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Abstract: The new developments in smart cyber-physical systems can be shown to include smart
cities, Internet of things (IoT), and for the most part smart anything. To improve the security of
sensitive personal information (SPI) in cyber-physical systems, we present some novel ideas related
to the encryption of SPI. Currently, there are issues in traditional encryption methods, such as low
speed of information acquisition, low recognition rate, low utilization rate of effective information
resources, and high delay of information query. To address these issues, we propose a novel efficient
encryption algorithm for the security of incremental SPI. First, our proposed method analyzes user
information resources and determines valid data to be encrypted. Next, it uses adaptive acquisition
methods to collect information, and uses our encryption method to complete secure encryption of
SPI according to the acquisition results. Our experimental analysis clearly shows that the algorithm
effectively improves the speed of information acquisition as well as effective information recognition
rate, thus enhancing the security of SPI. The encryption model in turn can provide a strong guarantee
for user information security.

Keywords: incremental data; privacy information; security; encryption; efficient algorithms;
cyber-physical systems; CPS

1. Introduction

As users of smart devices, we have witnessed advancements in systems that are Internet based,
which have created many different new avenues and challenges. The term cyber-physical systems
(CPS) was first used in the mid-2000s, with the onset of importance given to interactions between
systems that are connected to each other and also to the real-world we live in. CPS can be seen
more as a thematic subject than as a disciplinary topic. Networked Physical Systems refers to the
synchronization between computer information systems and Internet systems, the synchronization
and interaction of information between computer process and physical process, and the real realization
of object-to-object through the synchronization and interaction of computer calculation, Internet
information transmission and industrial operating system control. Object-to-object, human-to-human
three-dimensional integrated network information service. At present, network physical systems are
mainly used in large-scale industrial production, medical aid system, engineering system and traffic
intelligence system.

CPS can be defined as the direct intertwined connections between networks, computing,
and processes that are physical in nature. The connections occur as network systems and embedded
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systems control and monitor processes. From this, built in feedback loops where processes directly
affect computations and vice versa are kept track of. The promise of such systems is endless, with both
societal and economic ramifications that have not yet been fully realized. We have noticed major
financial investments worldwide to develop this technology further and in parallel major research
efforts in the newly developed field. Building on both embedded systems and Networked Physical
Systems directly, CPS can integrates the dynamics of physical processes with those of both networking
and software, providing the necessary abstractions, design, and analysis techniques needed to further
their very nature. As CPS are transmitting a myriad of different types of data back and forth between
networks, computing resources, and physical hardware, it becomes important to realize that the need
for efficient encryption algorithms in CPS exists.

Lately, with the increase in CPS, we have also seen rapid development of information (data)
resource sharing. However, the security problems of private information has also appeared. Private
information encryption is the symbol of the times and the only way to update and develop secure
information sharing. To protect a user’s security, it is necessary to encrypt and protect sensitive
personal information (SPI), as shown in [1,2]. Currently, users are becoming more concerned with the
privacy of their information as opposed to just the novelty of the application being used [3]. Therefore,
the secure encryption of SPI is an inevitable requirement of the future development of information
sharing and storage [4,5]. SPI encryption has become a recent trend with the development of new
information sharing and storage techniques for the future.

Research on encryption algorithms to be used on SPI is an effective way to protect users’ privacy.
It has piqued the interest and attention of experts and scholars in this field, and achieved some
effective research results. Moreover, as indicated earlier, with SPI potentially flowing freely in CPS
based networks, the need for the security of such information to be preserved is mandatory and can
be provided through our work presented here. Our novel encryption algorithm looks to solve the
following shortcomings of current encryption algorithms:

• low-speed data acquisition speed
• low data recognition rate
• effective utilization of resources
• delays in data queries using traditional methods

Before encrypting data, our algorithm analyzes user data resources and encrypts the data
according to the analysis results gauging the type of data involved. This effectively solves the
problem of data query delays caused by traditional methods in encrypting large amounts of data by
only encrypting data that needs enhanced security and privacy. To solve the problem of low data
recognition rate and effective utilization of resources, an interference quantification method is used
(described later) to determine the location of specific data after the data are encrypted. The experimental
results show that the proposed algorithm effectively solves the shortcomings of traditional methods,
and can protect a users’ privacy and information security. Traditional methods need a lot of manual
intervention when encrypting information, and the degree of automation is low. Combining with the
analysis of users’ private data resources, this paper uses an adaptive data collection method to collect
SPI, which can improve the degree of automation of information encryption.

