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Abstract: Recent cyberattacks armed with various ICT (information and communication technology)
techniques are becoming advanced, sophisticated and intelligent. In security research field and
practice, it is a common and reasonable assumption that attackers are intelligent enough to discover
security vulnerabilities of security defense mechanisms and thus avoid the defense systems’ detection
and prevention activities. Web defacement attacks refer to a series of attacks that illegally modify web
pages for malicious purposes, and are one of the serious ongoing cyber threats that occur globally.
Detection methods against such attacks can be classified into either server-based approaches or
client-based approaches, and there are pros and cons for each approach. From our extensive survey on
existing client-based defense methods, we found a critical security vulnerability which can be exploited
by intelligent attackers. In this paper, we report the security vulnerability in existing client-based
detection methods with a fixed monitoring cycle and present novel intelligent on-off web defacement
attacks exploiting such vulnerability. Next, we propose to use a random monitoring strategy as
a promising countermeasure against such attacks, and design two random monitoring defense
algorithms: (1) Uniform Random Monitoring Algorithm (URMA), and (2) Attack Damage-Based
Random Monitoring Algorithm (ADRMA). In addition, we present extensive experiment results
to validate our idea and show the detection performance of our random monitoring algorithms.
According to our experiment results, our random monitoring detection algorithms can quickly detect
various intelligent web defacement on-off attacks (AM1, AM2, and AM3), and thus do not allow
huge attack damage in terms of the number of defaced slots when compared with an existing fixed
periodic monitoring algorithm (FPMA).

Keywords: web defacement attack; on-off strategy; random monitoring algorithm; web security

1. Introduction

Web defacement attacks refer to a series of attacks that illegally modifies web pages in unauthorized
manners for malicious purposes. According to recent statistics provided by ZONE-H [1], 500,000
websites over the world were defaced only in 2018, and around 100,000 defaced-websites were reported
during the first quarter of 2019. Detail reports on major web defacement incidents can be found in [2].

Typical types of web defacement attacks vary from changing main images of websites to launching
drive-by-download attacks that stealthily inject a malicious link into a web page through which
malwares are automatically downloaded to web users’ devices which accessed the defaced web
pages [3,4]. Recently, the latter type is more often reported because the attacker can construct a
large-scale botnet that consists of compromised personal computers, laptops, smartphones, appliances,
and Internet of Things (IoT) devices. With the botnet, attackers can easily achieve their intended goals,
such as launching distributed denial-of-service (DDoS) attacks to certain websites.

In general, web defacement attacks are performed as follows (see Figure 1). First, the attacker
(A) maliciously modifies one or more web pages (or source codes) stored in the web server (WS) by
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exploiting security vulnerabilities of the WS. For example, A injects a malicious link (downloader) to
malwares stored in malicious server (M) which cooperates with A. Such malicious link is injected in a
way that system administrators or normal users cannot easily identify its existence within the defaced
web page. Next, when a web user (U) accesses the WS, U is automatically connected to the external
malicious server M through the injected malicious link and then malwares are downloaded to U from
M; these processes proceed such that U does not know that they are happening, and the number of
U (victims) can be hundreds, thousands, or even more depending on the popularity of web services
provided by the WS. Once the U is infected with downloaded malwares, U becomes a bot which is
under the control of A (or a bot master). After that, A starts launching its actual intended secondary
attacks such as extracting critical information from U or DDoS attacks by using the botnet that consists
of many Us (bots) [4].
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Figure 1. An illustration of web defacement attacks and existing detection systems; WS: web server; A:
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As shown in Figure 1, existing detection approaches against web defacement attacks can be
classified into either server-based detection approach or client-based detection approach [5–21].

In the server-based detection approach [5,6], the detection system (DS) is installed in the WS, and
it regularly monitors web pages in the WS and checks if they are modified in unauthorized ways.
Once the DS detects modified web pages by attackers, the DS raises an alarm and reports it to a server
administrator or CERT (Computer Emergency Response Team) for further investigation and timely
response. To check unauthorized modification of web pages in the WS, various file integrity monitoring
methods [22–25] can be used. However, when the attacker successfully defaced web pages of the WS,
the WS cannot be trusted because the attacker may have some or full control over the WS in that it is
common for attackers (hackers) to try to obtain the root privilege of the WS, and then install backdoors
in the WS after hacking applications of the WS. For example, the attacker can obtain operating system
root privilege by launching various privilege escalation attacks [26,27]. Once the attacker gains root
privilege of the WS, the attacker can disable security software such as the file integrity checker or
local monitoring tool. Consequently, there is no guarantee that server-based detection methods work
properly when web defacement attacks are successfully launched.

On the other hand, in the client-based detection approach [7–21], the client-based detection system
(DC) is located outside the server WS and monitors web pages in the WS remotely. DC behaves as
a common web user U; DC periodically accesses the WS and collects web pages from the WS. After
downloading web pages from the WS, DC checks if they are defaced by using various detection
techniques. Since DC is located outside the WS, its detection process can be more trustful compared
with the server-based approach. In addition, the client-based approach has some advantage over the
server-based approach such that it can detect web defacement attacks performed in man-in-the-middle
position between the web server WS and the client U.

