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Abstract: Video surveillance systems play an important role in underground mines. Providing clear
surveillance images is the fundamental basis for safe mining and disaster alarming. It is of significance
to investigate image compression methods since the underground wireless channels only allow low
transmission bandwidth. In this paper, we propose a new image compression method based on
residual networks and discrete wavelet transform (DWT) to solve the image compression problem.
The residual networks are used to compose the codec network. Further, we propose a novel loss
function named discrete wavelet similarity (DW-SSIM) loss to train the network. Because the
information of edges in the image is exposed through DWT coefficients, the proposed network
can learn to preserve the edges better. Experiments show that the proposed method has an edge
over the methods being compared in regards to the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM), particularly at low compression ratios. Tests on noise-contaminated images also
demonstrate the noise robustness of the proposed method. Our main contribution is that the proposed
method is able to compress images at relatively low compression ratios while still preserving sharp
edges, which suits the harsh wireless communication environment in underground mines.

Keywords: underground mines; intelligent surveillance; residual networks; compressed sensing;
image compression; image restoration; discrete wavelet transform

1. Introduction

1.1. The Image Compression Demand from Underground Mines

Coal is one of the major resources in China. In the foreseeable future, China will still be the largest
consumer and the producer of coal [1]. Therefore, it is of great importance to research into technologies
that contribute to the advancement in intelligent mine monitoring and safe mining practices.

One of the key components of intelligent mine monitoring is the video surveillance system since
visual information plays a key role in how a human perceives the world. Because digital images
usually require large storage, it is natural to think of transmitting images with high bandwidth
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channels, like cable networks. Although cable networks could potentially provide enough bandwidth,
they are inflexible in that the cable networks are fixed and have to expand as the working surface
expands. In favor of mobility, wireless networks are usually chosen as the information channel in mines.
However, the bandwidth can be limited because of relatively limited narrow spaces, harsh environment
diffraction, attenuation, and multi-path effect in underground mines. The problem can be especially
serious when disasters such as explosion and collapse occur [2]. Therefore, it is necessary to investigate
image compression methods in order to save the transmission bandwidth.

1.2. From Conventional Image Compressing to Compressed Sensing

There have been vast investigations into the field of image compression. Among the researches,
JPEG (Joint Photographic Experts Group) [3] has been quite popular and influential. JPEG mainly
employs discrete cosine transform (DCT) and entropy coding techniques to compress the images.
While the JPEG compression method has gained widespread popularity, it does introduce visible
artifacts including blurring, ringing and blocking [4]. JPEG2000 [5] is proposed forward to address
the problems in JPEG. JPEG2000 adopts 2D wavelet transform and arithmetic coding to achieve higher
compression efficiency.

Besides utilizing transforms and entropy coding techniques, a theory framework known as
compressed sensing (CS) [6–8] was proposed to overcome the limitation that a signal must be sampled
at the Nyquist sampling rate [9]. The CS theory has shed light on the problem of compression and
reconstruction. Optimization techniques such as total variation (TV) minimization [10] and approximate
message passing (AMP) [11] can be used in the recovery phase in the CS framework. TV minimization
for image denoising was first introduced in [12]. TV minimization takes the advantage that it can
better accurately preserve the edges or boundaries at certain compression ratios. In [13], the method
“total variation minimization by augmented Lagrangian and alternating direction algorithms” (TVAL3)
is proposed and has been used widely in image recovery problems. Comparisons in [14] suggest that the
TVAL3 solver turns out to be fast and efficient so long as the reconstruction parameters are sufficient
for a satisfying reconstruction. Meanwhile, based on the AMP [11] recovery algorithm, the D-AMP [15]
algorithm is proposed to enhance CS recovery. In the scheme of D-AMP, the existing rich knowledge
of signal denoiser is utilized to design the solver. Tests in [15] show that the D-AMP maintains a low
computational footprint. Compressed sensing- based techniques have been explored in real-life scenarios
like mine monitoring image compression [16] and landslide monitoring system [17]. The non-learning
compressed sensing methods do achieve some success, but they struggle to produce sound recoveries at
low compression ratios.

1.3. Data-driven Approaches

Due to the advancement of information technology, more data is within the reach of researchers.
The data-driven approaches have found their way into various fields including signal processing [18],
control systems [19–22] and especially vision tasks [23–27]. In particular, the deep learning-based
method has stood out among the data-driven approaches. This section explores the recent development
of deep learning-based image compression methods.

1.3.1. Convolution Neural Network based Image Compression

In more recent years, convolution neural networks (CNNs) has gained great attention due to the
improvement of computing devices. As for image compression utilizing CNN, it generally involves
designing image codecs with neural networks and constructing appropriate loss functions.