Paper Organization

The rest of the paper is organized as follows. In Section 2, we give a thorough survey of related
work to the research presented here. We then present our proposed secure encryption method and its
inner workings in Section 3. Our experimental comparison analysis is presented in Section 4. Finally,
Section 5 gives some concluding remarks.
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2. Related Work

Recently, encryption of personal information has been studied in depth as an effective way to
solve the issues with SPI [5]. It has drawn the attention of experts and scholars in many fields, and has
resulted in several strong methods.

In [6], Zhang et al. proposed a dual encryption reversible concealment algorithm for real-time
network information based on chaotic sequences. The two kinds of scrambling methods are used to
double encrypt the network information. For the first time, the chaotic sequence encryption algorithm
is used to globally scramble the network information location. The second time, based on another set
of chaotic sequences, the 0 bit and 1 bit of the target pixel value are again scrambled to ensure that the
selected explicit (dense) attack can be defended. In this domain, the pseudo pixel is constructed by
using the information to be embedded to replace the target pixel, thereby realizing rapid embedding
of information. The embedded information is directly extracted from the ciphertext information
according to the key calculation. After the receiver decrypts the information, each bit data of the target
pixel is extracted to recover the original network information, thereby realizing reversible information
hiding under double encryption. The experimental results show that the algorithm has the advantages
of fast and efficient information embedding and large capacity. However, since the problem that
some information can be shared is not considered, the algorithm has the problems of low security
information recognition rate and high information query time delay.

In [7], Solomon et al., aiming at the problem that the current algorithm’s anti-deciphering ability
is not high, proposed a network privacy protection digital information encryption technology based
on homomorphic symbol frequency detection. First, the digital information encryption key structure
of the network privacy protection object is constructed. Then, the encoding design of encryption
and decryption is carried out, which uses the homomorphic symbol frequency detection to perform
key optimization of digital encryption to improve the anti-deciphering level. Finally, a simulation
experiment was conducted. The delay results show that the digital information encryption technology
makes the encryption depth higher, and the deciphering rate of the encrypted data is effectively
controlled. However, there is a problem that the information query time is high.

Zhang et al. proposed an anti-peep network security authentication information encryption
method [8]. The anti-peep network data attributes are selected according to the professional knowledge
and the overall structure of the data, and the selection results are pre-processed. According to the
attribute processing result, a variable window is introduced to realize the determination and clearing
of redundant data. First, the method sets the minimum, maximum, and minimum thresholds of
the variable window and initializes the window. After that, the data to be matched is set, and the
segmentation of the string is realized by the 3-gram method. After calculating the similarity between
the data to be matched and the window data record, the calculation result is stored in a two-dimensional
array. In addition, the data record similarity in the case of missing fields is calculated, thereby realizing
the redundancy of each type of data in the network, and then the redundant data in the determination
result is cleared. The method treats the plaintext as a continuous bitstream transmitted in the privacy
network and inputs its link number into the data encryption. The seed is used to complete the
initialization of the key sequence generator and generator, and the random encryption function is
called to generate a random encryption number. The encrypted bitstream is then encrypted using
the encrypted number. Experiments show that the information anti-attack coefficient is larger after
encryption. However, this method has a problem of low resource utilization and cannot effectively
meet the needs of users.