Meanwhile, most existing researches on client-based detection mainly focused on either proposing
new detection methods or improving attack detection accuracy [7–21]. Interestingly, to the best of
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our knowledge based on our extensive survey, there are no studies that explain how frequently their
monitoring and detection processes should be performed. Most existing client-based detection methods
simply monitor web pages with a fixed periodic monitoring cycle (interval) or they do not even mention
about the monitoring cycle. However, such fixed monitoring cycles can be seriously vulnerable to
intelligent attackers because detection systems with a fixed monitoring cycle can be completely avoided
by intelligent attackers. In this paper, we first justify why fixed periodic monitoring should not be
used by introducing intelligent on-off web defacement attacks that can completely avoid client-based web
defacement detection systems with a fixed monitoring cycle. Since we introduced intelligent on-off

web defacement attacks newly in this paper, we cannot provide real industry incident cases and reports.
The primary goal of this study is to let security researchers and engineers understand this potential
cyber threat to the Internet, and thus let them motivate more research and develop effective security
mechanisms to defend against such attacks in advance.

Our contributions in this paper are as the following:

• We introduce a new intelligent on-off web defacement attack model that can completely avoid
existing client-based detection methods using fixed periodic monitoring.

• We propose to use a random monitoring defense strategy against intelligent on-off web defacement
attacks as a promising countermeasure, and conduct a simple probabilistic analysis that shows
how random monitoring defense strategy can be effective in detecting such attacks.

• We devise two random monitoring algorithms, the Uniform Random Monitoring Algorithm
(URMA) and the Attack Damage-based Random Monitoring Algorithm (ADRMA), against
intelligent on-off web defacement attacks and provide extensive experiment results that show
their detection performance by comparing with a fixed periodic monitoring algorithm (FPMA).

The rest of this paper is organized as follows. In Section 2, we review existing client-based
detection methods against web defacement attacks. In Section 3, we introduce a new intelligent
on-off web defacement attack. In Section 4, we justify that the random monitoring strategy can
effectively defend against the intelligent on-off attack strategy, and propose two random monitoring
detection algorithms (URMA and ADRMA). In Section 5, we conduct extensive experiments to show
the performance of our proposed algorithms by comparing an existing fixed periodic monitoring
algorithm (FPMA). Finally, we conclude with future research directions in Section 6.

2. Related Works

In this section, we briefly introduce previous studies on client-based monitoring and detection
methods against web defacement attacks. With the recent advancements and popularity of machine
learning (ML) techniques, many studies using various ML techniques have been conducted in this area
as follows.

Borgolte et al. [10] proposed Meerkat which is a web defacement detection system using various
techniques used in the computer vision field. In the training stage, Meerkat extracts high-level features
from screenshots of monitored web pages by using image processing techniques and ML techniques
together, and then generates a set of features of monitored web pages; Meerkat works based on a deep
neural network in this stage. In the monitoring stage, Meerkat uses generated features of monitored
web pages to examine whether current monitored web pages are defaced.

Medvet et al. [12] used a genetic programming technique to learn monitored web pages without
any prior knowledge (learning phase), and to monitor the corresponding web pages at pre-determined
intervals (monitoring phase). In addition, Bartoli et al. [16,17] proposed Goldrake which is a framework
that uses sensors and alarms to automatically check remote web resources’ integrity.

Kim et al. [9] proposed an n-gram based detection method that uses N-Gram-based Index Distance
(NGID) to validate dynamic web pages. In [19], they proposed a defense mechanism for detecting web
pages in a remote site and two threshold adjustment methods to lower false alarm rate.
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Hoang and Nguyen [18] proposed a hybrid defacement detection model that is designed based
on the combination of the ML-based detection and the signature-based detection.

Davanzo et al. [4] assessed the performance of several anomaly detection approaches designed
based on ML techniques in terms of false positive ratio and false negative ratio. They conducted
extensive experiments by using around 300 dynamic web pages for three months.

In addition to ML-based detection methods, various client-based detection methods have been
proposed as follows.

Kim et al. [7] proposed a website falsification detection method in which web crawlers regularly
collect web pages from a website, extract codes and images from the collected web pages, and determine
whether web pages are defaced by analyzing the extracted codes and images in terms of similarity.

Masango et al. [13] proposed a WDIMT (Web Defacement and Intrusion Monitoring Tool) that
operates like a web vulnerability scanner. When web defacement is detected, WDIMT can automatically
recover the defaced web page by using its original web file stored before it is defaced. Similarly,
Kals et al. [14] proposed Secubat, which is designed based on penetration testing techniques.

Park and Cho [11] proposed CREMS (Client-based Real-time wEb defacement Monitoring and
detection System) that periodically examines web pages to see if they are defaced. Specifically, CREMS
compares each web page’s source codes every second and measures similarity after comparison. If the
measured similarity value is below a certain threshold, CREMS raises an alarm and reports it to system
administrators for further investigation. In addition, by using its source code matching algorithm,
CREMS can locate the exact place where malicious codes are injected within a defaced web page.

According to our extensive survey, most previous works can be classified into either proposing new
web defacement detection methods or improving detection accuracy of existing detection approaches.
Interestingly, we observed that no studies clearly described how their monitoring cycles are set or
should be set. For example, some detection methods [8,11,16,20,21] monitor web pages with a periodic
or fixed monitoring cycle without clear explanations, and some works [7,9,10,12,15,18,19] did not even
explain in detail about their monitoring method and cycle.

Meanwhile, recent advances of information and communication technology (ICT) techniques
including AI (artificial intelligence) and ML (machine learning) techniques make cyberattacks more
intelligent and sophisticated. Consequently, we should not ignore the possibility that attackers can
avoid or nullify existing security systems by exploiting vulnerabilities that can be discovered by
analyzing their operational patterns and behaviors [4].

For this reason, in this paper we introduce intelligent on-off web defacement attacks in order to
show how existing client-based web defacement detection systems using fixed monitoring cycle can be
vulnerable and then discuss our defense strategy and methods against such attacks.

3. Intelligent On-Off Web Defacement Attack

In this section, we explain why existing client-based detection approaches with fixed monitoring
cycle can be easily, completely nullified by on-off attack strategy, and then we introduce a new
intelligent web defacement attack model based on the on-off attack strategy.

