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Abstract: The Internet of Things (IoT) is a network widely used with the purpose of connecting
almost everything, everywhere to the Internet. To cope with this goal, low cost nodes are being
used; otherwise, it would be very expensive to expand so fast. These networks are set up with
small distributed devices (nodes) that have a power supply, processing unit, memory, sensors, and
wireless communications. In the market, we can find different alternatives for these devices, such
as small board computers (SBCs), e.g., Raspberry Pi (RPi)), with different features. Usually these
devices run a coarse version of a Linux operating system. Nevertheless, there are many scenarios
that require enhanced computational power that these nodes alone are unable to provide. In this
context, we need to introduce a kind of collaboration among the devices to overcome their constraints.
We based our solution in a combination of clustering techniques (building a mesh network using
their wireless capabilities); at the same time we try to orchestrate the resources in order to improve
their processing capabilities in an elastic computing fashion. This paradigm is called fog computing
on IoT. We propose in this paper the use of cloud computing technologies, such as Linux containers,
based on Docker, and a container orchestration platform (COP) to run on the top of a cluster of these
nodes, but adapted to the fog computing paradigm. Notice that these technologies are open source
and developed for Linux operating system. As an example, in our results we show an IoT application
for soundscape monitoring as a proof of concept that it will allow us to compare different alternatives
in its design and implementation; in particular, with regard to the COP selection, between Docker
Swarm and Kubernetes. We conclude that using and combining these techniques, we can improve
the overall computation capabilities of these IoT nodes within a fog computing paradigm.

Keywords: fog computing; Kubernetes; Docker Swarm; containers; container orchestration platforms;
elastic computing

1. Introduction

The Internet of Things (IoT) has become a widely used network to integrate almost everything,
everywhere to the Internet, with different applications which include environmental monitoring,
etc. [1–4], and with many open challenges [5,6]. These networks consist of distributed devices
that have their own power supply, processing unit, memory, sensors and wireless communications.
In addition, low cost devices are being used to make cheaper deployments. There is a wide range
of these devices, such as TelosB motes [7] and small board computers (SBCs), such as Raspberry Pi
(RPi) [8], with different technical features. Normally, the operating systems of such a device is based
on a Linux system.
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However, new trends on IoT and their applications make them to require a reconfigurable
sensor architecture that can span multiple scenarios, requiring storage, networking and computational
resources to be efficiently used at the edge of the network [2]. Thus, there are many scenarios
that require enhanced computational power that these nodes alone are unable to provide, showing
constraints in terms of limited energy, bandwidth, memory size and computational capabilities. In this
context, we must make these devices cooperate to overcome these constraints by using orchestration
techniques. In addition, it is necessary to implement a wireless mesh network within the cluster.

In addition, we need to orchestrate resources within the cluster to manage and improve overall
processing capabilities in an elastic manner. This paradigm is in the context of fog computing on IoT.
It is worth mentioning, that we can find slight differences from different documentary sources for the
concept of fog computing, since it is a term not consolidated yet. In this context, we assume that fog
computing is the collaboration of neighboring devices in order to improve their overall performance.
Additionally, we can find similar definitions, such as, “Fog computing is an architecture that uses edge
devices to carry out a substantial amount of computation, storage and communication locally”.

It must be stressed that fog computing is one of the research fields that is gaining more importance
and relevance. It has emerged to support the requirements of IoT applications that cannot be met by
today’s nodes [9]. Nevertheless, as discussed before, fog computing is not mature yet and there are not
many solutions and available alternatives. We can find different applications and challenges of this
technology in others areas [10]; for instance, security issues in vehicular networks [11].

Thus, we propose in this paper, a lightweight virtualization approach enabling flexibility and
scalability within the cluster, by using Linux containers and a container orchestration platform (COP),
but adapting them to a fog computing paradigm. All these technologies have been developed for
a Linux operating system and they will be described in the following sections. The novelty of our
proposal and our contribution is the use and combination of these technologies in this paradigm, since
these technologies (containers and COPs) were initially defined for cloud computing, where both
computers and interconnection networks have nothing to do with the SBC devices and wireless mesh
network that we can find in an IoT deployment in terms of CPU, memory and network speed. In this
context, the use and analysis of the mentioned technologies is new and there are not (to the best of
our knowledge) any studies using them before, combining IoT, low cost devices, and fog computing.
In addition, in order to exploit the results for this new approach we compared the different options in
the design.