Qian et al. proposed a scheme they refer to as Privacy-Preserving Selective Aggregation (PPSA) [9].
PPSA can be described as a method which encrypts users’ SPI to prevent privacy disclosure from
outside analysts and service providers alike. PPSA fully supports selective aggregate functions that are
used for online user-based behavior analysis while also being able to guarantee differential privacy.
The authors provided experimental results that show that their model can effectively support both
aggregate queries (overall and selective) with acceptable levels of communication and computation
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overhead. However, due to the fact that some information can be shared, the algorithm has the
well-known issues of slow data acquisition speeds.

Zhang et al. proposed a user privacy protection method based on dynamic hiding of sensitive
itemsets (SIDH) [10], which senses the positive and negative boundaries of sensitive rules corresponding
to the itemsets space and incrementally expands the original snapshot to query anonymous set data.
This methodology hides and purifies sensitive association rules dynamically and finally realizes user
privacy protection. The experimental results showed that the SIDH method is hidden. The speed of
hiding sensitive itemsets is high, but the recognition rate of data is low.

Zhu proposed a new encryption method for privacy information acquisition process [11].
Privacy information in mobile Internet can be divided into several subspaces according to its
attributes and acquisition time. Private information is encrypted in each subspace and transmitted
to relay nodes. When a given relay node needs to read private information, it needs to request the
corresponding sub-key of the private information from data source node. A data source node’s own
unique strategy decides whether to authorize or not, and ensures the security of all the sub-keys it
generates. After encryption, the lengthy private information is divided into smaller information slices
by segmentation and reorganization. After transformation, the information is fused to ensure the
integrity of the encrypted information. The experimental results showed that the proposed method
improves the security and integrity of privacy information acquisition process, but it has issues with
long query delay times.

To solve the above problems, an SPI security encryption algorithm based on incremental update
data is proposed. Before encrypting data, our algorithm analyzes user data resources and encrypts
the data according to the analysis results gauging the type of data involved, as summarized in
Section 3.1. This effectively solves the problem of data query delays caused by traditional methods in
encrypting large amounts of data by only encrypting data that needs enhanced security and privacy.
To solve the problem of low data recognition rate and effective utilization of resources, an interference
quantification method is used (described in Section 3.3) to determine the location of specific data after
the data are encrypted. The experimental results show that the proposed algorithm effectively solves
the shortcomings of traditional methods, and can protect a users’ privacy and information security.
We also include some discussion of the potential applications of our work. Our work here to our
knowledge is both novel in implementation and also in results.

3. Secure Encryption Algorithm for SPI

With the application and development of network physical systems and more specifically CPS,
the security of user’s trade secrets and private data has gradually become a research hotspot in
this field. At present, the application of information technology (IT) in the security architecture
of network physical system is not perfect, and the security encryption process of sensitive private
message information has problems such as slow information acquisition speed and low recognition
rate. Therefore, this paper designs a new SPI efficient encryption algorithm to alleviate such problems.
The method first analyzes public data resources, private data resources and mixed data resources
in user data. From this analysis, it is concluded which resources need to be encrypted and which
data can be shared openly un-encrypted. The key concept here is that not all data fall under the
context of SPI, therefore there is no need to waste computational resources to encrypt/decrypt them.
The analysis of the data aids in establishing a targeted user data subset for sharing and the encryption
structure. User data resources are collected in using an adaptive data collection method. Finally,
the data encryption method based on interference quantization is used to complete the analysis on the
secure encryption method for SPI. An overview flow chart is given in Figure 1.
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Figure 1. Secure encryption algorithm flow chart.

3.1. SPI Analysis

In the context of incremental data updates, SPI is mainly classified into three types: public data
resources, private data resources, and mixed data resources, depending on the scope and type
of information.

