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Abstract: This paper proposes an area-efficient fast Fourier transform (FFT) processor for zero-padded
signals based on the radix-22 and the radix-23 single-path delay feedback pipeline architectures.
The delay elements for aligning the data in the pipeline stage are one of the most complex units
and that of stage 1 is the biggest. By exploiting the fact that the input data sequence is zero-padded
and that the twiddle factor multiplication in stage 1 is trivial, the proposed FFT processor can
dramatically reduce the required number of delay elements. Moreover, the 256-point FFT processors
were designed using hardware description language (HDL) and were synthesized to gate-level
circuits using a standard cell library for 65 nm CMOS process. The proposed architecture results in a
logic gate count of 40,396, which can be efficient and suitable for zero-padded FFT processors.

Keywords: delay elements; fast Fourier transform (FFT); single-path delay feedback (SDF);
zero-padded signal

1. Introduction

The fast Fourier transform (FFT) is a mathematical algorithm for reducing the computational
complexity of the discrete Fourier transform (DFT) and is widely used for frequency analysis [1–3].
The zero-padded FFT offers increased frequency resolution by extending the length of the input data
sequence in the time domain by padding with zeros at the tail of the discrete-time signal. Because of this,
it has been widely used for wireless communications and radar systems that require high-frequency
resolution [4–9].

The radix-2 and radix-4 algorithms are the most widely used for implementing FFT processors
because of their simple architectures. For pipeline architectures, the radix-4 algorithm has a smaller
number of non-trivial multiplications than the radix-2 algorithm [10]. However, the radix-4 algorithm
complicates the control of butterfly architectures more than the radix-2 algorithm. Thus, radix-22

and radix-23 algorithms have been proposed to reduce the complexity of high-radix algorithms.
The radix-22 algorithm has the same number of non-trivial multiplications as the radix-4 algorithm
but maintains the butterfly architecture of the radix-2 algorithm. Similarly, the radix-23 algorithm
has the same number of non-trivial multiplications as the radix-8 algorithm [11–14]. The pruned FFT
algorithm can also be applied to the zero-padded signals to reduce the computational complexity
and many studies have been conducted [15–20]. However, the pruned FFT processor based on the
pipeline architecture requires an additional memory unit corresponding to FFT-length to re-arrange
data sequence [20].

Single-path delay feedback (SDF) pipeline FFT architectures are commonly used because they
have the smallest number of non-trivial multiplications compared with other pipeline architectures,
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such as single-path delay commutator (SDC) and multi-path delay commutator (MDC). However,
as the number of FFT points increases, the SDF architecture requires significantly more circuit area
because of the delay elements for data reordering [21–26].

In this paper, we propose an area-efficient FFT processor for zero-padded signals by taking
advantage of the fact that the data sequence is zero-padded and that the twiddle factor (TF) operation
in stage 1 is a trivial multiplication in the radix-22 and radix-23 algorithms. The rest of this paper is
organized as follows. In Section 2, we review the zero-padded FFT. The hardware architecture of the
proposed FFT processor is described in Section 3. In Section 4, we compare the proposed zero-padded
FFT architecture with conventional architectures. Finally, Section 5 concludes the paper.

2. Zero-Padded FFT

The DFT for complex data sequence x(n) of length N is defined as

X(k) =
N−1

∑
n=0

x(n)Wnk
N , 0 ≤ k ≤ N − 1, (1)

where the twiddle factor is

Wnk
N = e−j( 2πnk

N ) = cos
(

2πnk
N

)
− j sin

(
2πnk

N

)
, (2)

when analyzing the resolution of the DFT, there are two factors to consider. The first one is the spectral
resolution, which refers to the algorithm’s capability to detect closely spaced spectral components.
The second one is the frequency resolution, which is the definition of the distance between frequency
bins. Whereas the spectral resolution can only be increased by increasing the time window of the
signal, the frequency resolution is determined by the number of input data points in the sequence
given to the DFT [27–30]. A longer data sequence is usually obtained by using the zero-padding
method, which is described below.