One genre of compression method combines the ideas of compressed sensing into CNN.
For instance, the network DeepInverse proposed in [28] uses fully connected layers to simulate the
compression process and stacks convolution layers for decompression. Back-propagation is applied to
train the networks. This idea is extended further by ReconNet [29] which uses more convolution layers
to attack the decompression problem. In [30], a deep residual reconstruction network is proposed
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to recover images more accurately. However, this series of methods are more likely to blur edges
in the recovered image especially at low compression ratios, according to the results reported by
their authors.

Another genre of CNN based compression methods utilize the semantic information in images,
since preserving semantic information will render the recovered image more eye-pleasing. Ballé et al.
introduce an end-to-end optimized CNN image compression network in [31]. The method is based on
non-linear coding rather than linear coding used by JPEG. One important contribution of [31] is that
the authors propose an method which simulates the quantizer in the training procedure to deal with
the problem of zero derivatives due to quantization. Li et al. point out that in [4] it is inappropriate to
allocate the same number of codes for each spatial position in an image. They propose the importance
map to guide the spatially variant bit allocation. To further compress the data, they introduce
the convolutional entropy encoder to compress the binary codes and the importance map. In [32],
the authors combine the deep-learning-based image semantic analysis into image compression as well.
Unlike [4] which focuses more on the edge of objects, the method in [32] emphasizes the semantic
analysis of the whole region. Results in their experiments show the method can improve the visual
quality under the same compression overhead. However, it can be quite complicated to adjust the
compression ratios of this genre of methods. Moreover, these methods are rarely applied at very low
compression ratios.

1.3.2. Recurrent Neural Network Based Image Compression

Unlike the feed-forward CNN, the recurrent neural network (RNN) is state-aware. The output
of an RNN is not only related to current input, but also the previous input. Lyu et al. propose to
combine the knowledge of block-sparsity recovery into RNN deep learning in [33]. Their method
acquires the spatial correlations between nonzero elements of block-sparse signals. It is applied to not
only images but also audio data. However, the method proposed in [33] requires the input data to
be sparse, which limits its compression capability. In [34], Toderici et al. combine the scaled-additive
coding framework into RNN-based image compression scheme. The highlight in [34] is that the
architectures proposed can provide variable compression rates during deployment without retraining
the network. In [35], Minnen et al. propose a spatially adaptive image compression framework with
quality-sensitive bit rate adaptation. However, though their method outperforms JPEG, it is still
inferior to JPEG2000 [36].

1.3.3. Generative Adversarial Network Based Image Compression

Generative adversarial network (GAN) is another promising deep learning method developed
during recent years. In the GAN scheme, a generator network and a discriminator network are
optimized simultaneously. The discriminator network is trained to determine whether a sample is
generated by the generator network, while the generator network needs to fool the discriminator
into wrong decisions. In regards of image compression utilizing GAN, Ripple and Bourdev in [37]
propose an architecture of autoencoder featuring pyramidal analysis, an adaptive coding module,
and regularization of the expected code length. It produces images 2.5 times smaller than JPEG and
JPEG2000, while achieving realtime performance using GPU. Jia et al. in [38] propose a light filed
image compression framework driven by a GAN-based sub-aperture image generation and a cascaded
hierarchical coding structure. Their method outperforms the state-of-the-art learning-based light field
image compression approach with on average 4.9% BD-rate [39] reductions. In [40], Agustsson et al.
propose a GAN-based framework targeting extremely low bitrate compression. Their method pushes
the bitrate below 0.1 bpp while still achieves eye-pleasing results.

1.4. The Objectives and the Organization of the Paper

Considering the demand of image compression at very low compression ratios in underground
mines, in this paper, we propose an image codec network based on CNN and a new loss function
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based on discrete wavelet transform. The new loss function is dedicated to preserving edges in the
images of underground mines. The remaining of the paper is organized as follows: Section 2 elaborates
the proposed method by discussing the network architecture and the construction of the loss function.
Section 3 provides experiments which demonstrate the performance and analysis of the proposed
method. Section 4 concludes the paper with further discussion about the proposed method.

2. The Proposed Image Compression Method

2.1. Overview

Before introducing the network architecture, it is necessary to understand the workflow of the
proposed compression method. As shown in Figure 1, a gray-scale image or one of the channels of an
RGB color image is taken as the input. We view the input image as a matrix x. For simplicity, we assume
the input image is square, which means x has the same number of rows and columns. The image
matrix x is “vectorized” into one vector xv by concatenating each row of the matrix. The encoder
module compresses xv to a feature vector y. Then the decoder module is applied to approximate x
using the feature vector y. The approximation of x is denoted as x̂. During training, both the recovered
image and the original image are fed into the loss function. Back-propagation will try to minimize the
value of loss by updating the weights in the encoder and decoder module.