1. Public data resources

Public data resources refer to users’ information stored on servers not under their direct control,
which can be accessed by other users through open channels and can be understood without
users having strong professional knowledge. The cost of public data acquisition is relatively low,
and it is a relatively low level of privacy security category [12]. Some common data and Web
data information belong to public data, including personal credit information, e-mail addresses,
browsing traffic, job categories and other similar information. This kind of data resources is
mainly used by users themselves and others, and will not usually threaten users’ privacy. Users
do not need to worry about the source of resources and data security, but only pay attention to
the satisfaction of information and the utilization of attached resources.

2. Private data resources

Private data resources exist in the users’ own storage system, mainly for information that
cannot be publicly obtained, involving SPI and potentially some relatively important business
data and other non-public private data, which can be divided into personal account login
account and password, user identity card information, electronic financial information,
and individuals/business data, among others [13]. Private data need a high level of privacy
and security. They cannot be acquired and utilized by people other than public administration
departments. At the same time, external organizations cannot access this part of any resources.
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3. Mixed data resources

Mixed data resources are the collection of public data resources and private data resources.
Through the network, data security can be balanced between public data resources and private
data resources [14]. User’s private data resources are linked with public data resources to form
a user’s mixed data resources. Specifically, it includes the personal account login account and
password, user ID card information and personal credit information, mailbox address and other
information in public information.

Private data resources belong to the privacy information of individual users, and cannot be
obtained and used by people other than public administration departments. Therefore, this paper
mainly encrypts private data resources. The natural combination of different systems and distributed
resources can realize the secure encryption of data resources. The user privacy information resource
structure is represented by Figure 2.

Figure 2. SPI resource structural map.

3.2. SPI Collection

Combined with the above definitions of SPI resources, the adaptive data collection method is
used to collect SPI. After instructions are sent to specify the tasks for data collection, appropriate
data collection tasks and a decision module are selected to meet the needs of the tasks. Concurrently,
privacy information is gathered by the data processing module to integrate the resources [15,16].

For collection, suppose there are q parameter collection tasks for completing of data collection.
The goal of data collection is to make a reasonable assignment of the q tasks.

Suppose a parameter detection task Q occurs at a certain moment of time. An alliance is introduced,
and the task assignment is performed in the area where the collection task appears. According to the
different requirements of acquisition task Qm, the task is decomposed into Qm = {Qm1, Qm2, · · · , Qmi}.
The appropriate data acquisition is selected to form the corresponding data alliance Am, Am =

{Pm1, Pm2, · · · Pmi}. The acquisition task is assigned in the data alliance, Pmi carries on the sub-task Qmx

of the acquisition task, Qmx ∈ Qm,(x = 1, 2, · · · , i), and the results are transmitted to the electronic
storage library.

To achieve efficient and real-time detection of the user privacy data parameters, and effectively
improve the performance of data resources, the time of data collection is used as an evaluation function.
The time of data acquisition can be represented by a matrix of q× q, where the information element
extmn represents the execution time of acquisition task m at the information node Pn.
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The execution time of acquisition task mainly includes: the time of data transmission exttr
mn,

the overhead time extoh
mn and the time spent on data processing extpr

mn:

extmn = exttr
mn + extoh

mn + extpr
mn (1)

The total amount of data resources is related to transmission time exttr
mn and amount of data

Dtr, exttr
mn = Dtr. Overhead time extoh

mn depends on the packet size. Assuming that the writing time
and reading time of a packet is equal, the relationship between overhead time, data visits Doh and
data resource storage speed V can be expressed as: extoh

mn = 2Doh/V. Data processing time extpr
mn is

different because of different tasks.
r (Pm) represents the sum of time of node P when performing the information acquisition task Qm,

and t (Qm) represents the sum of time when data resource acquisition task performs q tasks, which can
be represented as:

t (Pm) =
p
Σ

n=1
extmn

t (Qm) =
q
Σ

m=1
t (Pm) (2)

The energy consumption of data nodes includes energy consumption of computing data resources
Cpro, and energy consumption of communication data Ccom.