Assume that a new data sequence y(n) is created by zero-padding the original data sequence x(n)
of length N to a length of M.

y(n) =

{
x(n), 0 ≤ n ≤ N − 1
0, N ≤ n ≤ M − 1

. (3)

The M points of the DFT are calculated as

Y(k) =
M−1

∑
n=0

y(n)Wnk
M , 0 ≤ k ≤ M − 1. (4)

Based on the divide-and-conquer algorithm, indices n and k can be written as

n =
M
2

n1 +
M
4

n2 + n3, (5)

k = k1 + 2k2 + 4k3, (6)

where 0 ≤ n1 ≤ 1, 0 ≤ k1 ≤ 1, 0 ≤ n2 ≤ 1, 0 ≤ k2 ≤ 1, 0 ≤ n3 ≤ M
4 − 1 and 0 ≤ k3 ≤ M

4 − 1.
Replacing Equations (5) and (6) in Equation (4), we obtain
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Y(k) =

M
4 −1

∑
n3=0

1

∑
n2=0

1

∑
n1=0

(
y
(

M
2

n1 +
M
4

n2 + n3

)
Wn1k1

2 Wn2(k1+2k2)
4 Wn3(k1+2k2+4k3)

M

)

=

M
4 −1

∑
n3=0

1

∑
n2=0

(
Bk1

M
2

(
M
4

n2 + n3

)
× Wn2(k1+2k2)

4 Wn3(k1+2k2+4k3)
M

)
. (7)

In Equation (7), the butterfly operation is given by

Bk1
M
2

(
M
4

n2 + n3

)
=

1

∑
n1=0

y
(

M
2

n1 +
M
4

n2 + n3

)
Wn1k1

2

= y
(

M
4

n2 + n3

)
+ (−1)k1 y

(
M
2

+
M
4

n2 + n3

)
. (8)

Assuming that M is 2N in order to increase the frequency resolution twice, samples from y(N) to
y(2N − 1) are set to zero so that Equation (8) can be simplified as follows:

Bk1
M
2

(
M
4

n2 + n3

)
= y

(
M
4

n2 + n3

)
. (9)

Therefore, Equation (7) can be summarized as follows

Y (k1 + 2k2 + 4k3) =

M
4 −1

∑
n3=0

1

∑
n2=0

(
(−j)n2k1 y

(
M
4

n2 + n3

)
Wn2k2

2 Wn3(k1+2k2+4k3)
M

)

=

M
4 −1

∑
n3=0

H (k1, k2, n3)Wn3(k1+2k2)
M Wn3k3

M/4, (10)

where the output of the stage 2 butterfly H(k1, k2, n3) is expressed as shown in Equation (11):

H (k1, k2, n3) =
1

∑
n2=0

(−j)n2k1 y
(

M
4

n2 + n3

)
Wn2k2

2

= y (n3) + (−1)k2(−j)k1 y
(

M
4

+ n3

)
. (11)

Alternatively, assuming that M is 4N in order to increase the frequency resolution four times,
samples from y(N) to y(4N − 1) are zero so that Equation (11) can be simplified as follows:

H(k1, k2, n3) = y (n3) . (12)

Therefore, Equation (10) can be summarized as follows:

Y (k1 + 2k2 + 4k3) =

M
4 −1

∑
n3=0

y (n3)Wn3(k1+2k2)
M Wn3k3

M/4. (13)

Similarly, even if the frequency resolution is increased by more than four times, y(M/4 + n3)
in Equation (11) becomes zero and the radix-22 algorithm is derived as shown in Equation (13).
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When increasing the frequency resolution by more than four times using the radix-23 algorithm, M
points of the DFT are derived as shown in Equation (14) in a way similar to the radix-22 algorithm:

Y (k1 + 2k2 + 4k3 + 8k4) =

M
8 −1

∑
n4=0

1

∑
n3=0

(
y
(

M
8

n3 + n4

)
Wn3(k1+2k2)

8 Wn3k3
2 Wn4(k1+2k2+4k3)

M Wn4k4
M/8

)
(14)

where 0 ≤ n1 ≤ 1, 0 ≤ k1 ≤ 1, 0 ≤ n2 ≤ 1, 0 ≤ k2 ≤ 1, 0 ≤ n3 ≤ 1, 0 ≤ k3 ≤ 1, 0 ≤ n4 ≤ M
8 − 1 and

0 ≤ k4 ≤ M
8 − 1.