Input image

Feature vector

Recovered imageVectorized image

Update

Vectorize
Encoder Decoder

Loss 
function

Figure 1. The workflow of the proposed method.

If there are N numbers in the image matrix x and M numbers in the feature vector y, then we
define the compression ratio r as

r = M/N. (1)

In short, the encoder module is responsible for compressing the image and determining the
compression ratio, while the decoder module takes care of the recovery process.

2.2. The Network Architecture

2.2.1. The Encoder Module

The weight matrix W of size M× N is multiplied by the “vectorized” image xv. Then the product
is added by the bias vector b to derive the feature vector y:

y = Wxv + b. (2)

In Equation (2), both the weight matrix W and the bias vector b are parameters to be learnt during
back-propagation. W is initialized using He initialization [41], while b is initialized with zeros.
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2.2.2. The Decoder Module

The network architecture of the decoder module is illustrated in Figure 2. The feature vector y
is first upsampled to y′ using nearest-neighbor interpolation [42]. The length of y′ is determined by
Equation (3):

length(y′) = d
√

Me2, (3)

where M is the length of vector y. The symbol dzemeans rounding number z to the nearest integer
more than or equal to z. The vector y′ is then reshaped into the initial feature map F using Equation (4):

F[i, j] = y′[(i− 1)× d
√

Me+ j], 1 ≤ i, j ≤ d
√

Me. (4)

Afterwards, the initial feature map F is convolved with 96 filters of size 3× 3. We empirically
add a batch-normalization [43] layer after the first convolution layer to accelerate training. Then the
feature maps go through several residual units. Some residual units are followed by nearest-neighbor
upsampling operation as in Figure 2. Finally, the feature maps are convolved with one filter of size
1× 1 to derive the recovered image x̂.

Residual 
unit (1)

Residual 
unit (2)

Residual 
unit (1)

...

Residual 
unit (2)

Upsample

Feature
vector Feature maps Feature maps

Feature mapsRecovered image

C
o
n
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o
lu

tio
n

B
a
tch

N
o
rm

96

C
o
n
v
o
lu

tio
n

1

Initial
feature map

Upsample

Upsample

Reshape

...

Upsample

...

Feature maps

...

Figure 2. The network architecture of the decoder module.

The residual units. The introduction of residual units is inspired by [44]. As depicted in Figure 3,
two types of residual units are used. Both types follow the two-branch connection pattern. The feature
maps go through the two branches and add up at the output summator. The upper branches of the two
types are identical. The lower branches differ in that residual unit (1) connects the input and the output
with a stack of layers, but residual unit (2) connects the input and the output directly. Each convolution
layer that appears in Figure 3 is composed of 96 filters of size 3× 3. After each convolution layer, there is
a batch-normalization layer [43]. Each batch-normalization layer is then followed by a Leaky ReLU
activation layer [45] if the batch-normalization layer is not directly connected to the output summator.

The nearest-neighbor upsampling operations. If the input image x is of size n× n, then the second,
third, and fourth upsampling operation in Figure 2 resize the feature maps to size 1

2 n × 1
2 n × 96,

3
4 n× 3

4 n× 96, and n× n× 96, respectively.
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Figure 3. The residual units: (a) residual unit (1); (b) residual unit (2). All convolution layers in the two
types of residual units employ filters of size 3× 3.

2.3. The Proposed Loss Function

2.3.1. Combination of Two Types of Loss Functions

Image recovering problems are conventionally seen as optimization problems that minimize the
l2 loss between the recovered and original image. However, from the perspective of image recovery
quality assessment, l2 metric does not reflect every aspect of signal fidelity [46]. Therefore, it is
necessary to combine other metrics that compensate for what is missing in l2 loss when constructing
the loss function.

In this section, we propose a metric termed discrete wavelet structural similarity (DW-SSIM) that
focuses the recovery of edges of the images. Our loss function is the weighted sum of DW-SSIM loss
and l2 loss:

L(x, x̂) = ∑
x∈Ω

(β1LF(x, x̂) + β2LS(x, x̂))

β1 + β2 = 1

0 ≤ β1, β2 ≤ 1,

(5)

where Ω represents a set of training image, LF(x, x̂) denotes the l2 loss, LS(x, x̂) denotes the DW-SSIM
loss, and β1 = 0.5 and β2 = 0.5 are weights. Both LF(x, x̂) and LS(x, x̂) are set up to fall in range [0, 1).
Section 2.3.2 will provide the expression of LF(x, x̂), while Section 2.3.3 will explain LS(x, x̂) in details.

2.3.2. l2 Loss

We propose to use Frobenius norm in LF(x, x̂) to derive the l2 loss:
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LF(x, x̂) =
‖x̂− x‖2

2
‖x‖2

2
. (6)

It is worth noting that the denominator of Equation (6) cannot be zero. However, since x is taken
from the natural images instead of artificial generated matrices, it is impossible for x to be a zero matrix.