The energy consumption of computing data resources is the energy consumption of processing
tasks for data acquisition. If S (Pn) is the energy consumption of tasks perfumed by Pn in time,
and energy consumption of computing when data node Pn processes task can be expressed as:

Cpro (Pn) =
q
Σ

m=1
S (Pn) extmn (3)

The data energy consumption is generated during the process of data transmission. The energy
consumption of data transmission is C0,com at a given distance of d0, and the data energy consumption
is related to spatial distance din between central data nodes Pi and Pn:

Ci,com =
d2

in
d2

0
× (4π)2 β

GtGrλ2 × C0,com (4)

In Equation (4), Gt represents the emission coefficient of data node Pi, Gr is the receiving coefficient
of data node Pn, λ represents wavelength of communication, β is factor of data power, and all
parameters are constant. (4π)2 β/GtGrλ2 × C0,com stands for constant. thus, transmission energy
consumption of a unit of data can be evaluated with d2

in/d2
0.

The energy consumption C of data can be expressed as:

C =
P
Σ

n=1

(
Cpro + Ccom

)
(5)

The data load balance degree represents the difference range of time for performing the acquisition
task and time of completing the acquisition. The ratio of difference to data acquisition time [17,18] is
used to describe the information load balance degree, which can be defined as:

L = 1−
q
Σ

m=1
(T − t (Pm)) / (q× T) (6)

In Equation (6), T indicates the total time to complete the data acquisition, T =
q

max
m=1

(t (Pm)).

By the above process, the collection of user privacy information resources has been completed.
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3.3. Security Encryption Method of UPI

Combined with the above-mentioned collection techniques of user data, the interference
quantization method is used to facilitate the encryption of large amounts of SPI [19].

Assuming k is fixed and represented by (k), the problem of resource encryption in (k) data can be
represented as: 

max Σ
j∈J

Σ
i∈I

R(k)
ij x(k)ij

s.t Σ
i∈I

x(k)ij = 1
(7)

In Equation (7), R(k)
ij indicates the total amount of SPI, and x(k)ij indicates the amount of mixed data.

By solving Equation (7), X of all k are worked out. We give j as fixed in (j), the resource
sharing problem on the (j)th data is considered, and Pk

(j) ∈ [0.Pmax] is considered separately, it can be
derived that: 

max Σ
k∈K

Rk
(j)

s.t Σ
k∈K

Gtk
(j)P

k
(j) ≤ 1th

(8)

In Equation (8), Rk
(j) indicates the rate at which data is encrypted. The data objective function

Σk∈KRk
(j) can be used to sum up k to get:

Σk∈KRk
(j) = log2


Σ

k∈K
Gk̄
(j)P

k̄
(j) + Σ

t∈T
Iht
(j) + nk

(j)

Σ
k̄∈K/k

Gk
(j)P

k
(j) + Σ

t∈T
Iht
(j) + nk

(j)

(9)

In Equation (9), Iht
(j) indicates the interference item after encryption of SPI is determined. We have

seen that conventional data encryption usually needs to solve complex non-convex optimization
problems as given in [20]. However, here, we use interference encryption to simplify the problem.
For ease of description, some auxiliary variables are introduced. vth

(j) represents the interference of k
resources on the jth SPI resource, and the formula given in Equation (8) is converted into Equation (10),
which is called the SPI interference problem. max Σ

k∈K
Rk
(j)

s.t Σ
k∈K

vtk
(j) ≤ Ith

(10)

In Equation (9), Pk̄
(j) = vtk

(j)/Gk̄
(j), Pk

(j) is a function of vtk
(j), and the data variable is Pk

(j) = vtk
(j) ∈[

0, Gtk
(j)Pmax

]
. It is worth noting here that the constraint of interference becomes a form of summation

of simple variables. Thus, the SPI encryption method of interference quantization can be introduced
to simplify the original data encryption interference problem [21–26].