3.1. The Security Weakness of Client-Based Detection Methods with a Fixed Monitoring Cycle

First, we describe a general description of client-based defense approaches with fixed monitoring
cycle. Figure 2 shows an example of a web defacement detection system with a fixed monitoring
cycle c = 10 seconds, which means that the detection system monitors and examines a web page
every 10 seconds. We assume that the monitoring cycle c necessarily exists since no detection systems
can monitor continuously due to their limited computing resources, the complexity of monitoring
algorithms, etc. In this example, we assume that the unit is second for simplicity, but depending on
detection systems, the unit of monitoring cycle can be second, milli-second, or even smaller. In addition,
if we consider each monitoring cycle as a monitoring round (MR), then one MR consists of 10 time
slots. As described in Figure 2, if the first monitoring activity is done at the first monitoring slot (ms1),
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every (10t + 1)-th time slot will be examined by the detection system where t = 1, 2, . . . ,∞. A simple
fixed periodic monitoring algorithm (FPMA) is described in Algorithm 1.
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Algorithm 1: Fixed Periodic Monitoring Algorithm (FPMA).

Input:
Number of slots: n
Current time: tcurrent

Start time of current monitoring round (MR): tMRstart

Fixed monitoring slot: msfixed
Output:

Detection result: detection_result

1: begin
2: while (tMRstart ≤ tcurrent ≤ (tMRstart + n − 1)) :
3: if tcurrent == (tMRstart + msfixed − 1):
4: // monitor( ) checks if web pages are defaced
5: detection_result←monitor()
6: else:
7: // monitor( ) is not performed
8: continue
9: end

Next, we describe how an intelligent web defacement attacker with an on-off attack strategy can
avoid and nullify the above monitoring mechanism. We have the following assumptions (AS1-AS4):

• AS1: Attacker can discover some security vulnerabilities of its target web server such as WS
• AS2: Defender (client-based web defacement monitoring system located outside WS) monitors

web pages stored in WS periodically (every 10 seconds)
• AS3: Attacker can modify web pages in WS by AS1
• AS4: Attacker can figure out monitoring cycle c and previous monitoring slots at the time t

Based on the above assumptions (AS1-AS4), the attacker can also figure out the next monitoring
slots (blue-colored slots) at t. Figure 3 shows every possible monitoring slots (red-colored slots) at
which the attacker can safely launch web defacement attacks to the victim server. Thus, except for the
monitoring slots, the attacker can deface web pages at the red-colored time slots (non-monitoring slots).

When we define Attack Success Rate (ASR)(%) =
Num. o f de f aced time slots

Num. o f all time slots × 100, ASR is 90% in this
example; in other words, the attacker is able to deface its target web pages for 90% of time even without
being detected by the monitoring system. Note that a defaced (time) slot means that the web deface
attack is successfully launched at that time slot, and we use the term for the rest of this paper. Moreover,
instead of defacing web pages for all time slots, the attacker can selectively choose some part of time
slots for defacement in an on-off manner. In this case, ASR will decrease according to the amount
of chosen attacking slots, but it will become more difficult to detect such attacks. In this paper, we
name this type of attack as intelligent on-off web defacement attack and describe the attack model with a
generalized algorithm (Algorithm 2) in Section 3.2.
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3.2. Attack model: Intelligent on-off web defacement attacks

When the intelligent on-off web defacement attacker successfully defaced a certain web page
WP, let WPoriginal be the original web page of WP and WPdefaced be the defaced web page of WP.
To avoid being captured by a client-based web defacement detection with a fixed monitoring cycle,
the intelligent on-off web defacement attacker acts as follows (see Algorithm 2).

• Attacker stores WPoriginal before defacing it;
• To avoid a monitoring slot, the attacker calculates (or estimates) the next monitoring slot msnext

by a detection system based on current time tcurrent, monitoring cycle c, and previous monitoring
slot msprevious;

• When tcurrent is not msnext, attacker defaces WP;
• When tcurrent is msnext, attacker does not deface WP; if the web page is already defaced, attacker

replaces WPdefaced with WPoriginal to avoid being captured by defender.

Algorithm 2: Intelligent On-Off Web Defacement Attack

Input:
Current time: tcurrent

Previous monitoring time (slot): msprevious
Monitoring cycle (fixed): c
Original web page: WPoriginal
Defaced web page: WPdefaced

Output:
State of web page: WPstate

1: begin
2: while (true):
3: if (tcurrent − msprevious) != c:
4: WPstate ←WPdefaced # attack mode is on
5: else:
6: WPstate ←WPoriginal # attack mode is off

7: end

4. Random Monitoring-Based Defense Strategy and Two Detection Algorithms

In this section, we claim that a random monitoring strategy can effectively defend against
intelligent on-off web defacement attacks by conducting a simple probabilistic analysis, and design
two web defacement attack detection algorithms based on the random monitoring strategy.

4.1. Defense Strategy: Random Monitoring

In many computer and network security problems, it is often assumed that attackers are in superior
positions than defenders. For example, defenders have limited resources but need to care for many
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defense spots (weak points) of their assets while attackers are able to successfully launch attacks if they
can exploit at least one vulnerability of defenders’ assets. For this reason, many computer and network
security problems are formulated as unfair games between the attacker and the defender [28–30].