2.3.3. Discrete Wavelet Similarity (DW-SSIM) and DW-SSIM Loss

Inspired by structural similarity (SSIM) [47] and complex-wavelet structure similarity
(CW-SSIM) [48], we propose to use two-dimensional discrete wavelet transform (2D-DWT) [49]
to analyze the similarity between the recovered image and the original image. The similarity is termed
DW-SSIM which stands for discrete-wavelet similarity.

2D-DWT. The 2D-DWT is able to decompose an image into different levels of subbands. The first
level is the decomposition of the original image. Each level is composed of four subband images which
can be referred to as low–low (LL), low–high (LH), high–low (HL) and high–high (HH). The LL image
at each level can be further decomposed into the next level of subbands. The LH image represents the
variation along the vertical direction, HL image the horizontal direction, and HH image the diagonal
direction [49]. The high-frequency LH, HL, and HH subband images altogether form the details of
the original image. As the decomposition level goes higher, the subband images become coarser,
thus details of different scales can be analyzed. Figure 4 provides an example of a three-level 2D-DWT
decomposition of an image.

(a)

LH HL HH

Level 1

LL

Level 2

Level 3

(b)

Figure 4. Illustration of 2D-discrete wavelet transform (DWT) image decomposition. (a) Original
image. (b) Three-level decomposition of the image. For clarity, every intermediate low–low (LL) image
is put in its place, yet DWT only preserves the LL image of the highest level.

DW-SSIM. We divide the calculation of DW-SSIM between the original image and the recovered
image into two stages. The first stage involves figuring out the local DW-SSIM, where a “window”
slides through the original image and the recovered image. 2D-DWT is performed on the image patches
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within the “window” to derive the decomposition. We define the local low frequency DW-SSIM SL,t
and high frequency DW-SSIM SH,t of the image patches as

SL,t(c(1), c(2)) =
2
∣∣∣∑u ∑v c(1)LL [u, v]c(2)LL [u, v]

∣∣∣+ K

∑u ∑v

∣∣∣c(1)LL [u, v]
∣∣∣2 + ∑u ∑v

∣∣∣c(2)LL [u, v]
∣∣∣2 + K

, (7)

SH,t(c(1), c(2)) =
1
J

J

∑
j=1

2
∣∣∣∑i ∑u ∑v c(1)i [u, v]c(2)i [u, v]

∣∣∣+ K

∑i ∑u ∑v

∣∣∣c(1)i [u, v]
∣∣∣2 + ∑i ∑u ∑v

∣∣∣c(2)i [u, v]
∣∣∣2 + K

, i ∈ {LHj, HLj, HHj}. (8)

In Equations (7) and (8), K is a small positive constant for arithmetic robustness and K is set to
0.01. c(1) and c(2) refer to the corresponding subband images of the original image patch and the
recovered image patch after 2D-DWT, respectively. The wavelet function we use is the Haar wavelet.
t is the patch index. J = 3 is the maximum decomposition level, and cLHj , cHLj , cHHj are high frequency
subband images at the j-th level.

To better understand Equation (7), one can ignore K, “vectorize” (as in Section 2.2.1) c into cv and
rewrite it as

SL,t(c(1), c(2)) = SL,t(c
(1)
v , c(2)v ) = 2

|c(1)v · c
(2)
v |

‖c(1)v ‖2
2 + ‖c

(2)
v ‖2

2

= 2
‖c(1)v ‖2‖c

(2)
v ‖2

‖c(1)v ‖2
2 + ‖c

(2)
v ‖2

2

∣∣∣∣∣ c(1)v · c
(2)
v

‖c(1)v ‖2‖c
(2)
v ‖2

∣∣∣∣∣
= 2

(
‖c(1)v ‖2

‖c(2)v ‖2

+
‖c(2)v ‖2

‖c(1)v ‖2

)−1

|cos (θ)| .

(9)

In Equation (9), the first term is determined by the energy of the subband images. It will reach

its maximum value 1 only if ‖c(1)v ‖2 = ‖c(2)v ‖2. In the second term, cos (θ) = c(1)v ·c
(2)
v

‖c(1)v ‖2‖c
(2)
v ‖2

is the cosine

similarity [50]. If c(1)v and c(2)v point to roughly the same direction, the cosine similarity will be close
to 1. However, the cosine function falls in range [−1, 1]. Therefore we are taking the absolute value
so that it falls in [0, 1]. The interpretation of Equation (8) is largely the same with that of Equation (7).
Equation (8) additionally averages the contribution of each level of subband to the high frequency
DW-SSIM in order to cope with the patterned noise in underground mine images. This can be better
understood through the discussion in Section 3.3.