3. Proposed Hardware Architecture

3.1. Double Frequency Resolution

In order to double the frequency resolution, the tail of input data sequence x(n) of length N is
padded with N zeros to double its length in the time domain. The FFT signal flow graph (SFG) of the
radix-22 algorithm for a zero-padded signal with double frequency resolution is shown in Figure 1.
To implement the zero-padded FFT using the conventional radix-22 SDF architecture, delay elements
of length N are required for data sequence reordering in stage 1 and the length of the delay elements
required for each stage is reduced by half each time as shown in Figure 2. That is, in order to
implement the FFT processor for a zero-padded signal of length 2N using the conventional radix-22

SDF architecture, delay elements with a total length of 2N − 1 are required [31]. As a result, the number
of delay elements notably increases with the FFT data points. To solve this problem, we propose the
hardware architecture depicted in Figure 3 by using the feedback path of the SDF architecture and
exploiting the trivial multiplication of stage 1.

Figure 1. Signal flow graph for double frequency resolution.



Electronics 2019, 8, 1397 5 of 12

Figure 2. Hardware architecture of the conventional SDF FFT processor.

Figure 3. Hardware architecture of proposed single path delay feedback (SDF) fast Fourier transform
(FFT) processor for double frequency resolution.

The data flow of the proposed hardware architecture is shown in Figure 4. First, x[0] to x[N/2 − 1]
go through the delay elements of stage 2 for the butterfly operation of stage 2. After N/2 cycles, x[N/2]
to x[N − 1] are entered into the butterfly unit of stage 2 and x[0] to x[N/2 − 1] are simultaneously
outputted from the delay elements of stage 2. x[0] to x[N/2 − 1], which are now the output of the
delay elements of stage 2, are delayed by the delay elements of length N/2 of stage 1; at the same
time x[0] to x[N/2 − 1] and x[N/2] to x[N − 1] perform the butterfly operation in stage 2. The outputs
of the butterfly unit of stage 2 are (x[0] + x[N/2]) to (x[N/2 − 1] + x[N − 1]) and (x[0]− x[N/2]) to
(x[N/2 − 1]− x[N − 1]). (x[0] + x[N/2]) to (x[N/2 − 1] + x[N − 1]) are transferred into stage 3 and
(x[0]− x[N/2]) to (x[N/2 − 1]− x[N − 1]) are fed back to the delay elements of stage 2. After N
cycles, x[0] to x[N/2 − 1], which are now the output of the delay elements of stage 1, are entered into
the delay elements of stage 2.

In addition, the feedback data (x[0]− x[N/2]) to (x[N/2 − 1]− x[N − 1]) are multiplied
by the TF ROM and then transferred into stage 3. At the same time, (x[0]− x[N/2]) to
(x[N/2 − 1]− x[N − 1]) are entered into the delay elements of stage 1. After 3N/2 cycles,
x[0] to x[N/2 − 1] are outputted from the delay elements of stage 2 and (x[0]− x[N/2]) to
(x[N/2 − 1]− x[N − 1]) are outputted from the delay elements of stage 1. Consequently, (− jx[N/2])
to (− jx[N − 1]) can be obtained by subtracting x[0] to x[N/2 − 1] from (x[0]− x[N/2]) to
(x[N/2 − 1]− x[N − 1]) and then via multiplication by −j. Additionally, x[0] to x[N/2 − 1] and
(− jx[N/2]) to (− jx[N − 1]) perform the butterfly operation in stage 2. The butterfly unit
outputs of stage 2 from (x[0]− jx[N/2]) to (x[N/2 − 1]− jx[N − 1]) are transferred into stage 3
and (x[0] + jx[N/2]) to (x[N/2 − 1] + jx[N − 1]) are fed back to delay elements of stage 2. Thus, it
can be verified that the outputs of the stage 2 butterfly unit are equal to the results of the stage 2
butterfly operation shown in Figure 1. Therefore, this demonstrates that the number of delay elements
in stage 1 can be reduced by 50% compared with the conventional architecture. Besides, multiplication
by −j is a trivial multiplication that consists of changing the positions of the integer and imaginary
parts of the complex number and the butterfly unit of stage 1 can be omitted as shown in Equation (9).
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Figure 4. Timing diagram of the proposed SDF FFT processor for double frequency resolution.
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3.2. Four-times Frequency Resolution