One of the effective defense strategies is to assign defenders’ limited small defense resources
to large defense spots in random ways, so that attackers cannot figure out which spots will be
monitored [29,30]. For example, in [30], a defender uses a random patrol strategy to capture attackers
in many defense spots because the defender cannot patrol all patrol spots at the same time, and a
fixed periodic patrol method can be easily avoided by attackers. As another effective defense method,
moving target defense (MTD) has been actively studied to defend against attackers targeting our
assets, such as network devices and data, by moving the assets (or changing the locations of the assets)
randomly and frequently and to thus make it very difficult for attackers to accurately target assets
when they want [31–34]. In this paper, we will use the former random defense strategy to detect the
intelligent on-off web defacement attacks because our research focus is to detect attackers rather than
avoiding attackers; we note that studying the latter MTD in this research problem is out of the scope of
this paper, but MTD techniques can be very effective for protecting our assets from attackers.

We now justify why the random monitoring strategy can effectively defend against the intelligent
on-off web defacement attacks by using a simple probabilistic analysis. Variables and notations used
in the analysis are as follows:

• n: the size of monitoring round (MR) or the size of the monitoring cycle; thus, n is the number
of slots that consist of one MR. Each slot in MR can be identified by an index such as s1, s2, . . . ,
si, . . . , sn. As we explained in Section 3.1, n can vary depending on the performance of defense
systems. Given n, detection system can monitor only once at sj where j ∈ [1, n].

• SDS: A finite set of all possible slots from which the defender chooses one slot during one MR;
Thus, given n, SDS = {s1, s2, . . . , sn} and the cardinality of SDS (|SDS|) = n.

• SAS: A finite set of all possible combinations of slots from which the attacker chooses one or more
slots for launching defacement attacks during one MR. Thus, given n, SAS = {s1, s2, . . . , sn, (s1, s2),
(s2, s3), . . . , (sn-1, sn), . . . , (s1, s2, . . . , sn)} and |SAS| = 2n – 1; SAS = the power set of SDS - null set ∅.

• Random variable X: slots that the attacker chooses
• Random variable Y: one slot that the defender chooses
• Let P [X = si

+] be the probability that X contains si.

By the definition, two random variables X and Y are independent each other. Since the total
number of elements of SAS is 2n – 1, the probability p that the attacker will be detected during one MR
can be obtained by:

p =
∑

i∈SAS
P[Y = i]P

[
X = i+

]
=

(
2n−1

− 1
)

(2n − 1)
. (1)

By using Equation (1), the probability p(r) that the attacker will be detected during r consecutive
MRs can be obtained by:

p(r) = 1− (1− p)r = 1−

1−

(
2n−1

− 1
)

(2n − 1)


r

= 1−
(

2n−1

2n − 1

)r

(2)

When n = 10, p ' 0.4995 according to Equation (1). According to Equation (2), p(r) becomes
higher than 0.87 when r ≥ 3. As shown in Figure 4, as r grows, p(r) grows quickly and eventually
converges to 1. Meanwhile, even if the intelligent on-off web defacement attacker knows that the
defender is monitoring only one slot during one MR, it is very unlikely for the attacker to avoid being
detected for a long time (many MRs) when the attacker keeps defacing web pages in on-off manner.
Consequently, the random monitoring strategy can effectively defend against intelligent on-off web
defacement attacks.
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4.2. Design of Two Detection Abased on Random Monitoring Strategy

Based on the random monitoring strategy, we design two detection algorithms against intelligent
on-off web defacement attacks: 1) Uniform Random Monitoring Algorithm (URMA) and 2) Attack
Damage-based Random Monitoring Algorithm (ADRMA). In this study, our goal is not to design the
best random monitoring algorithm in terms of detection performance, but to show you various ways
of designing random monitoring algorithms. For the detection performance of our algorithms, we will
explain in Section 5.

4.2.1. Uniform Random Monitoring Algorithm (URMA)

The uniform random monitoring algorithm (URMA) chooses one slot per one MR in a uniform
manner and checks if web pages are attacked in the chosen slot.

As described in Algorithm 3 below, when each MR starts, URMA first selects one slot from n slots
according to the uniform distribution; the probability that each slot is selected is 1/n. Next, if current
time t is equal to the chosen slot, monitoring operation is performed to see whether web pages are
defaced. For remaining slots, monitoring operation is not performed by assumptions we mentioned in
Section 3.

Algorithm 3: Uniform Random Monitoring Algorithm (URMA)

Input:
Number of slots: n
Current time: tcurrent

Start time of current MR: tMRstart

Output:
Detection result: detection_result

1: begin
2: if tcurrent == tMRstart − 1:
3: ms← choose one slot for detection slot
4: according to uniform (1, n)
5: while (tMRstart ≤ tcurrent ≤ (tMRstart + n − 1)):
6: if tcurrent == (tMRstart + ms − 1):
7: // monitor( ) checks if web pages are defaced
8: detection_result←monitor( )
9: else:
10: // monitor( ) is not performed
11: continue
12: end
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4.2.2. Attack Damage-Based Random Monitoring Algorithm (ADRMA)

When defenders’ resources are limited, they need to wisely use their resources to defend against
attackers. One of such ways is that defenders use their defense resources such that the amount of
attack damages introduced by attackers can be minimized. Based on this rationale, unlike URMA
using uniform randomness against attackers, we design a different random monitoring algorithm
ADRMA that considers a factor of attack damage introduced by attacks.

For simplicity, let us consider a case where the size of MR is three (that is, n = 3). Then,

• SDS = {1, 2, 3}
• SAS = all subsets of SDS – null set ∅ = {1, 2, 3, (1, 2), (1, 3), (2, 3), (1, 2, 3)}.