In the second stage, a weighted sum of SH,t and SL,t is figured out to form the final DW-SSIM S:

S(x, x̂) =
1
T

T

∑
t=1

(γ1SL,t + γ2SH,t) , (10)

where T is the total number of image patches, γ1 and γ2 are parameters to adjust the weight of low
frequency subband and high frequency subbands. Since we want to emphasize high frequency details
such as edges and spikes in the image, we set γ1 = 0.2 and γ2 = 0.8.

The computation of DW-SSIM is summarized with Algorithm 1. The window length l in the
proposed method is set to 15. The stride s that the window will move in each iteration is set to 8.
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Algorithm 1: The procedure to compute discrete wavelet similarity (DW-SSIM).
Input: The original image img-ori and the recovered image img-rec of the same height H and

width W (H > 0, W > 0); the decomposition level J; the stride s that the window will
move in each iteration; the window length l; the weights γ1 and γ2 in Equation (10)

Output: The DW-SSIM similarity S between img-ori and img-rec

S← 0 ;
t← 0 ;
up← 0 ;
left← 0 ;
while up < H do

down← up + l;
while left < W do

t← t + 1;
right← left + l;
Get image patch patch-ori within the window [up, down, left, right ] from img-ori;
Get image patch patch-rec within the window [up, down, left, right ] from img-rec;
Derive c(1) by performing 2D-DWT on patch-ori;
Derive c(2) by performing 2D-DWT on patch-rec;
Derive SL,t from Equation (7);
Derive SH,t from Equation (8);
S← S + γ1SL,t + γ2SH,t;
left← left + s;

end
up← up + s;

end
S← S/t;
return S;

DW-SSIM loss. The DW-SSIM defined in Equation (10) falls in range (0, 1]. The more the original
image and the recovered image matches each other, the closer DW-SSIM S is to 1. However, the loss
should be near 0 if the model has done a perfect recovery. Moreover, the loss should fall in range [0, 1).
Therefore, we define the DW-SSIM loss as:

LS(x, x̂) = 1− S(x, x̂). (11)

2.4. Learning the Parameters

The encoder module and the decoder module can be trained in an end-to-end manner using the
proposed network architecture and the proposed loss function. Mini-batch gradient descent is used to
train the model with the batch size being 64. The Adam [51] optimizer is utilized as well. We set the
initial learning rate to 5× 10−4. The learning rate is multiplied by 0.2 when the loss is not going down
during training. The training is stopped if the learning rate drops below 1× 10−6.

3. Results

3.1. Overview

In order to generalize the recovery capability, the network of the proposed method is trained on
both images from video images we have collected in underground mines and images from the COCO
2014 dataset [52]. We build the training set by extracting the 100× 100 center-crop patches from the
images, and converting them to grayscale images.
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After the model is trained, test images (as in Figure 5) are passed to the model to perform the
compression and recovery. We test our method on both standard images of Barbara, Fingerprint,
and Lena to verify its effectiveness. In addition, we test the proposed method on images of coal cutter
and tunnel boring machine (TBM) which are from real underground mines to evaluate the performance
in the application-specific environment.

The recovery quality is quantitatively evaluated with peak-signal-to-noise ratio (PSNR) and
structural similarity (SSIM) [46]:

PSNR(x, x̂) = 10 log10
d2

1
N ∑N

i=1(x[i]− x̂[i])2
, (12)

SSIM(x, x̂) =

(
2µxµx̂ + C1

µ2
x + µ2

x̂ + C1

)
·
(

2σxσx̂ + C2

σ2
x + σ2

x̂ + C2

)
·
(

σxx̂ + C3

σxσx̂ + C3

)
. (13)

In Equation (12), d is the dynamic range of pixel intensities, and N is the number of pixels in the
image. In Equation (13), µx and µx̂ are means of x and x̂, and σ2

x and σ2
x̂ are variances of x and x̂. σxx̂ is

the cross correlation of x and x̂. The small positive constants C1 = C2 = C3 = 0.01 prevent numerical
instability of each term.

To verify the effectiveness of the proposed method, the quantitative evaluation at compression
ratios of 0.25, 0.20, 0.15, 0.10, 0.04 and 0.01 is carried out, with the compression ratio defined in
Equation (1). In addition, the proposed method is compared to the algorithms of D-AMP [15],
ReconNet [13] and TVAL3 [29] at different compression ratios. For simplicity, we do not re-implement
the algorithms but use the demo code provided by the authors’ websites instead.

Further, visual quality evaluation of recovery is presented at some specific compression ratios.
Finally, the robustness of the proposed method is tested by recovering images contaminated by

different levels of Gaussian noise.
The proposed method was implemented with Pytorch [53] and pytorch_wavelet package (https:

//github.com/fbcotter/pytorch_wavelets). The training process is carried out on Ubuntu 18.04.2,
with Nvidia Tesla K80 GPU and Intel Xeon CPU. More details about the implementation can be found
in the code which we have made public on the Internet (https://github.com/y0umu/ResCSNet).