When the tail of an input data sequence of length N is padded with 3N zeros, the number of data
points in the sequence in the time domain becomes 4N and, consequently, the frequency resolution
increases by a factor of 4. The DFT for a 4N-long zero-padded signal is expressed in Equation (13) and
the corresponding SFG is depicted in Figure 5. As can be seen from the SFG, the outputs of stage 1
from Bk1

M
2
(N) to Bk1

M
2
(2N − 1) and from Bk1

M
2
(3N) to Bk1

M
2
(4N − 1) are zeros. Hence, the outputs from the

butterfly unit in stage 2 are repeated in the input data sequence four times. Therefore, the hardware
architecture at stage 1 and stage 2 of the SDF for a zero-padded signal with four times the frequency
resolution requires N delay elements and one complex multiplier, as illustrated in Figure 6.

Figure 5. Signal flow graph for four-times frequency resolution.

Figure 6. Hardware architecture of the proposed SDF FFT processor for four-times frequency resolution.

In the proposed hardware architecture, an input data sequence of length N is delayed using N
delay elements and the delayed data sequence is fed back to the delay elements and simultaneously
transferred to a complex multiplier for multiplying by the TF. As a result, the input data sequence is
repeated four times. After the calculations of stages 1 and 2 are completed, an N-point DFT calculation
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with log2N stages is performed. In other words, the proposed SDF architecture for a zero-padded
signal with four times the frequency resolution can reduce the total number of delay elements by 50%
compared with the conventional SDF architecture by eliminating stage 1, which has the largest number
of delay elements.

3.3. 2m-Times Frequency Resolution

When the tail of an input data sequence of length 2(q−m) is padded with 2q−2(q−m) zeros,
the frequency resolution increases by a factor of 2m, where m is 2 or more and q is m + 1 or
more. Figure 7 shows the SFG when a data sequence of length 2q is decomposed using the
radix-22 algorithm. Among the outputs from the stage 1, from Bk1

M
2
(2q−m) to Bk1

M
2
(2q−1 − 1) and

from Bk1
M
2
(2q−1 + 2q−m) to Bk1

M
2
(2q − 1) are zeros and the outputs from Bk1

M
2
(0) to Bk1

M
2
(2q−m − 1) and

from Bk1
M
2
(2q−1) to Bk1

M
2
(2q−1 + 2q−m − 1) are repeatedly generated in the same form as the input data

sequence. In addition, the outputs from the butterfly unit in stage 2 are repeated four times for an
input data sequence of length 2(q−m) and (2q−2 + 2q−m) zeros. Therefore, the hardware architecture at
stages 1 and 2 of the SDF for a zero-padded signal with 2m-times frequency resolution requires 2(q−m)

delay elements and one complex multiplier. Additionally, a multiplexer for (2q−2 + 2q−m) zeros is
required for the stage 2 butterfly outputs, as illustrated in Figure 8.

Figure 7. Signal flow graph for 2m-times frequency resolution.

In the proposed hardware architecture, the input data sequence of length 2q−m is delayed using
delay elements of length 2q−m and the delayed input data sequence is simultaneously transferred to a
complex multiplier and to delay elements of length 2q−m. As a result, in the outputs from the butterfly
unit in stage 2, the input data sequence and the zeros are repeated. After the calculations of stage 1 and
stage 2 are completed, 2q−2-point DFT calculations are performed over q − 2 stages. In other words,
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the proposed SDF architecture for a zero-padded signal with 2m-times frequency resolution eliminates
stage 1, which has the largest number of delay elements. Moreover, in the case of eight-times frequency
resolution or higher and because the input of the 2q−2-point DFT calculations is zero-padded after
the operations of stage 2, the number of the delay elements in the 2q−2-point FFT processors can be
reduced in the same way as in the proposed hardware architecture.

