responses of either model, both are very similar,
as well as the behavior of the control actions (Figure 11). However, the final values of the heights do
not agree with the reference values introduced, although the system does stabilize with a near value.
It happens because the nonlinear model works correctly in a short range around the operating point;
in other words, away from it the difference between the behavior of linearized and nonlinear model
is greater.

This kind of experiments results greatly illustrative for the students and, after them, they can use
the platform to check how the addition of the integral controller solves this issue.
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Figure 10. The evolution of the outputs considering the equations of the original (nonlinear) system.

Figure 11. The evolution of the control actions considering the equations of the original (nonlinear) system.

Therefore, the student has put into practice the concepts of control systems after following all
steps. First, he/she has identified and modeled two nonlinear systems. Then, the student has designed
a controller based on classical and modern control theory, and after that the control system has been
simulated. The designed controller has been applied to the linearized and nonlinear model, thus the
student has been able to see the difference between an ideal and the real plant.
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8. Conclusions

The purpose of this article is to present a simulation software, in which the student can design a
controller and check the behavior of the controlled system. Both a SISO and a MIMO plant have been
included, which are hydraulic and nonlinear. Due to this characteristic, both models (linearized and
original equations) have been implemented so that the student can observe how the linearized model
behaves using the calculated control, and what happens if that control is applied to the original model
of the system.

The control system can be carried out continuous- or discrete-time, so for each system two HTML
pages have been created: (a) SISO system controlled using a continuous-time controller; (b) SISO
system controlled using a discrete-time controller; (c) MIMO system controlled using a continuous-time
controller; and (d) MIMO system controlled discrete-time. In brief, there are four modules, thus other
studies can focus on the part which interests them. To access these HTML pages, the user must enter
the website [29]. In addition, there is one laboratory guide by module. All steps are shown to model
the system and to design the controller, as well as how the simulation software must be used.

The implementation of the linearized and original model, as well as the different types of
continuous-time and discrete-time controllers, have been explained step by step through out this article.

This simulation software permits the student to design and test several types of control systems,
based on classical and modern control theory. Besides, he/she can configure the system and controller
parameters. Finally, the behavior of the controlled system (linear and original model) is shown.
The objective of this tool is to help students, so that they can experience the theory concepts studied
in classroom.

EJsS has turned out to be a complete tool to implement all required modules in an intuitive manner.
It presents enough resources both to design the interface for simulations and to obtain the evolution
of the physical system based on its equations, either continuous-time or discrete-time. All modules
implemented are at the disposal of the scientific community so that they can reuse them in future
implementations of physical system laboratories.

There are some possible improvements of the platform that are under consideration. First,
additional plants could be implemented, for example mechanical or electric systems. In addition,
more complex and higher-order hydraulic plants can be added, such as a plant composed by four
tanks in which the height of each one is controlled. In addition, other control approaches could be
included, for instance optimal, adaptive and fuzzy control.
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Appendix A. Parameters and Variables

Appendix A.1. SISO System

Table A1. Parameters of the system.

Parameter Description

A1,A2 Cross section of each tank.
r1,r2 Discharge coefficients.

Table A2. Variables of the mathematical model (nonlinear and linear).

Variable Incremental Variable Description

q1 q1_inc Input flow.
q2 q2_inc Flow from the first to the second tank.
q3 q3_inc Output flow of the second tank.
h1 h1_inc Fluid level of the first tank.
h2 h2_inc Fluid level of the second tank.

Table A3. Working point.

Parameter Description

q10 Value of q1 at the operating point.
q20 Value of q2 at the operating point.
q30 Value of q3 at the operating point.
h10 Value of h1 at the operating point.
h20 Value of h2 at the operating point.

Table A4. Saturation variables.

Parameter Description

sat_upper Boolean variable to activate the upper saturation.
sat_lower Boolean variable to activate the lower saturation.

value_sat_upper Upper limit value.
value_sat_lower Lower limit value.

Table A5. Parameters and variables of PID controller.

Parameter Description

kp Proportional constant.
kd Derivative constant.

kint Integral constant.
error Error signal.

derror Derivative of the error signal.
ei Integral of the error signal.
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Table A6. Parameters and variables of observer and state feedback control.

Parameter Description

[B1; B2] Input matrix (state space representation continuous-time).
[H1; H2] Input matrix (state space representation discrete-time).

[r11r12; r21r22] Proportional constant.
[Xe1; Xe2] Estimated state (in discrete-time: Xei[k]).
[Xe11; Xe21] Estimated state value in the next sampling instant Xei[k + 1].
[Ko1; Ko2] Observer matrix.
[Kc1Kc2] Feedback state matrix.

Ks Input gain.

Appendix A.2. MIMO System

Table A7. Parameters of the system.

Parameter Description

A1,A2 Cross section of each tank.
B1,B2 Cross section of their respective outlet pipes

Kp Constant gain of the pump

Table A8. Variables of the mathematical model (nonlinear and linear).

Variable Incremental Variable Description

V V_inc Voltage applied to pump.
gamma gamma_inc Valve opening.

qe1 qe1_inc Input flow to tank 1.
qs1 qs1_inc Output flow from the tank 1.
qe2 qe2_inc Input flow to tank 2.
qs2 qs2_inc Output flow from the tank 2.
h1 h1_inc Height of the fluid in the tank 1.
h2 h2_inc Height of the fluid in the tank 2.

Table A9. Working point.

Parameter Description

V0 Value of V at the operating point.
gamma0 Value of gamma at the operating point.

qe10 Value of qe1 at the operating point.
qs10 Value of qs1 at the operating point.
qe20 Value of qe2 at the operating point.
qs20 Value of qs2 at the operating point.
h10 Value of h1 at the operating point.
h20 Value of h2 at the operating point.

Table A10. Saturation variables.

Parameter Description

sat_V_upper Boolean variable to activate the upper saturation of the voltage applied to pump.
sat_V_lower Boolean variable to activate the lower saturation of the voltage applied to pump.

value_V_sat_upper Upper limit value of the voltage applied to pump.
value_V_sat_lower Lower limit value of the voltage applied to pump.

value_gamma_sat_upper Upper limit value of the Valve opening.
value_gamma_sat_lower Lower limit value of the Valve opening.
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Table A11. Parameters and variables of PID controller.

Parameter Description

kp1 Proportional constant of the first PID.
kd1 Derivative constant of the first PID.
ki1 Integral constant of the first PID.
kp2 Proportional constant of the second PID.
kd2 Derivative constant of the second PID.
ki2 Integral constant of the second PID

error1 Error signal (first PID).
derror1 Derivative of the error signal (first PID).

ei1 Integral of the error signal (first PID).
error2 Error signal (second PID).

derror2 Derivative of the error signal (second PID).
ei2 Integral of the error signal (second PID).

Table A12. Parameters and variables of observer and state feedback control.

Parameter Description

[B11B12; B21B22] Input matrix (state space representation continuous-time).
[H11H12; H21H22] Input matrix (state space representation discrete-time).
[r11r12; r21r22] Proportional constant.

[Xe1; Xe2] Estimated state (in discrete-time: Xei[k]).
[Xe11; Xe21] Estimated state value in the next sampling instant Xei[k + 1].

[Ko11Ko12; Ko21Ko22] Observer matrix.
[Kc11Kc12; Kc21Kc22] Feedback state matrix.
[Ks11Ks12; Ks21Ks22] Steady gain matrix.
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