(a) (b) (c) (d) (e)

Figure 5. The test images: (a) Barbara; (b) Fingerprint; (c) Lena; (d) Coal cutter; (e) Tunnel boring
machine (TBM).

3.2. Quantitative Evaluation

Tables 1 and 2 provide quantitative measurements of the proposed method and other algorithms
at different compression ratios. As the compression ratio r decreases, all the algorithms being compared
have PSNR and SSIM decreased. It can be interpreted from Table 1 that the proposed method is second
only to D-AMP at compression ratio r ≥ 0.20 for both standard test images and real underground
mine images. Yet the proposed method achieves the highest PSNR compared to other algorithms at
a compression ratio r ≤ 0.15. It should be also noted that for the recoveries of images of coal cutter
and TBM at compression ratios r ≤ 0.04, the proposed method has an edge over other algorithms by
a margin of at least 1.8 dB, indicating the potential of the application-specific usage in mines of the
proposed method.

https://github.com/fbcotter/pytorch_wavelets
https://github.com/fbcotter/pytorch_wavelets
https://github.com/y0umu/ResCSNet
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Table 1. Peak signal-to-noise ratio (PSNR) (in dB) comparison for different algorithms on test images.
r is the compression ratio.

Image Algorithm r = 0.25 r = 0.20 r = 0.15 r = 0.10 r = 0.04 r = 0.01

Barbara D-AMP 26.61 25.37 24.00 21.73 15.37 7.23
ReconNet 25.14 22.80 21.41 21.79 19.74 16.20

TVAL3 22.40 21.28 19.76 18.87 16.19 15.15
DR2-Net 25.43 21.64 19.86 20.99 18.34 16.08
Proposed 27.23 27.62 26.50 24.15 21.76 17.86

Fingerprint D-AMP 20.99 20.64 19.41 19.07 11.65 5.24
ReconNet 17.56 17.20 17.25 16.68 16.10 15.55

TVAL3 18.25 17.45 17.04 15.57 14.08 9.68
DR2-Net 18.30 16.57 15.98 17.16 16.26 15.20
Proposed 19.76 19.80 19.70 19.39 19.17 18.68

Lena D-AMP 30.28 28.40 26.57 24.38 11.71 6.57
ReconNet 23.83 22.65 21.58 20.32 18.50 15.90

TVAL3 21.26 20.68 19.51 17.81 16.37 15.17
DR2-Net 26.37 21.93 20.02 21.82 19.07 15.77
Proposed 28.82 29.01 28.44 25.48 24.08 19.47

Coal cutter D-AMP 21.81 21.86 20.90 19.10 14.36 8.14
ReconNet 18.78 18.35 17.67 17.24 16.26 14.52

TVAL3 12.52 10.94 9.87 8.17 10.48 12.50
DR2-Net 20.22 17.71 16.65 17.76 16.19 14.78
Proposed 21.78 21.84 21.40 20.05 18.08 17.34

TBM D-AMP 29.68 28.02 26.30 24.51 17.63 8.76
ReconNet 23.89 22.95 22.13 21.21 19.24 17.65

TVAL3 17.27 16.17 14.88 14.35 13.16 13.71
DR2-Net 25.65 22.11 20.87 22.04 19.50 17.53
Proposed 27.67 27.27 27.12 24.95 22.46 20.03

Table 2. SSIM comparison for different algorithms on test images. r is the compression ratio.

Image Algorithm r = 0.25 r = 0.20 r = 0.15 r = 0.10 r = 0.04 r = 0.01

Barbara D-AMP 0.8570 0.7781 0.7583 0.6189 0.0624 0.0129
ReconNet 0.7449 0.7037 0.6062 0.5506 0.3805 0.2226

TVAL3 0.7391 0.6834 0.6154 0.4692 0.3134 0.2281
DR2-Net 0.8165 0.7396 0.6774 0.6137 0.3947 0.2283
Proposed 0.8823 0.8950 0.8648 0.7832 0.6087 0.2859

Fingerprint D-AMP 0.5530 0.4063 0.2709 0.2288 0.1050 0.0029
ReconNet 0.2438 0.2245 0.1890 0.1871 0.1412 0.0970

TVAL3 0.3448 0.2884 0.2496 0.1948 0.1339 0.0774
DR2-Net 0.3030 0.2291 0.2115 0.2044 0.1484 0.0976
Proposed 0.3464 0.3742 0.3307 0.2871 0.2103 0.1498