With more detail, the COP will manage the resources on the top of a cluster of these nodes, in the
master. Linux container is a technology that allows an application to be broken into different containers
that can be run on a single node or on a cluster of multiple nodes. Docker is currently the most used
commodity container framework [12]. The reason behind of that orchestration is when the number of
containers and nodes are high, we need to schedule and distribute the different tasks. Some COPs are
widely used for container-based cluster management in cloud computing environments (but not so
extended in fog computing), such as Docker Swarm [13], Marathon-Mesos [14] and Kubernetes [15].
All theses technologies are open source and designed for Linux operating systems. That is the reason
we use SBC devices’ running operating systems based on Linux.

Finally, we will show an implementation under these constraints applied to noise pollution and
soundscape monitoring. The scenario is a real example of the aforementioned new trends of the IoT,
requiring high computing without loss of generality. In addition, it will be used as a proof of concept,
allowing us to compare different alternatives in its implementation; in particular, with regard to the
COP selection between Docker Swarm and Kubernetes. From our results, we conclude that by using
and combining the proposed techniques, we can improve the overall computation capabilities of these
IoT nodes.

Eventually, with this paper we will try to answer the following question: how can I increase the
overall computational power of a set of SBC devices in an IoT deployment?
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The rest of the paper is structured as follows. Section 2 shows the related work. In Section 3, we
define the requirements for the proposed architecture, the clustering options to coordinate the nodes in
the fog, and an analysis of containers and orchestration platforms. In Section 4 we explain the design
and implementation details. In Section 5, we analyze the test bed for psycho-acoustic annoyance/noise
pollution monitoring, in order to highlight the enhancements introduced compared to traditional
systems, showing the results from a performance evaluation with the different alternatives. In Section 6
we discuss the results obtained, and finally, in Section 7, we conclude the paper.

2. Related Work

Regarding cloud and fog computing on IoT, we found relevant references. In [9], a unified
architectural model and taxonomy was presented by comparing a large number of solutions on
fog computing for the IoT, taking into account several aspects, such as communications, security,
management, and cloudification. The authors analyzed the main IoT applications requirements, and
using the proposed model, they were able to compare different solutions and how they are applied.
For instance, in the study presented in [1], the authors explore alternative deployments for a "smart
warehouse" IoT application, both based on cloud and based on fog (fog-like) computing. The goal of
their exercise was to determine if a cloud-based approach is able to meet the latency requirements of
the application, given that low-latency is usually considered an essential requirement for many IoT
applications. The authors were able to compare the event latency performance for both cloud and fog
deployments, showing as it could be expected, that latency shows better results when the application
is deployed according the fog-based approach.

Another approach of fog computing on IoT is shown in [2]. Their authors focus on the use
of available gateways in order to enable IoT application deployments. The authors mention that
there are a number of platforms and gateway architectures that have been proposed to manage these
components. However, these platforms and gateways lack horizontal integration among multiple
providers, and other functionalities like load balancing and clustering. The authors state that is partly
due to the strongly coupled nature of the deployed applications, and a lack of abstraction of device
communication layers as well as a lock-in for communication protocols. This limitation is a major
obstacle for the development of a protocol agnostic application environment that allows for single
application to be migrated and to work with multiple peripheral devices with varying protocols from
different local gateways. Then, the authors propose a messaging-based modular gateway platform
that enables clustering of gateways and the abstraction of peripheral communication protocol details.
This proposal allows applications to send and receive messages regardless of their deployment location
and destination device protocol, creating a uniform development environment.

Regarding management and orchestration within fog computing, we found interesting
contributions. In [16], an efficient automated resource management in cloud computing was shown
to improve important tasks such as launching, terminating, and maintaining computing instances
rapidly, with a minimum overhead. The authors ran a performance analysis over Kubernetes using a
Petri network based performance model. The authors suggested that the proposal could be used for
supporting capacity planning and designing Kubernetes-based elastic applications.