In this example, the total number of attack combinations that can be selected by the web defacement
on-off attacker is 7 (= 23 – 1) except ∅; we do not consider ∅ because it means that the attacker does
not launch attacks. When the defender chooses defense slot d and the attacker chooses attack slots
SAS(i) from SAS where i is an index of attack combination, let DAttack=SAS(i)

(d) be the amount of attack
damage introduced by the attacker. Then, given d and SAS(i), DAttack=SAS(i)

(d) is obtained by summing
up the amount of attack damage introduced by each attack slot of SAS(i) as:

DAttack=SAS(i)
(d) =

∑
i∈SAS

DAttack=i(d) (3)

For example, assuming that the amount of attack damage for a single slot is 1, if the attacker
launches web defacement attacks at slot 1 and slot 3 and the defender monitors slot 3, DAttack=SAS(5)(3) =
DAttack=1(3) + DAttack=3(3) = 1+ 0 = 1 (see the blue-colored column in Table 1). That is, the amount
of attack damage (DAttack=1(3)) is 1 since the attack slot 1 is not monitored and thus attack at slot 1 is
valid, and the amount of attack damage (DAttack=3(3)) is 0 since the attack slot 3 is monitored and thus
attack at slot 3 is invalid. On the other hand, when slot 1 is chosen for defense slot, DAttack=SAS(5)(1) =

0 because the attacker will be captured at slot 1 which is monitored by the defender (defense slot = 1).
Table 1 shows the attack damages calculated for each combination of d and SAS(i) by this manner.

We can see that DAttack(1) = 4, DAttack(2) = 6 and DAttack(3) = 8, and as d grows, DAttack(d) also grows.
Meanwhile, a rational defender should not always choose the first slot for monitoring since the attacker
may not choose the first slot always.

Table 1. Attack damages given a defense slot and attack slots (when the size of MR = 3).

d
SAS(i)

DAttack(d)
SAS(1) SAS(2) SAS(3) SAS(4) SAS(5) SAS(6) SAS(7)

1 2 3 (1,2) (1,3) (2,3) (1,2,3)
∑

ratio
1 0 1 1 0 0 2 0 4 2
2 1 0 1 1 2 0 1 6 3
3 1 1 0 2 1 1 2 8 4

When n is given, the attacker can consider choosing one from at most 2n – 1 combinations of
attack slots. Given n and d, DAttack(d) can be easily, efficiently calculated by the below Equation (4),
which operates in O(1) in terms of algorithmic time complexity. Derivation of Equation (4) is shown in
Appendix A.

DAttack(d) =


(n− 1)2n−2 f or d = 1,

(n + d− 2)2n−2 f or 2 ≤ d < n,
(n− 1)2n−1 f or d = n.

(4)

� Design of Attack Damage-based Random Monitoring Algorithm (ADRMA)
Now we design a random monitoring algorithm by using DAttack(d). As shown in Table 1,

DAttack(1) = 4, DAttack(2) = 6 and DAttack(3) = 8. The ratio of DAttack(1) , DAttack(2) , DAttack(3) is 2



Electronics 2019, 8, 1338 10 of 19

: 3 : 4. The higher DA(d), the larger damages the defender will be likely to get. ADRMA chooses a
defense slot according to the inverse ratio of DAttack(d). In this approach, a slot with lower DAttack(d)
will be more likely chosen as a defense slot than a slot with higher DAttack(d).

As shown in Algorithm 4, ADRMA works in two steps. In Step 1, given d and n, ADRMA
calculates attack damage DAttack(d) for each slot according to the Equation (4). In Step 2, each time
MR starts, ADRMA chooses one from n slots randomly according to the inverse ratio of DAttack(d).
After that, ADRMA checks if web pages are defaced at the chosen defense slot and does not check for
the remaining slots.

Algorithm 4: Attack Damage-Based Random Monitoring Algorithm (ADRMA)

Input:
Number of slots: n
Current time: tcurrent

Start time of current MR: tMRstart

Output:
Attack damage DA

Defense slot ds
Detection result: detection_result

1: begin
2: // Step 1: Calculate DAttack to choose a defense slot
3: for each d in [1, n]:
4: if d == 1:
5: DAttack(d) = (n− 1)2n−2

6: if 2 ≤ d < n:
7: DAttack(d) = (n + d− 2)2n−2

8: if d == n:
9: DAttack (d) = (n− 1)2n−1

10: // Step 2: Choose a defense slot and Monitor
11: ds← choose one slot randomly by using DAttack (d)
12: such that a slot with lower DAttack(d) will be
13: more likely chosen as a defense slot than a slot
14: with higher DAttack(d).
15: while (tMRstart ≤ tcurrent ≤ tMRstart + n− 1):
16: if tcurrent == (tMRstart + ds − 1):
17: // monitor( ) checks if web pages are defaced
18: detection_result←monitor( )
19: else:
20: // monitor( ) is not performed
21: continue
22: end

5. Experiment Results

5.1. Experimental Objectives and Methods

5.1.1. Purpose of Experiments

The main purpose of conducting experiments here is to show how effectively our two
random monitoring algorithms (URMA and ADRMA) work against various intelligent on-off web
defacement attacks.

For this purpose, with Python 3 programming language, we implemented three intelligent
on-off web defacement attack models (AM1, AM2, and AM3) based on Algorithm 2 as we described
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below in detail. In addition, we implemented our two random monitoring algorithms URMA and
ADRMA according to Algorithm 3 and Algorithm 4, respectively. Moreover, to compare with our
random monitoring algorithms, we implemented a simple fixed periodic monitoring algorithm (FPMA)
according to Algorithm 1, and for simplicity FPMA always monitors the first slot of each monitoring
round (MR).

5.1.2. Three Intelligent On-Off Attack Models

• AM1 (most aggressive): In this attack model, we assume that the attacker knows how FPMA
operates but does not have any knowledge about our random-monitoring algorithms. In AM3,
the attacker is very aggressive such that it tries to deface all slots except the first slot of each MR
monitored by FPMA.