Lena D-AMP 0.8867 0.8667 0.8174 0.7550 0.4343 0.0235
ReconNet 0.7412 0.7084 0.6436 0.5997 0.4558 0.3181

TVAL3 0.7420 0.7145 0.6596 0.5370 0.3735 0.2869
DR2-Net 0.8200 0.7771 0.7052 0.6597 0.5119 0.3352
Proposed 0.8930 0.9040 0.8879 0.8301 0.7437 0.4440

Coal cutter D-AMP 0.6854 0.6793 0.6376 0.5148 0.1735 0.0363
ReconNet 0.5470 0.4947 0.4377 0.4267 0.3371 0.2431

TVAL3 0.3830 0.3146 0.2574 0.1838 0.2110 0.1608
DR2-Net 0.6358 0.5482 0.4672 0.4899 0.3467 0.2634
Proposed 0.7320 0.7476 0.7049 0.6303 0.4923 0.3498

TBM D-AMP 0.8711 0.6793 0.8027 0.7187 0.2829 0.0634
ReconNet 0.7728 0.7319 0.6771 0.6522 0.5460 0.4318

TVAL3 0.5445 0.4868 0.5069 0.4127 0.3794 0.3372
DR2-Net 0.8184 0.7523 0.7171 0.6755 0.5714 0.4456
Proposed 0.8793 0.8764 0.8639 0.8058 0.6921 0.5359
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From Table 2, it can be learned that the proposed method achieves the highest SSIM at every
compression ratio for all the images except the Fingerprint image. Since the SSIM metric describes
structural similarity between the recovered and the original images, it can be drawn to the conclusion
that the proposed method preserves specific characteristics of the images better.

3.3. Visual Quality Evaluation

Figures 6 and 7 illustrate the recovered images of the proposed method and the algorithms being
compared. The green boxes zoom in the image patches within the red boxes so that the details can
be viewed clearly. As can be seen in most of the pictures, the proposed method recovers sharper
edges with less blurring compared to other algorithms. In Figure 7 where the compression ratio
is relatively low, the edges can still be discerned in the recovered image of the proposed method,
while other recoveries tend to be more blurred. Combined with Tables 1 and 2, it can be found that the
characteristic which the proposed method preserves is the edges in the image.

Figures 6 and 7 also demonstrate an interesting phenomenon. In the recovery of the Fingerprint
image, the proposed method fails to recover the details either at a compression ratio r = 0.15 or
r = 0.04. This is intended behavior and actually the proposed method deliberately “blurs” dense
patterns in the recovered images to cope with the noise which is often seen in underground mine
images. To explain the rationale behind this, suppose we take the image patches of size 15× 15 at the
same location from the recovered image and the original image of Fingerprint. Then 3-level 2D-DWT
is applied on both patches and it can be discovered that the level 2 or level 3 subband images are
almost identical. The major difference of the subbands lies in the level 1 decomposition. Recall that
in Equation (8) each level is given the same significance, the difference between the recovered and
original patch in level 1 decomposition is in effect “averaged out”. Therefore the DW-SSIM loss of the
original dense patterned patch and the recovered blurred patch will be small, leading the proposed
network to learn to blur the dense patterns.

3.4. Robustness against Noise

Since the tests in previous sections indicate that the proposed method takes an advantage when
the compression ratio is low, we then test the noise robustness of the proposed method at a compression
ratio r = 0.04 in this section. As depicted in Figures 8 and 9, Gaussian noise is added to the Lena and
TBM test images to simulate the dusty environment in underground mines. The noise is zero-mean.
The standard deviation σ of the noise is set to 5, 10, 15, 20, 25 and 30 to emulate different levels of noise.
The noise-contaminated images are compressed at ratio r = 0.04. Then the similarity of the recovered
images between the original test images is evaluated using the PSNR and SSIM measurement.
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Original Image D-AMP ReconNet TVAL3 DR2-Net Proposed

Barbara PSNR = 24.00 dB PSNR = 21.41 dB PSNR = 19.76 dB PSNR = 19.86 dB PSNR = 26.50 dB
SSIM = 0.7583 SSIM = 0.6062 SSIM = 0.6154 SSIM = 0.6774 SSIM = 0.8648

Fingerprint PSNR = 19.41 dB PSNR = 17.25 dB PSNR = 17.04 dB PSNR = 15.98 dB PSNR = 19.70 dB
SSIM = 0.2709 SSIM = 0.1890 SSIM = 0.2496 SSIM = 0.2115 SSIM = 0.3307

Lena PSNR = 26.57 dB PSNR = 21.58 dB PSNR = 19.51 dB PSNR = 20.02 dB PSNR = 28.44 dB
SSIM = 0.8174 SSIM = 0.6436 SSIM = 0.6596 SSIM = 0.7052 SSIM = 0.8879