Dealing with individual user data: assuming that ∆v represents the infinitesimal of interference,
it can only be shared as a region, and the length of the quantization is L, thus Ith = L∆v. Equation (10)
can be simplified into L, and the infinitesimal ∆v of interference can be divided into the largest
objective function [27–30]. Let l ∈ {1.2. · · · , L} indicate step l, and ∆vl represents the interference
infinitesimal of step l, and when information is single, the information interference infinitesimal of
each step is equal.

∆vl = ∆v = Ith/L (11)

In Equation (11), when ∆vl shares with the kth data, the corresponding resource infinitesimal is
given by Equation (12):
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∆Pk
(j) =

∆vl

Gtk
(j)

, ∀k ∈ K (12)

Dealing with multiple resources of data, suppose that, by L step, the interfering micro-components
are distributed to massive data, then:

∆vl =
IR

L + 1− l
(13)

In Equation (13), IR represents remaining interference quantification of data, and is updated
according to Equation (14):

IR = Ith − Σ
k∈K

Gtk
(j)P

k
j (14)

In Equation (14), the data vector P(j) is updated at each step according to the SPI to interfere
with the resources corresponding to the micro-cloud. Considering that multiple resources of data are
disturbed, when ∆vl share the kth data, the corresponding resource infinitesimal takes the minimum
value of data, and Equation (15) is given:

∆Pk
(j) = min

{
∆vl

Gtk
(j)

}
, ∀ ∈ K (15)

By the above conversion, this paper can simplify the encryption of interference data of SPI.
F(j)

(
∆vl , k

)
represents the function goals in Equation (9) when ∆vl shares to kth data. At each step,

the maximum data F(j)

(
∆vl , k

)
brought by πl is numbered as (πl), which can be expressed as:

πl = arg max
{

F(j)

(
∆vl , k

)}
(16)

Finally, the SPI resource encryption vector P(j) is obtained. The privacy of the data is completed
and can be updated as securely encrypted. Algorithm 1 is obtained from summarizing the Encryption
process using Equations (1)–(16). We also expand Algorithm 1 by showing the Key Expansion Function
in Algorithm 2.

Algorithm 1: Encryption algorithm.

1 Procedure Dec-MDP(extpr
mn, exttr

mn, extoh
mn, tpm, tqm, Cpro, C, L, K, extmn)

2 //Single task consumes time exttr
mn, extoh

mn
3 //Total consumption time tpm, tqm;
4 //Energy Consumption for Single Task Cpro

5 //Task Total Energy Consumption C
6 //Load Balancing Parameters L
7 //Constraint parameter K
8 //Total Time-consuming Constraint Variables extmn

9 d0 ← Fixed distance
10 din ←

√
Pi − Pn

11 Gt ← Pi
12 Gr ← Pn

13 C ←
d2

in
d2

0
× (4π)2 β

GtGrλ2 × C0;

14 m← 1
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15 while m < q do
T-t(pm);
Sum← Sum + T − t(pm);
m+1

16 L← 1− Sum/ (q× T);
17 extmn ← exttr

mn + extoh
mn + extpr

mn;
while m < q do

Sum2←Sum2+t(pm);
m+1

18 tqm ← Sum2;
19 while n < p do

Sum3←Sum3+extmn;
n+1

20 tpm ← Sum3

21 if (extmn < ConstraintvalueandC < ConstraintvalueandL < Constraintvalue); then
//Represents an interference-free encryption process
KeyExpansion(byte key{4*RK}),word w{GK*(PK+1),RK}
begin

Word temp
i=0
while (i<RK) do

W{i}=word(key[4*i],key[4*i],key[4*i],key[4*i])
i=i+1

i=GK
22 while (i<GK*(PK+1)) do

Temp=w[i-1]
if (i mod RK==0) then

Temp=SubWord(Max(temp))xor Rcon[i/RK]
else

Temp=SubWord(temp)
w[i]=w[i-RK] xor temp
i=i+1

23 //Implement encryption

24 //Interference exists

25 ∆vl ← IR
L + 1− l

; //Optimization parameters

26 while k < K do
Sum4 ←Sum4 + Gtk

(j)P
k
j ;

k+1
27 IR ← Ith − Sum4

28 while k < K do

If
∆vl

Gtk
(j)

>
∆vl

Gtk+1
(j)

min← ∆vl

Gtk+1
(j)

;

k+1
29 ∆Pk

(j) ← min; //Iterative updating
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Algorithm 2: Key expansion function.