• AM2 (moderately aggressive): In this attack model, we assume that the attacker knows not only
FPMA but also the existence of our random-monitoring algorithms. Unlike AM1, the attacker in
AM2 does not attack all safe slots. Instead, the attack tries to deface one or more slots randomly
until he/she is detected. Specifically, the attacker will decide whether it deface each slot according
to attack rate RA. For example, if attack rate RA = 80%, the attacker will launch defacement attack
at each slot with the probability = 0.8. Thus, the higher RA is, the more aggressively the attacker
defaces. In our experiment, we used RA = 80%, 60% and 40%.

• AM3 (least aggressive): Like AM2, we assume that the attacker knows not only FPMA but also
the existence of our random-monitoring algorithms. Unlike AM2, the attacker in AM3 randomly
chooses only one slot for each MR until he/she is detected by our random monitoring algorithms
as the following. Assuming that the size of MR = n and slot 1 is the monitoring slot by FPMA,
slot i will be more likely chosen by the attacker than slot j where i ≥ j and 2≤ i, j ≤ n. This attack
model is designed by considering that the attacker may think that slot 2 just after slot 1 is the
most safe slot for launching defacement attacks because slot 2 is the most distant slot to the next
monitoring slot (slot 1 + n) while slot n is the most dangerous slot at which the attacker may be
detected by FPMA.

5.1.3. Experimental Methods and Metrics

In our experiments, one experiment proceeds as follows. First, each monitoring round MR (whose
size |MR| = n) starts, the attacker randomly chooses one attack combination that consists of one or more
slots for launching the defacement attack according to three attack models (AM1, AM2, and AM3),
and also the defender chooses one defense slot according to three monitoring algorithms (FPMA,
URMA, and ADRMA). After that, each experiment checks whether the launched attack is monitored
at the chosen defense slot; that is, we conclude the launched attack is monitored if any slot of the
chosen attack combination by the attacker matches the chosen defense slot by the defender. Finally,
each experiment terminates either when the attack is monitored by all three monitoring algorithms
(FPMA, URMA and ADRMA) or when the number of monitoring rounds reaches 100 rounds; as we
will explain later in Section 5.2, the latter condition is necessary since FPMA could not detect any of
implemented intelligent attack models while our random monitoring algorithms URMA and ADRMA
could detect all attack models successfully within a couple of monitoring rounds. We conducted all our
experiments on our laptop (with Intel 7th Gen Core i5 and RAM 4GB) by running simulation programs
which we implemented with Python 3.

For experiment result analysis, we use the following experiment metrics (NMR, NES, NDS, NAD,
and AADR) to compare three monitoring algorithms in the presence of three attack models:

(1) The number of elapsed monitoring rounds until the attacker is detected (NMR) and the
number of elapsed slots until the attacker is detected (NES): These two metrics explain how quickly
a monitoring algorithm can detect the attacker in terms of attack detection speed; recall that one
monitoring round consists of n slots.
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(2) The number of defaced slots until the attacker is detected (NDS): This metric explains how
long the attacker can successfully launch the web defacement attack until he/she is detected by a
monitoring algorithm. That is, NDS indicates the amount of damage caused by the attacker and NDS is
measured by counting the total number of slots that the attacker has defaced successfully until the
attacker is detected by a monitoring algorithm.

(3) The number of successful attack detections for each monitoring round m (NAD(m)) and
accumulated attack detection rate by monitoring round m (AADR(m)): These metrics measure how
successfully and quickly a monitoring algorithm can detect the attack as monitoring round m increases.
By using NAD(m), we can obtain AADR(m) by

AADR(m) =

∑m
i=1 NAD(i)

Total num. of launched attacks
(5)

Then, by definition, if a monitoring algorithm could successfully detect the attacker by monitoring
round k,

∑k
i=1 AADR(i) = 1. We will use this metric to see how attack detection rate changes as the

monitoring round m grows.
We conducted 10,000 experiments and measured the average value of the above metrics. For the

size of monitoring round MR (|MR| or n), we used 5 and 10. We consider one slot as the base time unit
in our experiments (e.g., one slot = one second).

5.2. Experiment Results and Analysis

Table 2 shows results obtained by conducting extensive experiments according to the experimental
methods described in Section 5.1. We explain the results and our analysis on them as follows.

Table 2. Experiment results.

Size of Monitoring Round |MR| |MR| = 5 |MR| = 10

Attack
Models

Metrics FPMA
Proposed Algorithms

FPMA
Proposed Algorithms

URMA ADRMA URMA ADRMA

AM1
Elapsed MR (NMR) Not detected 1 1 Not detected 1 1
Elapsed Slots (NES) Not detected 3.5 3.31 Not detected 6.05 5.48
Defaced Slots (NDS) 400 1.5 1.31 900 4.05 3.48

AM2
(RA = 80)

Elapsed MR (NMR) Not detected 1.25 1.24 Not detected 1.24 1.24
Elapsed Slots (NES) Not detected 4.73 4.5 Not detected 8.38 8.38
Defaced Slots (NDS) 323.24 1.8 1.63 727.57 4.76 4.37

AM2
(RA = 60)

Elapsed MR (NMR) Not detected 1.64 1.63 Not detected 1.63 1.64
Elapsed Slots (NES) Not detected 6.66 6.46 Not detected 12.23 12.01
Defaced Slots (NDS) 244.75 2.08 1.98 545.57 5.43 5.3

AM2
(RA = 40)