Finally, it is worth mentioning similar works focused on the evaluation of the aforementioned
COPs. In particular, in [17], the authors analyzed Kubernetes as a COP in order to design an on-demand
model for renting computing resources and easy-to-use elastic infrastructure in cloud computing
environments. The authors considered the choice of a reactive autoscaling method to adapt this
demand. Kubernetes already embeds and autoscaling method but it significantly affects both response
time and resource utilization. Then the authors discuss and suggest the use of different factors that
should be taken into account under different types of traffic to develop new autoscaling methods.
They conclude that the default autoscaling method in Kubernetes can be improved by considering
the suggested influencing factors. These factors, which should be taken into consideration to handle
different workload patterns, consist of (i) a conservative constant (α), (ii) an adaptation interval or
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control loop time period (CLTP), and (iii) stopping at most one container instance in each adaptation
interval. It must be stressed that the authors used as a testbed, a cluster of computers with four core
CPUs at 2397 MHz, with 4GB of RAM and 1 Gbps network interfaces. Additionally, using Kubernetes,
in [18] the authors focused on a new feature of this COP to support a federation function of multiple
Docker container clusters, called Kubernetes Federation. It allows one to increase the responsiveness
and reliability of cloud computing applications by distributing and federating container clusters to
multiple service areas of cloud service providers. But the management required is high and complex.
Thus, the authors proposed an interesting method and a tool to automatically form and monitor
Kubernetes Federation.

To conclude this section, it is worth mentioning that fog-computing on IoT is not yet a mature
research line and interesting tools developed for cloud computing could be considered and adapted to
this new context. Although big efforts have been made, we cannot find many solutions and available
alternatives, or a detailed architecture in order to follow some steps. Thus, with this paper we try to
clarify different issues bound to this technology and its deployment through a case study.

3. Analysis of the System

We require an adaptive, reconfigurable, wireless, and scalable architecture in the fog, able to
perform both simple and difficult tasks for IoT applications, that can span multiple scenarios, requiring
storage, networking, and computational resources to be efficiently used at the edge of the network [2].
For this purpose, in this section we will analyze the clustering options to allow cooperation among the
nodes and the Linux container technology to allow load balancing distribution.

3.1. Clustering Options for Nodes in the Fog

Since the IoT nodes will be close one each other in the fog within an area range lower than
50 m, we want a wireless solution, without requiring any additional external device except the nodes
themselves. In particular, we will focus on RPi. RPi nodes are well-known and commonly used as
SBCs in IoT applications. They fit in almost any coarse and initial IoT deployment. Thus, without loss
of generality we consider them in order to make a real cluster, as a proof of concept.

There are several ways to interconnect these nodes in a cluster, as shown in Figure 1.

Figure 1. Different options for RPi clustering.

In terms of speed and performance, the wired option is the first and the most common
interconnection method, using Ethernet interfaces and getting transmission speeds around 100 Mbps.
But this requires adding network cables and an Ethernet switch. In this case, scalability would depend
on this switch. Alternatively, using wireless interfaces, the nodes can connect by an access point (AP).
This would give us a speed of approximately 40 Mbps in real scenarios [19]. But the limitations, apart
from speed, are given by the AP itself, that can act as a bottleneck and requires a lot of energy. Besides,
there are not direct connections among the nodes, since all traffic must necessarily go through the AP.

Thus, the last alternative shown in Figure 1 is a wireless mesh network. Since SBCs are equipped
with WiFi interfaces, this option is feasible and even more interesting than the previous ones. WiFi
mesh networks represent a simple and smart option for node clustering. However there is a constraint
in these topologies due to the short communication range of these nodes, but in our case and in the fog
we will not consider this a problem.
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3.2. Linux Containers and Orchestration

The Linux container technology is a lightweight virtualization technology at the operating system
level. Containers are an excellent option and can be booted up in few seconds; they are an efficient
use of hardware resources. In this scenario, an application consists of numerous containers that can
be run in one node or in a cluster of nodes. Thus, it is important for an orchestrator to keep track of
containers belong to the same application and to deal with network connection. The orchestrator can
manage hundreds or thousands of containers in a cluster.

Docker is an open source project to automate the deployment of applications within containers.
Additionally, Docker is currently the most used commodity container framework; thus, we used this
type of container.

When the number of containers in a cluster is high, new tools are needed for orchestration. Some
orchestrators are widely used for container-based cluster management, such as Docker Swarm [13]
and Kubernetes [15]. They are called container orchestration platforms (COPs). Thus, COPs are used
to orchestrate the execution of containers in a cluster. The user describes the container and the COP
selects which of the physical hosts or nodes are going to perform the execution of the container. It must
be noticed that one could use the interfaces provided by a COP to directly deploy containers on a set
of computing resources. Nevertheless, this approach would be disruptive since usage patterns would
change. Next, we describe the most important available COPs and their features.