Procedure KeyExpansion(byte key{4*RK}), word w{GK*(PK+1),RK}
begin

Word temp
i=0
while (i<RK) do

W{i}=word(key[4*i],key[4*i],key[4*i],key[4*i])
i=i+1

end
i=GK

while (i<GK*(PK+1)) do
Temp=w[i-1]
if (i mod RK==0) then

Temp=SubWord(Max(temp))xor Rcon[i/RK]
else

Temp=SubWord(temp)
end
w[i]=w[i-RK] xor temp
i=i+1

end
//Implement encryption

end

4. Experimental Results and Analysis

4.1. Experimental Setup

We selected the data provided by Google Dataset Search dataset as the experimental data
source [31].

Google Dataset Search dataset can be regarded as a one-stop dataset shop, which contains
massive data of different sizes and types from sources such as NASA and ProPublica. The data
source is comprehensive, so the dataset has strong applicable value. Through MATLAB 8.0 software,
a large-scale data resource experimental platform for interference quantification was built, and used
for data processing. Taking data acquisition time, information resource recognition rate, information
query delay and effective utilization of resources as experimental indicators, the proposed method
was compared with those peers from [6–9] to verify the effectiveness of our method. All methods
from [6–9] were rerun and compared with our method. All models were implemented in the Matlab
R2017b software environment and has been subject to processing and analysis as described next.

4.2. Analysis of Experimental Results

Figure 3 shows the comparison of data acquisition speeds of the proposed method with the peer
methods in [6–9]. In the cases with the same amount of data, we observed a shorter acquisition time
coupled with higher efficiency of data acquisition. Therefore, we used data collection time to verify
the collection efficiency. The specific results are shown in Figure 3. One item of note here is that,
as the information resources increase, most other methods show a linear increase in collection time,
whereas our method shows more of a constant relationship staying consistent throughout increase
in information.
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Figure 3. SPI collection time.

Analysis of Figure 3 shows that the private data collection time of the five methods is different.
The acquisition time of the methods in [6] is between 1.4 s and 4.2 s, and the acquisition time of the
method given in [7] is between 2.1 s and 6.7 s. The acquisition time of the method given in [8] is between
1.2 s and 10.8 s, and the collection time of private information is relatively long. The acquisition time
of the methods [9] is between 4.5 s and 10.8 s. We attribute these valid data to the algorithm using an
adaptive data collection method, which enables the decision module while the data collection task is
being performed, saving a lot of time and meeting the task requirements.

To verify data recognition accuracy of the methods, we again used algorithms from [6–9] to
compare to our algorithm under different data resource scenarios. The results are shown in Figure 4.

Figure 4. Recognition rate of information resources.

The analysis of Figure 4 shows that, when the resource quantity is 1× 103 bit, the data recognition
rates of the methods [6–9] are 69%, 78%, 37%, and 36%, respectively. The data recognition rate of our
algorithm is 92%. When the resource quantity is 6× 103 bit, the data recognition rates of the methods
from [6–9] are 59%, 80%, 62%, and 64%, respectively. Comparatively, data recognition rate of our
algorithm is slightly over 90%. Observing the overall graph in Figure 4, the data recognition rate of the
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algorithm is always best, indicating our algorithm has a high data recognition rate and good recognition
performance [32]. We attribute this to the fact that conventional information encryption needs to
solve complex non-convex optimization problems. However, our method simplifies the problem
in a different way, known as interference encryption. To make the description more convenient,
some auxiliary variables are introduced, which reduce the influence of interference items and improves
the recognition rate of effective data. One unexplained behavior to note is the decrease in rate where
the information resource quantity is 4× 103 bit; however, after this amount, as expected, this is a slight
increase. This unexplained decrease may be attributed to some special behavior of the algorithm at
that amount of data.