Elapsed MR (NMR) Not detected 2.27 2.31 Not detected 2.47 2.46
Elapsed Slots (NES) Not detected 9.84 9.85 Not detected 20.72 20.11
Defaced Slots (NDS) 174.29 2.38 2.37 364.36 6.38 6.12

AM2
(RA = 20)

Elapsed MR (NMR) Not detected 3.31 3.34 Not detected 4.61 4.64
Elapsed Slots (NES) Not detected 15.03 15 Not detected 42.07 41.86
Defaced Slots (NDS) 121.34 2.81 2.83 195.16 7.2 7.19

AM3
Elapsed MR (NMR) Not detected 3.91 3.69 Not detected 8.9 8.6
Elapsed Slots (NES) Not detected 17.55 16.27 Not detected 84.34 80.91
Defaced Slots (NDS) 100 2.91 2.69 100 7.9 7.6

First, FPMA could not detect all intelligent on-off web defacement attacks (AM1, AM2, and
AM3) in our experiments as shown in Table 2. This is because all intelligent attack models in our
experiments are designed according to Algorithm 1 such that the attacker knows exactly which slots
FPMA will monitor and thus is able to avoid FPMA’s monitoring. As shown in Table 2 and Figure 5,
the average NDS (defaced slots) varies according to attack models. As we explained in experimental
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methods, although FPMA could not detect attacks, we measured the average NDS when 100 monitoring
rounds elapsed because without this condition, experiments will not stop and NDS will continue to
grow endlessly.

The result shows that AM1 has the highest NDS because it is the most aggressive attack model
in our experiments while AM3 has the lowest NDS because it is the least aggressive attack model.
For AM2, as attack rate RA decreases from 80% to 20%, NDS also decreases almost linearly because RA

for each slot decreases. In addition, except AM3 where only one slot is attacked regardless of the size
of MR, NDS when |MR| = 10 is much larger than NDS when |MR| = 5 because the number of successful
defaced slots per one MR is 4 when |MR| = 5 and 9 when |MR| = 10, respectively. Consequently, we can
see that as the size of MR grows, the attack damage will also grow.
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Figure 5. The number of defaced slots until the attacker is detected (NDS) by FPMA in the presence of various
attack models (AM1, AM2(RA = 80, 60, 40, and 20%), and AM3); FPMA cannot detect all type of attacks.

Second, unlike FPMA, all our proposed algorithms (URMA and ADRMA) can successfully detect
all type of attacks (AM1, AM2, and AM3) in our experiments. For attack detection speed, as shown in
Figure 6, as the attack rate for each lot grows (AM3→ AM2(RA = 20%)→ AM2(RA = 40%)→ AM2(RA

= 60%)→ AM2(RA = 80%)→ AM1), NMR also decreases. This means the attack detection speed of
both our monitoring algorithms also increases. This result is clear because as the number of attack
slots grows according to the attack rate, the possibility that the attacker will be detected also increases.
Meanwhile, regardless of |MR| (= 5 or 10), NMR is the same when AM1 is used because the AM1-based
attacker defaces all slots except slot 1 and all our algorithms capture the attacker at slot 2. On the other
hand, as the attack rate for each slot decreases (AM2(RA = 80%)→ AM2(RA = 60%)→ AM2(RA =

40%)→ AM2(RA = 20%)→ AM3), the difference of NMR when |MR| = 5 and |MR| = 10 becomes lager
as described in Figure 6. When AM3 is used, the attacker launches web defacement attacks randomly
at only one slot per one MR, the detection speed is relatively slow, but the attack damage is not very
high; we will explain the reason below in detail. Figure 7 shows the number of elapsed slots until the
attacker is detected (NES) when |MR| = 10, which is similar with the results of NMR.
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Third, in addition to NMR and NES, NAD(m) and AADR(m) show the attack detection speed
of monitoring algorithms according to monitoring round m, and as shown in Figures 8 and 9, our
monitoring algorithms could detect most of attacks in early stage of monitoring rounds, especially in
the presence of aggressive attacks models (AM1 or AM2(RA = 80%)). In particular, Figure 9 shows
how the accumulated attack detection rate AADR(m) of our two monitoring algorithms changes when
AM2 is used. We can see that as m grows, AADR(m) converges to 1 quickly although the growth rate
of AADR(m) can vary according to attack models. Intuitively, as the attack rate increases, the growth
rate of AADR(m) also increases.
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Fourth, as shown in Table 2, NDS (the number of defaced slots until the attacker is detected) shows
that all attack models could not make huge damage (many defaced slots) in the presence of our random
monitoring algorithms, especially compared with the case where FPMA cannot detect attacks at all and
thus the attack damage (NDS) continue to grow endlessly. As shown in the below Figure 10, regardless
of |MR|, all attack models could not deface more than eight slots in our experiments. Among all attack
models, AM3 could make the largest attack damage, but even AM3-based attacker could deface only
7.9 slots at most and then captured by our monitoring algorithm (URMA). This is because random
monitoring defense strategy works effectively against intelligent on-off web defacement attack models
by quickly capturing such attacks.
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Fifth, ADRMA allows slightly smaller attack damage (the number of defaced slots) than URMA
in most attack models used in our experiments (see Table 2 and Figure 10). This is because ADRMA
was originally designed to randomly choose a defense slot such that the amount of attack damage
can be reduced as we discussed in Section 4. For example, as you can see in Table 2, for |MR| = 10,
when compared with URMA, ADRMA could reduce NDS by 8.19% and 14.07% when AM2(RA = 80)
and AM1 was used, respectively. This means that the detection performance of random monitoring
algorithms can vary according to their design characteristics. Nevertheless, we can see that both our
random monitoring algorithms could effectively defend against all attack models in our experiments
by allowing very small deface slots.