Figure 8. Hardware architecture of proposed SDF FFT processor for 2m-times frequency resolution.

4. Comparison

Table 1 shows a comparison of the hardware area and performance between the conventional
pipelined FFT architecture and the proposed hardware architecture for a zero-padded signal of length
2q when the frequency resolution is increased by a factor of 2m. This Table includes the number of
complex adders, complex multipliers and delay elements. The latency is also presented in terms of
the number of cycles. Because all the architectures process single-path data, their throughput is one
sample per clock cycle. Additionally, the number of complex multipliers is the same as in the radix-22

SDF architecture but it can be seen that the number of complex adders is reduced by 2m compared with
the radix-22 SDF architecture. Most notably, compared with the conventional hardware architecture
(in which the number of delay elements seriously increases with FFT length and the number of data
paths), the proposed hardware architecture reduces the number of the delay elements significantly.
Moreover, latency is significantly reduced compared with other single-path pipeline architectures.

Table 1. Comparison of pipeline hardware architectures for the computation of a 2q-point zero-padded FFT on
complex-valued data (frequency resolution is assumed to be increased by a factor of 2m).

Pipelined Architecture Complex Adder Complex
Multipliers Delay Elements Latency (Cycles)

SDF Radix-2 2q q − 1 2q − 1 2q

SDF Radix-4 4q q/2 − 1 2q − 1 2q

SDF Radix-22 2q q/2 − 1 2q − 1 2q

SDF Split Radix-2 2q q/2 − 1 2q − 1 2q

SDC Radix-4 3q/2 q/2 − 1 2q+1 − 1 2q

Proposed SDF Radix-22

(m : Odd/Even)
(Odd : 2q−2m+1
Even : 2q−2m) q/2 − 1 (m + 2)(2q−m−1)−1 (m + 2)(2q−m−1)

In order to confirm the superiority of the proposed architecture, we implemented two 256-point
FFT processors with the proposed and conventional radix-22 SDF architectures. For four-times
frequency resolution, the tail of an input data sequence of length 64 is padded with 192 zeros.
A 12-bit word for real and imaginary data paths was selected to satisfy the requirement for a
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signal-to-quantization noise-ratio (SQNR) of 40 dB. We designed the zero-padded FFT processor for
integration in frequency modulated continuous wave (FMCW) radar signal processor and confirmed
that the performance degradation due to quantization noise is minimized when the SQNR is above
40 dB. In addition, in the case of FFT processor for orthogonal frequency division multiplexing (OFDM)
baseband processor, it is presented in Reference [32] that there is no effect of quantization noise when
the SQNR is 40 dB or more.

Two FFT processors were designed using hardware description language (HDL) and synthesized
to gate-level circuits using a standard cell library of 65 nm CMOS process. Table 2 shows comparison
results for logic gate count. As depicted in this Table, the proposed architecture can reduce the
gate count by 34.6% compared to the conventional architecture owing to the reduction of 50.2% for
delay elements.

Table 2. Comparison of logic synthesis results of a 256-point four-times frequency
resolution zero-padded FFT on complex-valued data.

Block Name SDF Radix-22 Proposed Reduction
(%)

Butterfly Unit 7192 6293 12.5
Non-trivial Multiplier 13,783 13,783 0

Delay Elements 40,800 20,320 50.2
Total 61,775 40,396 34.6

Table 3 shows comparison results between this work and other FFT processors in
References [33–36]. For a fair comparison, we normalized the area as

Anorm =
Area × 103

(Tech/65nm)2 × log2N
, (15)

where N and Tech are the FFT length and the process technology in nanometers, respectively. As shown
in Table 3, the normalized area of the proposed FFT processor is the smallest among different FFT
processors because it can significantly reduce the number of delay elements.