Figure 5 shows the comparison of delay caused by data resource queries in seconds of our
proposed algorithm with delays in [6–9].

Figure 5. Privacy information query latency.

Analysis of Figure 5 shows that the query delay of the five methods increases as the amount of
data resources are increased. When the private data used in the query are 6× 103 bit, the SPI query
delays of [6–9] are 10.5 s, 8.5 s, 5.5 s, and 18 s, respectively. Similarly, our algorithm creates a delay of
just above 1 s. When the amount of private data used in the query reach 10× 103bit, the privacy data
query delays from [6–9] are 24.5 s, 16.5 s, 11.5 s, and 26 s, respectively. In comparison, our algorithm
creates a delay which is still approximately 1 s. A user would not notice a change in delay even if the
private data used in a query were increased. This clearly indicates that the data resource query delay
of our algorithm is small, has better query performance, and is more feasible for large data storage
applications. Our algorithm over the whole set of information resource amounts performed better
than all comparable reference methods.

Table 1 shows the comparison of the utilization rate of information resources (%) between the
methods from [6–9] and our algorithm.

Table 1. Comparison of utilization rates of information resources of the proposed method with peers.

Privacy Information Methods
(×103 bit) Reference [6] Reference [7] Reference [8] Reference [9] Method (ours)

10 69 78 68 85 90
15 63 82 74 76 92
20 65 78 73 81 95
25 68 82 67 73 93
30 62 80 72 80 97

Analysis of Table 1 shows that the utilization of data resources of the four methods is different
in the case of different amounts of private data. When the private data are 10× 103 bit, the resource
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utilization rates of from [6–9] are 69%, 78%, 68%, and 85%, respectively. In comparison, the resource
utilization rate of our proposed algorithm is 90%. When the private data are 30× 103 bit, the resource
utilization rates from [6–9] are 62%, 80%, and 72%, and 80%, respectively. Comparatively, the resource
utilization rate of our algorithm is 97%. It can be seen in Table 1 that, regardless of the amount
of private data, the resource utilization rate of our algorithm exceeds 90%, and from this it can be
concluded that the resource utilization is strong.

Based on the above experimental results, our algorithm can effectively improve the collection time
of private data, increase the recognition rate of data resources, lessen the delay caused from queries
of private data, and increase the utilization of data resources. As a result, we can conclude that our
encryption algorithm exceeds some of the current algorithms from [6–9] in overall performance.

5. Conclusions

With the rapid development of the Internet, information dissemination is oriented to the needs of
users. According to practice, in the society of information proliferation and resource reorganization,
secure encryption of private information is a requirement for all data. In privacy encryption process of
private data, the existing methods cannot effectively enhance the security of information, and cannot
meet the different needs of users based on specific usage tendencies. To this end, a private data security
encryption algorithm for incremental update data is proposed to protect SPI. The experimental results
clearly show that the resource utilization rate of this algorithm is 97%, which is much higher than that
of the traditional methods. Moreover, data acquisition time of our algorithm is less than 1.0 s, which is
much lower than that of the traditional methods as well. This is due to the fact that the algorithm in
this paper adopts the adaptive data collection method, enabling the decision module while the data
collection task is going on, which saves a lot of time and meets the requirements of the task. This shows
that our algorithm has better encryption effects and can effectively improve the security of information.
Compared to traditional methods, we show that data resource recognition rate and utilization rates
are higher and that data query delay is lower, which is because our algorithm simplifies the problem
in different ways, called interference encryption. It introduces some auxiliary variables, which reduces
the influence of interference items and improves the effective data, showing the effectiveness of our
proposed methodology. This in turn indicates that the algorithm can effectively solve the shortcomings
of traditional methods and has practical application.
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