Last, AM3-based attack, which is the least aggressive attack used in our experiments, could
keep launching attacks successfully about 3.69~8.7 times longer than AM1-based attack before being
detected by our random monitoring algorithms (see NMR in Table 2 and Figure 6). This is because AM3
is designed to choose only one slot for each monitoring round and thus the possibility that it can be
captured is much smaller than other aggressive attack models that choose one or more slots according to
their design characteristics. Consequently, AM3-based attacks were able to make larger attack damage
by at most 118% than AM1-based attacks in terms of the number of defaced slots NDS. For attackers,
the stealthy attack strategy like AM3 can be better to make larger attack damage to defenders than the
aggressive attack strategy like AM1 or AM2(RA = 80). Nevertheless, they will be caught quickly if
they continue to launch attacks even in the presence of random monitoring algorithms.

6. Conclusions and Future Works

In this paper, we first reported that existing client-based web defacement detection methods
with a fixed monitoring cycle can be vulnerable to intelligent on-off web defacement attacks. Next,
we proposed to use random monitoring defense strategy as a promising countermeasure against the
intelligent on-off web defacement attacks by providing a probabilistic analysis on how such strategy
can be effective in detecting on-off attacks. In addition, we devised two random monitoring algorithms
based on the random monitoring strategy and provided extensive experiment results to validate our
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approach and to show the detection performance of our random monitoring algorithms. According to
our experiment results, our proposed random monitoring algorithms can detect various intelligent
web defacement on-off attacks very quickly while their detection performance slightly vary depending
on their design characteristics.

Our future research directions are as follows.
First, we will develop a client-based web defacement detection system with our random monitoring

algorithms after further advancing and optimizing their detection performance. To this end, we
will deploy it in a real network environment and conduct real-time case studies to see how serious
intelligent on-off web defacement attacks can be in the real network environment. Based on the analysis
results and findings of case studies, we will further improve our random monitoring detection methods
to make our system more feasible and efficient. In addition, we will study a hybrid web defacement
defense mechanism that combines client-based methods and server-based methods to better defend
against various web defacement attacks.

Next, we will further investigate potential security vulnerabilities of current web defacement
detection systems that can be exploited for intelligent attackers to avoid them including our random
monitoring algorithms. For example, intelligent attackers may try to find the security weaknesses of
random function (or randomness extractor) used in random defense systems. If we inappropriately
use a random function with a fixed seed value or use a weak random function with known security
vulnerabilities carelessly, it can be possible for the attacker to figure out next random monitoring
slots with high probability in advance and then simply avoid random monitoring detection systems.
Therefore, we should not only use a strong random function but also protect the random function from
intelligent attackers.

Last, we would like to extend our research by investigating more broad range of detection and
surveillance systems used in various networks. We want to see if our random detection strategy and
algorithms can help them better defend against adversaries who want to actively avoid such defense
systems. Especially, we are interested in examining various detection and surveillance systems used in
VANET (Vehicular Ad-hoc NETwork) and IoT (Internet of Things) environments [35–37].
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Appendix A

Derivation of DATTACK(d) in Equation (4)
Let the size of MR be n and AD(i) be the summation of attack damage that is made by every

possible attack combination at a certain slot i (see Figure A1). Recall the definition of DAttack(d) in
(3). If there is no defense slot, for all i, AD(i) = 2n−1 because there are no attack damage for the half of
slots that the attacker will not choose (when attack combination = 1, 2, 3, 4). For example, Figure A1a
shows an example when n = 3 and there is no defense slot, and in this case AD(1) = AD(2) = AD(3) = 4(
= 23−1

)
.

(1) for d = 1
Figure A1b shows an example when n = 3 and d = 1. When the slot 1 is chosen as the defense slot,

AD(1) = 0 because either the attacker is captured at the slot 1 (when attack combination = 5, 6, 7, 8) or
there is no attack damage (when attack combination = 1, 2, 3, 4). In addition, for each of remaining
slots, the amount of attack damage is reduced to 2n−2 because there are no attack damages for the half
of attack combinations since the attacker will be captured at the slot 1 (when attack combination = 5, 6,
7, 8). Consequently, since the number of the remaining slots except slot 1 is n – 1, DAttack(d = 1) =∑n−1

i=1 AD(i) = (n− 1)2n−2.
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Figure A1. An example that shows how DAttack is calculated given n (=3) and d (=0, 1, 2, 3). For example,
in (b), the yellow-colored slots are valid attack slots when d = 1, and thus DAttack can be calculated as
the number of yellow-colored slots by assuming the base unit of attack damage for defacing one slot
is 1.

(2) for d = n
If the last slot n is chosen as a defense slot, the attack can make attack damage for all previous

slots from slot 1 to slot n – 1 except the last slot n. Therefore, the total amount of attack damage
DAttack(d = n) is (n− 1)2n−1 which can be calculated by multiplying 2n−1 (the amount of damage from
each slot) by n – 1 (the number of previous slots). Figure A1d shows an example when n = 3 and d = 3
(the last slot in this case).

(3) for 2 ≤ d < n
As shown in Figure A1c, if the defender chooses one slot j between slot 2 and slot n – 1 for defense,

we need to consider attack damage before and after the slot j as follows. First, the amount of attack
damage for each slot before slot j is 2n−1 and the number of slots before slot j is j – 1. Next, the amount
of attack damage for each slot after slot j is 2n−2 which is the half of the former case because attack
combination 3, 4, 7 and 8 are excluded additionally and the number of slots after the slot j is n – j.
Therefore, DAttack(2 ≤ d < n) = (d− 1)2n−1 + (n− d)2n−2 = (n + d− 2)2n−2.
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