Coal cutter PSNR = 20.90 dB PSNR = 17.67 dB PSNR = 9.87 dB PSNR = 16.65 dB PSNR = 21.40 dB
SSIM = 0.6376 SSIM = 0.4377 SSIM = 0.2574 SSIM = 0.4672 SSIM = 0.7049

TBM PSNR = 26.30 dB PSNR = 22.13 dB PSNR = 14.88 dB PSNR = 20.87 dB PSNR = 27.12 dB
SSIM = 0.8027 SSIM = 0.6771 SSIM = 0.5069 SSIM = 0.7171 SSIM = 0.8639

Figure 6. The recovered images at compression ratio r = 0.15.
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Original Image D-AMP ReconNet TVAL3 DR2-Net Proposed

Barbara PSNR = 15.37 dB PSNR = 19.74 dB PSNR = 16.19 dB PSNR = 18.34 dB PSNR = 21.76 dB
SSIM = 0.0624 SSIM = 0.3805 SSIM = 0.3134 SSIM = 0.3947 SSIM = 0.6087

Fingerprint PSNR = 11.65 dB PSNR = 16.10 dB PSNR = 14.08 dB PSNR = 16.26 dB PSNR = 19.17 dB
SSIM = 0.1050 SSIM = 0.1412 SSIM = 0.1339 SSIM = 0.1484 SSIM = 0.2103

Lena PSNR = 11.71 dB PSNR = 18.50 dB PSNR = 16.37 dB PSNR = 19.07 dB PSNR = 24.08 dB
SSIM = 0.4343 SSIM = 0.4558 SSIM = 0.3735 SSIM = 0.5119 SSIM = 0.7437

Coal cutter PSNR = 14.36 dB PSNR = 16.26 dB PSNR = 10.48 dB PSNR = 16.19 dB PSNR = 18.08 dB
SSIM = 0.1735 SSIM = 0.3371 SSIM = 0.2110 SSIM = 0.3467 SSIM = 0.4923

TBM PSNR = 17.63 dB PSNR = 19.24 dB PSNR = 13.16 dB PSNR = 19.50 dB PSNR = 22.46 dB
SSIM = 0.2829 SSIM = 0.5460 SSIM = 0.3794 SSIM = 0.5714 SSIM = 0.6921

Figure 7. The recovered images at compression ratio r = 0.04.
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Figure 8. Comparison of recoveries of the Lena image at the presence of noise. σ denotes the standard
deviation of the noise. The compression ratio r is 0.04.

As in Figure 8 and Figure 9, at all noise levels, fewer artifacts can be seen yet sharp edges are
preserved in the recovered images of the proposed method. Further, Figure 10 plots the PSNR and
SSIM curves as σ varies. The PSNR and SSIM of all algorithms drop as σ increases, yet PSNR and
SSIM of the proposed method are higher than those of the algorithms being compared. As σ grows
from 5 to 30, the decrease of PSNR and SSIM of the proposed method, which is no more than 1.6 dB
and 0.11, is the least among the algorithms. Therefore, it can be concluded that the proposed method
features noise robustness when the compression ratio is low.
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Figure 9. Comparison of recoveries of the TBM image at the presence of noise. σ denotes the standard
deviation of the noise. The compression ratio r is 0.04.
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Figure 10. Plots of PSNR and SSIM against σ for the recoveries of noise contaminated (a) Lena image,
(b) TBM image. The PSNR and SSIM are checked between the original test image (no noise added) and
the recovered images. The compression ratio r is 0.04.

4. Conclusions

In this paper, we propose a CNN based image codec network which acts as the basis for the
compression and recovery of images. We also propose a novel loss function that combines the
knowledge of discrete wavelet transform to attack the problem of edge blurring in the recovered
images. The proposed method is more suitable for the compression and recovery of underground
mine images in that:

• The proposed method recovers sharp edges in the images. For underground mines, edges in the
image are the key component to distinguish the foreground and background. By determining the
boundaries of miners and equipment, it is possible for further image analysis to carry out.

• The proposed method features noise robustness. By blurring the dense patterns, the proposed
method can filter out the noise especially seen in underground mines.

• Compared to other algorithms, the proposed method excels at low compression ratios. General
image compression methods tend to strike a balance between the compression ratio and the
recovery quality. They do not have to work at extremely low compression ratios as the transmission
bandwidth available is comparably high. However, the proposed method is designed to work at
low compression ratios to adapt to the harsh communication environment in underground mines.

In future work, we will combine other denoising techniques into the work presented in this paper
is an attempt to achieve noise robustness without blurring the patterned areas. The current design of
the DW-SSIM loss is not perfect in that the merits of cosine similarity is not fully preserved. Thus it
is worth further investigating into the design of loss function. We will also train the model on other
datasets in order to expand the application of the proposed method.
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