Kubernetes [15] is the most prominent open source orchestration system for Docker containers
supported by Google and later donated to the Cloud Native Computing Foundation. It performs the
scheduling in a computing cluster (Kubernetes cluster) made up with different nodes and actively
manages workloads. In Kubernetes, there is a master, called Kubernetes master, to manage and
orchestrate the cluster resources. It provides interesting features, such as reliable container restarting,
load balancing, autoscaling, and self-healing. The scheduling in Kubernetes is based on Pods, that
are groups of containers deployed and scheduled together. These Pods can be distributed among
different nodes. Additionally, one single node can run several Pods. They form the atomic unit of
scheduling as opposed to single containers in other systems. Containers within a Pod share an IP
address and different labels can be used to identify each group of containers. These labeling features
allow Kubernetes to work on a heterogeneous cluster, where different nodes are specialized to run
specific Pods.

Docker Swarm [13], or simply Swarm, represents the native clustering approach proposed by
Docker, and takes advantages of the standard Docker API. Swarm manages a set of resources to
distribute Docker workloads, managing internal overlay networks within the containers. That way,
a container-based virtual cluster can be easily created on top of virtual or physical resources.
The architecture of Swarm consists of hosts running a Swarm agent (working nodes) and one host
running a Swarm manager. The Swarm agent will run several Docker stacks and each one will
accept containers. The concept of Docker stacks is equivalent in this paper to the Pod in Kubernetes.
The manager is responsible for the orchestration and scheduling of containers on the agent nodes.
While the connection between Swarm manager and agent is established by opening the port for the
Docker daemon, the Swarm manager can access all existing containers and Docker images in the agent
nodes. Additionally, it must be noticed that Swarm can be run in a high-availability mode.

4. Design and Implementation

In this section we describe the design and implementation of the cluster to perform elastic
computing in the fog.

4.1. Hardware, Operating System, and Network Configuration of the Nodes

We used four RPi version 3B [8] as the hardware base of the cluster, with its respective power
supplies and microSD cards. RPi version 3B uses an ARM Cortex-A53 @ 1.2GHz and 1GB LPDDR2 of
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RAM. Figure 2 shows an example of a cluster using four RPis. In this figure, we see also that the cluster
is performing a soundscape monitoring and this information is visualized on a map. This scenario is
described later in Section 5. In the cluster, the assigned names for the nodes in the cluster are RPiC1
as master, and as slaves—RPiC2, RPiC3, and RPiC4. We used the default operating system provided
by the manufacturer, called Raspbian [20]. Raspbian was developed by Raspberry Pi and based on a
Linux Debian distribution. We used version 9, named ”Stretch”.

Figure 2. Soundscape monitoring scenario using a fog computing approach based on a cluster of
Raspberry Pi 3B within a wireless mesh network, one acting as master (RPiC1, with external access)
and the others as slaves (RPiC2-4). The information we gathered is visualized on a map.

For simplicity and scalability within the whole architecture, we relied on the wireless mesh
infrastructure placing the nodes within a range lower than 50 m. In this scenario, a multihop routing
protocol is required to interconnect the different nodes within the network and/or the cluster.

There are many multihop routing protocols. From all of them, based on our experience and our
requirements, better approach to mobile ad hoc networking (BATMAN) [21] is very reliable, stable,
well-known, and has little in the way of an overhead.

BATMAN is a proactive routing protocol based on distance-vector algorithm, that builds a loop
free network. BATMAN does not try to estimate the whole path to each destination, but only the best
next-hop to a given destination, avoiding unnecessary routing-information exchanges among nodes.
If the origin and destination nodes are close, it creates direct routes. This is especially relevant in a
cluster, since it allows direct communication among the nodes, without any additional intermediate
node (relying nodes), speeding up the transmission of packets and minimizing errors. It must be
stressed that BATMAN works in Layer 2; thus, the whole multihop network is a LAN and each node
is identified by its own MAC address, simplifying the nodal configuration.

Finally, to allow Internet connection for the whole system, the master acts as a router (default
gateway) for the nodes. The master must use another interface for this purpose, such as an Ethernet
card, a second wireless card, or any telco adapter.