Table 3. Comparison of the proposed FFT processor with previous research results.

[33] [34] [35] [36] This
Work

FFT Length 128–2048 1024–8192 128–2048 4–2048 256
FFT Architecture SDF SDF SDF SDF SDF
Frequency (MHz) 40 112 40 500 300
Word Length (Bit) 16 12 12 14 12

Technology 180 180 90 40 65
Execution Time/FFT
Length @ 20MHz (ns) 50 50 N.A. N.A. 28

Area (mm2) 6.76 3.52 0.783 0.36 0.18
Normailzed Area 80.14 35.31 37.13 86.42 22.50

5. Conclusions

In this paper, we proposed an area-efficient FFT processor for zero-padded signals based on the
radix-22 and radix-23 SDF pipeline architectures by taking advantage of the fact that the input data
sequence is zero-padded that and the twiddle factor multiplication in stage 1 is trivial. The proposed
FFT processor can dramatically reduce the required the number of delay elements. For four-times
frequency resolution, the tail of an input data sequence of length 64 is padded with 192 zeros, the
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number of delay elements can be reduced by 50.2% and we demonstrated that the proposed architecture
is efficient and suitable for zero-padded FFT processors.

Author Contributions: Y.J. (Yongchul Jung) designed the algorithm, performed the simulation and experiment,
and wrote the paper. J.C. and S.L. implemented of the processor and revision of this manuscript. Y.J. (Yunho Jung)
conceived and led the research, analyzed the experimental results, and wrote the paper.

Funding: This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2019-0-00056) and CAD tools were
supported by IDEC.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schafer, R.W.; Oppenheim, A.V. Discrete-Time Signal Processing; Prentice Hall: Englewood Cliffs, NJ,
USA, 2009.

2. Lai, S.C.; Lei, S.F.; Chang, C.L.; Lin, C.C.; Luo, C.H. Low Computational Complexity, Low Power, and Low
Area Design for the Implementation of Recursive DFT and IDFT Algorithms. IEEE Trans. Circuits Syst. II
Exp. Briefs 2009, 56, 647–651. [CrossRef]

3. Kanatov, I.; Kaplun, D.; Butusov, D.; Gulvanskii, V.; Sinitca, A. One Technique to Enhance the Resolution of
Discrete Fourier Transform. Electronics 2019, 8, 330. [CrossRef]

4. Athaudage, C.R.N.; Angiras, R.R.V. Sensitivity of FFT-Equalised Zero-Padded OFDM Systems to Time and
Frequency Synchronisation Errors. IEE Proc. Comm. 2005, 152, 945–951. [CrossRef]

5. Liu, S.; Liu, D. A High-Flexible Low-Latency Memory-Based FFT Processor for 4G, WLAN, and Future 5G.
IEEE Trans. VLSI Syst. 2019, 27, 511–523. [CrossRef]

6. Minotta, F.; Jimenez, M.; Rodriguez, D. Automated Scalable Address Generation Patterns for 2-Dimensional
Folding Schemes in Radix-2 FFT Implementations. Sensors 2018, 7, 33.

7. Hyun, E.; Jin, Y.; Lee, J. A pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on
2D Range-Doppler FMCW Radar. Sensors 2016, 16, 124. [CrossRef]

8. Tang, S.; Chen, Y. Area-Efficient FFT Kernel with Improved Use of GI for Multistandard MIMO-OFDM
Applications. Appl. Sci. 2019, 9, 2877. [CrossRef]

9. Guoqing, Q. High accuracy range estimation of FMCW lwvel radar based on the phase of the zero-padded
FFT. In Proceedings of the 7th International Conference on Signal Processing, Beijing, China, 31 August–4
September 2004; pp. 2078–2081.

10. Sansaloni, T.; Perez-Pascual, A.; Torres, V.; Valls, J. Efficient pipeline FFT processors for WLAN MIMO-OFDM
systems. IET Electorn. Lett. 2005, 41, 1043–1044. [CrossRef]

11. Ayinala, M.; Parhi, K.K. Parallel-Pipelined Radix-22 FFT Architecture for Real Valued Signals. In Proceedings
of the 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, USA, 7–10 November 2010; pp. 1274–1278.