4.2. Cluster Configuration to Manage Containers and Their Orchestration

In order to perform the load distribution of the different tasks for an IoT application within
the cluster, we use Docker containers. Docker works by downloading images from a repository
(with authentication), that at the same time is in a container too, customizing and executing them in
the system. This local repository is created at the master node where the slaves have access and all the
images that the slaves will run at the master’s request are available.

For the COP selection, as discussed before for the orchestration, we focus on Kubernetes and
Swarm as COPs, since they are common.
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Regarding Kubernetes configuration, first we will start up the node that will act as orchestrator
and we will specify the address where the Kubernetes service will be available for the slaves, as well
as the IP range where the Pods will be executed. In addition, we have to share a token between
the master and the slaves in order to authenticate the process. It must be stressed that we will not
enable the autoscaling, since the number of Pods will be assigned before hand. It does not mean that
Kubernetes will not adapt to the node status but it will not autoscale using its default mechanism.
In this case, we will schedule from the master the load distribution by using port forwarding to the
slaves. Additionally, we have not included the default monitoring process embedded in Kubernetes
because in the RPi, this process increases in excess the CPU use, around a 60% extra.

Regarding Swarm configuration, things are easier compared to Kubernetes since it is the native
orchestrator of Docker containers and it is embedded in it. Following the same steps that in Kubernetes,
we publish the address at the master where the service is available for the slaves. This was to provide
a token to bind the slaves.

5. Test Bed for Soundscape Monitoring and Its Performance Analysis

As a proof of concept and in order to highlight the advantages of the proposed fog computing
scheme, in this section we analyze a deployment that requires high computational costs applied to
psycho-acoustic annoyance (PA) monitoring, or soundscape monitoring, as shown in Figure 2. We used
this scenario as a real example to performance elastic computing on a cluster of RPi, without loss of
generality in our results. This IoT application for soundscape monitoring is an example of the new
trends on IoT, as mentioned before. Thus, in this case we see the challenges imposed by these low cost
devices (RPi) when requiring enhanced computational power that these devices alone are unable to
provide, and that they need to collaborate in a fog computing paradigm.

Soundscape monitoring is characterized by requiring tough signal processing algorithms.
These algorithms are explained and analyzed in [22,23]. Behind this monitoring process, there are
several rules and standards such as Environmental Noise Directives (ENDs) 2002/49/EC and ISO
12913 (soundscape) [24,25]. In particular, END 2002/49/EC requires main cities (with more than
250,000 inhabitants) to gather real data on noise exposure in order to produce local action plans and to
provide accurate real time mappings of noise pollution levels.

The evaluation of this annoyance (or PA) is mainly based on the work by Zwicker and Fastl [26],
defining a set of parameters such as loudness (L), sharpness (S), fluctuation strength (F), and roughness
(R) that will let us measure PA. In other words, PA is given by a function knowing L, S, F, and R, and we
need all of them before calculating PA. The flow diagram of these algorithms is shown in Figure 3.
Due to the complexity of their implementation, we cannot perform this monitoring process with
conventional hardware (such as RPi) in a simple IoT deployment, and less so in real time. We must
highlight that we refer to real time as when the time required to process an audio chunk is shorter than
the chunk itself, which is by default 1 second.

It must be stressed in these scenarios that due to stringent laws related to personal privacy, it is
essential that PA calculations must be performed in real-time and as close as possible to the source
within the communication range, because the data are not allowed be to sent the recorded audio out.

First, we carry out the performance analysis in two steps. First, we analyze parallelization and
granularity issues of the containers, and secondly, we analyze its throughput.
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Figure 3. Flow diagram to measure and calculate psycho-acoustic annoyance (PA) on the proposed
novel, fog computing architecture based on L, S, R, and F.

5.1. Analyzing Parallelization and Granularity

Thus, first we characterize the processing time of the acoustic parameters. We created as many
containers as psycho-acoustic parameters to allow their parallelization and to speed up the PA
calculation. In this case, our aim was to increase the granularity of the containers (to make them small
and one per parameter) in order to distribute them easily and lightly, among the different slaves in the
cluster, to reduce the processing time.

In this scenario, there is a client node (external node) that records audio chunks and sends them at
a certain rate to the system under test (SUT). We used 100 audio chunks (of daily sounds of one second)
randomly selected from 60,150 chunks, recorded beforehand using a USB microphone. This process
was repeated several times till we achieved a confidence interval of 95%. The client timestamped each
audio chunk, and then it sent it to the SUT by WiFi. Once each audio chunk was processed, the SUT
sent the results back to the client. Once the client received them, it measured the total computation
time, as the elapsed time between the audio chunk was sent (and time stamped) and the results were
received. The SUT ran a REST-API and for a comparison; we used different approaches to compute
these parameters: (a) in a computer as a base line, (b) in a single RPi, and (c) in a cluster of four RPis
using the proposed fog computing.

In the case of the computer, we ran the parameters on one computer using both Matlab and
C++/Python. The computer was an i7-7700HQ at 3.5 GHz and 16GB DDR4 of RAM with eight cores.

In the case of single node (RPi) and fog computing (cluster of RPi), we used RPi models 3B and
3B+, using only C++/Python code. In the single node (RPi) approach, only one RPi was computing all
the parameters. This is the worst case, the slowest approach. In the cluster (fog approach), we had four
RPi3B, one as master and three as slaves. In this case, we were running the parameters (in different
containers), based on Swarm. All of the RPis were close one each other. The master in the cluster was
in charge of orchestrating the different slaves. RPi 3B used an ARM Cortex-A53 at 1.2 GHz and 1 GB
LPDDR2 of RAM and RPi 3B+ used an ARM Cortex-A53 at 1.4 GHz and 1 GB LPDDR2 of RAM, all of
them with four cores. It must be noted that with RPis, the main program was based on Python, and we
used C++ in order to implement a Python library that performed all the tough processing from each
psycho-acoustic parameter in an efficient way by using the linear algebra library called Armadillo [27].
This code has not been programmed using threads.
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In Table 1, we summarize the computational times for L, S, F, R, and PA on average per each
second of recorded audio, using different devices and programming languages and specifying these
approaches, specifying both the computer, single devices (one RPi), and a cluster of four RPis. This table
only shows average values in seconds and the standard deviation is at least three orders of magnitude
smaller; the highest is given by RPi working as a single node. The computation time is nearly constant
for all of them independently of the audio chunk (all of them of one second). The communication
times are included in each approach. In addition, as it could be expected, we saw that the computer
outperformed any combination with RPis. Additionally, we saw the effect of parallelization in the
cluster, where the total time was approximately the longest time of the parameters (R is the toughest),
compared with the total time required on a single RPi. In the cluster, because each psycho acoustic
parameter (L, S, F, and R) can be processed independently, we could parallelize them, making the
final computation of the PA (the parameter that includes all of them) faster. In particular, we saw
that when using a single and isolated RPi, the results (total time for PA estimation) were the worst
ones, 1.479 and 1.406 seconds for RPi3B and RPi3B+ respectively. These times are far from a real time
execution, which should be less than one second (the duration of the audio chunk). However, when
using fog computing in the cluster, we took advantage of their parallelization and those times were
reduced to 0.875 and 0.824 seconds for RPi3B and RPi3B+ respectively. These results initially validate
our approach.

Table 1. Time comparison in seconds to calculate the pyscho-acoustic parameters (loudness (L),
sharpness (S), fluctuation strength (F), roughness (R), and PA (total time)), among different devices and
programming languages using different types of approach: a computer (base line), a single node (RPi),
and a cluster with four RPis (fog computing approach).

Type L S R F PA (Total)

Matlab Computer 0.058 0.000 0.288 0.404 0.699
C++/Python Computer 0.003 0.000 0.128 0.235 0.238

RPi3B Single node 0.018 0.000 0.849 0.742 1.479
RPi3B+ Single node 0.017 0.000 0.794 0.694 1.406
RPi3B Cluster 0.022 0.000 0.853 0.754 0.875

RPi3B+ Cluster 0.021 0.000 0.802 0.703 0.824

5.2. Performance Evaluation of the Cluster in the Fog

Now, we will focus on the cluster and its capabilities. We performed the same calculations as
before, but embedding all the parameters within the same container, in order to measure the total
throughput of the whole cluster, comparing Swarm and Kubernetes, with the aim of measuring its
performance. We will refer to the concept of Docker stacks from Swarm as Pod as in Kubernetes,
since both are equivalent.