12. Jung, Y.; Yoon, H.; Kim, J. New Efficient FFT Algorithm and Pipeline Implementation Results for
OFDM/DMT Applications. IEEE Trans. Consum. Electron. 2003, 49, 14–20. [CrossRef]

13. Yin, X.; Yu, F.; Ma, Z. Resource-Efficient Piplined Architectures for Radix-2 Real-Valued FFT with Real
Datapaths. IEEE Trans. Circuits Syst. II Exp. Briefs 2016, 63, 803–807. [CrossRef]

14. He, S.; Torkelson, M. Design and Implementation of a 1024-point Pipeline FFT Processor. In Proceedings of
the IEEE 1998 Custom Integrated Circuits Conference, Santa Clara, CA, USA, 14 May 1998; pp. 131–134.

15. Sreenivas, T.V.; Rao, P.V.S. High resolution narrow-band spectra by FFT pruning. IEEE Trans. Acoust. Speech
Signal Process. 1980, 28, 254–257. [CrossRef]

16. Gan, R.G.; Eman, K.F.; Wu, S.M. An extended FFT algorithm for ARMA spectral estimation. IEEE Trans.
Acoust. Speech Signal Process. 1984, 32, 168–170. [CrossRef]

17. Nagai, K. Pruning the decimation-in-time FFT algorithm with frequency shift. IEEE Trans. Acoust. Speech
Signal Process. 1986, 34, 1008–1010. [CrossRef]

18. Qin, D.Z.; Ren, J.A.; Xu, Y.H. An Efficient Pruning Algorithm for IFFT/FFT Based on NC-OFDM in 5G.
In Proceedings of the 2018 Second International Conference on Inventive Communication and Computational
Technologies (ICICCT), Coimbatore, India, 20–21 April 2018; pp. 432–435.

http://dx.doi.org/10.1109/TCSII.2009.2035267
http://dx.doi.org/10.3390/electronics8030330
http://dx.doi.org/10.1049/ip-com:20045333
http://dx.doi.org/10.1109/TVLSI.2018.2879675
http://dx.doi.org/10.3390/s16010124
http://dx.doi.org/10.3390/app9142877
http://dx.doi.org/10.1049/el:20052597
http://dx.doi.org/10.1109/TCE.2003.1205450
http://dx.doi.org/10.1109/TCSII.2016.2530862
http://dx.doi.org/10.1109/TASSP.1980.1163376
http://dx.doi.org/10.1109/TASSP.1984.1164289
http://dx.doi.org/10.1109/TASSP.1986.1164900


Electronics 2019, 8, 1397 12 of 12

19. Airoldi, R.; Garzia, F.; Nurmi, J. Efficient FFT pruning algorithm for non-contiguous OFDM systems.
In Proceedings of the 2011 Conference on Design and Architectures for Signal and Image Processing,
Tampere, Finland, 2–4 November 2011; pp. 1–6.

20. Yuan, L.; Tian, X.; Chen, Y. Pruning split-radix FFT with time shift. In Proceedings of the 2011 International
Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011;
pp. 1581–1586.

21. Ingemarsson, C.; Kllstrm, P.; Qureshi, F.; Gustafsson, O. Efficient FPGA Mapping of Pipeline SDF FFT Cores.
IEEE Trans. VLSI Syst. 2017, 25, 2486-–2497. [CrossRef]

22. Wang, Z.; Liu, X.; He, B.; Yu, F. A Combined SDC-SDF Architecture for Normal I/O Pipelined Radix-2 FFT.
IEEE Trans. Very Large Scale Integr. Syst. 2015, 23, 973–977. [CrossRef]

23. Li, J.; Liu, F.; Long, T.; Mao, E. Research on pipeline R22SDF FFT. In Proceedings of the IET International
Radar Conference, Gulin, China, 20–22 April 2009; pp. 1–5.

24. Lee, S.; Park, S. Modified SDF Architecture for Mixed DIF/DIT FFT. In Proceedings of the 2007 IEEE
International Symposium on Circuits and Systems, New Orleans, LA, USA, 27–30 May 2007; pp. 2590–2593.

25. Chang, Y.N. An Efficient VLSI Architecture for Normal I/O Order Pipeline FFT Design. IEEE Trans. Circuits
Syst. II Exp. Briefs 2008, 55, 1234–1238. [CrossRef]

26. Nguyen, H.N.; Khan, S.A.; Kim, C.; Kim, J. A Pipelined FFT Processor Using an Optimal Hybrid Rotation
Scheme for Complex Multiplication: Design, FPGA Implementation and Analysis. Electronics 2018, 7, 137.
[CrossRef]

27. Gasior, M.; Gonzales, L. Improving FFT Frequency Measurement Resolution by Parabolic and Gaussian
Spectrum Interpolation. In Proceedings of the 2004 Beam Instrum. Workshop, Geneva, Switzerland,
10 November 2004; Volume 732, pp. 276–285.

28. Aamir, K.M.; Maud, M.A.; Loan, A. On Cooley-Tukey FFT Method for Zero Padded Signals. In Proceedings
of the IEEE Symp. Emerging Technologies, Islamabad, Pakistan, 18 September 2005; pp. 41–45.

29. Quinn, B.G. Recent Advances in Rapid Frequency Estimation. Digit. Signal Process. 2009, 19, 942. [CrossRef]
30. Bai, Y.; Zhang, X. An Algorithm of Fast Interpolation. In Proceedings of the IEEE World Congress on

Computer Science and Information Engineering, Los Angeles, CA, USA, 31 March–2 April 2009; pp. 588–590.
31. He, S.; Torkelson, M. A new approach to pipeline FFT processor. In Proceedings of the International

Conference on Parallel Processing, Honolulu, HI, USA, 12–16 August 1996; pp. 766–770.
32. Kuo, J.C.; Wen, C.H.; Lin, C.H.; Wu, A.Y. VLSI design of a variable-length FFT/IFFT processor for

OFDM-based communication systems. EURASIP J. Adv. Signal Process. 2003, 13, 1306–1316. [CrossRef]
33. Chhatbar, T.D.; Darji, A.D. High Speed High Throughput FFT/IFFT Processor ASIC for Mobile Wi-Max.

In Proceedings of the International Conference on Emerging Trends in Engineering and Technology, Najpur,
India, 16–18 December 2009; pp. 402–405.

34. Lee, H.Y.; Park, I.C. Balanced Binary-Tree Decomposition for Area-Efficient Pipelined FFT Processing.
IEEE Trans. Circuits Syst. I Regul. Pap. 2007, 54, 889–900. [CrossRef]

35. Yu, C.; Yen, M.H. Area-Efficient 128- to 2048/1536-Point Pipeline FFT Processor for LTE and Mobile WiMAX
Systems. IEEE Trans. VLSI Syst. 2015, 23, 1793–1800. [CrossRef]

36. Shih, X.Y.; Chou, H.R.; Liu, Y.Q. VLSI Design and Implementation of Reconfigurable 46-Mode
Combined-Radix-Based FFT Hardware Architecture for 3GPP-LTE Applications. IEEE Trans. Circuits
Syst. I Regul. Pap. 2018, 65, 118–129. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TVLSI.2017.2710479
http://dx.doi.org/10.1109/TVLSI.2014.2319335
http://dx.doi.org/10.1109/TCSII.2008.2008074
http://dx.doi.org/10.3390/electronics7080137
http://dx.doi.org/10.1016/j.dsp.2008.04.004
http://dx.doi.org/10.1155/S1110865703309060
http://dx.doi.org/10.1109/TCSI.2006.888764
http://dx.doi.org/10.1109/TVLSI.2014.2350017
http://dx.doi.org/10.1109/TCSI.2017.2725338
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Zero-Padded FFT
	Proposed Hardware Architecture
	Double Frequency Resolution
	Four-times Frequency Resolution
	2m-Times Frequency Resolution

	Comparison
	Conclusions
	References