We used the same testbed as before, with one client node recording audio chunks and the cluster
(the SUT) processing all of them. The cluster was set up with four RPi 3B, one node acting as a
master and three slaves. We embedded all the parameters within the same container and the master
distributed this container among the slaves and their different Pods.

In the testbed, the external client timestamped each audio chunk and sent it to the master by
WiFi on the mesh network at a certain rate (λ or audio chunks per second). The master distributed
the audio chunks among the slaves by WiFi too. The slaves were running a REST-API and received
requests from the master. The slaves kept the audio chunks assigned temporarily, if they were busy
(while working with other audio chunks), in a FIFO queue implemented internally in the REST-API
implementation. If the audio chunks had to wait for processing, the queuing time depended on the
number of pending audio chunks. Each slave processed their assigned audio chunks one by one and
sent the results (acoustic parameters and PA) back to the master, every time an audio chunk was
processed. The master forwarded them to the client. Once the client received each result, it measured
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the total computation time, as before. It must be stressed that each computation time per audio chunk
includes: the sending time from the client to the master and from the master to the slave.

As seen in Table 1 in a RPi3B, each audio chunk takes an average of 1479 ms to calculate PA,
with a standard deviation of 1.405 × 10−4 (it is near a deterministic time). If we consider 1479 ms,
as the average service time, equal to 1

µ , the service rate (µ) is 0.676 chunks/second. Besides, we will
call the number of available Pods c. The number of Pods is defined by configuration before hand at
each slave in the cluster. In this case, we can model this approach as D/D/c according to the Kendall
notation. That is, a deterministic arrival process (since audio chunks are recorded one per second) and
a deterministic time service with c cores (number of Pods). Because each RPi had four cores, while in
the cluster we had one, two, or three slaves, we got four, eight, or 12 cores, maximum. Each core can
run a Pod. Thus, with one slave c is in the range [1, ..., 4]; with two slaves c is within [2, ..., 8]; and with
three slaves c is within [3, ..., 12].

In particular, we evaluated the performance of the cluster with and without congestion.
On one hand, if λ ≥ c · µ, we have congestion. In this case, each slave running a REST-API will

keep the audio chunks in RAM memory. The slaves have memory enough to keep the audio chunks in
RAM. The global queue will grow as λ − c · µ and it will be distributed among the slaves. We test λ

in steps of 0.1 chunks/second from values greater than c · µ, with a maximum of 10 chunks/second.
In all the scenarios, we sent the same workload, 100 audio chunks at the given rate several times
till we met the confidence interval. Notice that we always create congestion at each slave once its
cores are busy with their first audio chunk. The idea is to observe how the system behaves under
congestion. Additionally, it must be stressed that the client is configured without time outs in the
application (REST-API) because it would produce duplicated chunks. Then, the cluster is behaving as
a conservative system.

On the other hand, without congestion, the input workload would be lower than the output
workload processed, avoiding any queue. In the scenario without congestion, λ < c · µ, we tested
λ from 0.1 chunks/second till c · µ. Figure 4a–c shows the input workload (λ in audio chunks
per second) compared to throughput (audio chunks processed (or jobs) per second), comparing
Kubernetes to Swarm with Pods/slave and different slaves ((Figure 4a) one slave, (Figure 4b) two
slaves, and (Figure 4c) three slaves). In this case, in all the scenarios when the total number of Pods
were busy, as could be expected, the scenario became congested, although the systems showed a
constant throughput since each node kept their tasks in RAM in a FIFO fashion. It must be noticed
that Swarm shows a greater throughput according to the previous results, around 10% more, and this
enhancement increases with the number of Pods.

In addition, we compare in Figure 5a–c, the average resource uses in terms of percentage of CPU,
percentage of RAM memory, and CPU temperature, respectively.

In terms of percentage of CPU (Figure 5a) both COPs have a similar behavior, increasing with the
number of Pods. They show a minimum of 35% approximately, adding 20% approximately when each
core is activated. In theory, because the RPi has four cores, every time a core is completely busy the
CPU will increase 25%. From these results, Swarm shows a slightly greater use of CPU, because the
cores have less idle time providing higher utilization. The maximum was reached by Swarm with a
95% (with four cores working) and Kuberentes had 10% less. Notice that we should take into account
the initial resource use without any service (by default), with both COPs.In this case, Kubernetes
used in the master, 17% CPU and 74% RAM, and in the slaves, 6% CPU and 33% RAM. In the same
conditions, Swarm used in the master, 0.7% CPU and 22.48% RAM, and in the slaves, 0.53% CPU and
16.16% RAM.

In terms of percentage of RAM memory (Figure 5b), things are different because Kubernetes
usually uses 15% approximately more memory. In part, this is due to a lower throughput, as we saw
in Figure 4a–c, and then it has to keep the audio chunks in memory in the meantime.

Finally, for the CPU temperature (Figure 5c), according to the CPU use, Swarm gets between 2
and 3 degrees higher than Kubernetes in all the combinations.



Electronics 2019, 8, 1489 11 of 14

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
hr

og
up

ut
 [j

ob
s/

se
co

nd
]

λ [chunks/second]

Kubernetes Swarm      Pods/slave:    1            2             3              4 

(a) 1 slave

0.0

1.0

2.0

3.0

4.0

5.0

T
hr

og
up

ut
 [j

ob
s/

se
co

nd
]

λ [chunks/second]

Kubernetes Swarm      Pods/slave:    1            2             3              4 

(b) 2 slaves

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

T
hr

og
up

ut
 [j

ob
s/

se
co

nd
]

λ [chunks/second]

Kubernetes Swarm      Pods/slave:    1            2             3              4 

(c) 3 slaves

Figure 4. Throughput comparing Kubernetes vs Swarm with different slaves ((a) 1, (b) 2 and (c) 3) and
Pods/slave.
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Figure 5. Resource use comparing Kubernetes to Swarm with different slaves and Pods/slaves:
(a) percentage of CPU, (b) percentage of RAM memory, and (c) temperature.
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6. Discussion

On one hand, as we can see from Section 5.1, by reducing the granularity of the containers we
decrease the processing time, as could be expected, in the proposed fog computing architecture. But in
this case, because the different running containers require sharing the same audio chunk, it increases
the input data overhead that makes it inefficient in terms of throughput. The bottleneck is given by
the mesh network and the communication processes within the cluster. For that reason, on the other
hand in Section 5.2, we also evaluated an approach where one container included all the different PA
parameters. In this scenario, the overhead was reduced, allowing a higher throughput, and the limits
were imposed by the nodes and the number of cores. It must be noted that in this case, the cluster has
one master and three slaves based on RPi 3B (with four cores each), that will limit the number of Pods
running efficiently at each slave.

Additionally, we compared Swarm to Kubernetes. We have seen that Swarm always outperforms
Kubernetes on RPi with the different metrics used (memory and CPU use, throughput, etc.). Swarm is
more efficient (10% approximately) and faster on RPi3B nodes in all the scenarios and for the different
evaluated metrics.

7. Conclusions

Nowadays IoT is requiring a flexible and scalable network design but built on low cost nodes to
access and connect almost everything at everywhere. In particular in this paper, we focused on nodes
such as RPi. But with the new trends, the IoT is facing many scenarios that require high computation
capabilities beyond the possibilities of these nodes alone. For this goal, we proposed an architecture
leveraging fog computing, based on Linux containers and an orchestration platform, to run on the top
of a cluster of these nodes in order to cooperate and schedule different tasks in an efficient way.

As a proof of concept, we showed a scenario that requires high computing requirements, such
as soundscape monitoring, and compared different alternatives in its implementation. With these
results, we conclude that using and combining clustering techniques, Linux containers, and an
orchestrator, we can improve the overall computation capabilities of these IoT nodes. We have used
Linux Docker containers and compared two different COP as orchestrators, such as Docker Swarm
and Kubernetes. The experimental results showed the improved performance in terms of execution
time and throughput in a cluster of four RPis. We have seen that Docker Swarm always outperforms
Kubernetes in this scenario.

Thus, finally, an educated answer for "how can I increase the overall computational power of a set
of SBC devices in an IoT deployment?" is: We can overcome the constraints imposed by single SBC
devices using a cluster of interconnected nodes in a wireless mesh networks, since these devices have
wireless capabilities. In addition, in order to improve the overall computational power, the use of
Linux Docker containers add flexibility, adaptability, and responsiveness. However, it is necessary to
orchestrate the resources among the nodes in the cluster by using a COP; in particular, Docker Swarm
performs best.
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