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Abstract: Currently, positioning, navigation, and timing information is becoming more and more
vital for both civil and military applications. Integration of the global navigation satellite system and
/inertial navigation system is the most popular solution for various carriers or vehicle positioning.
As is well-known, the global navigation satellite system positioning accuracy will degrade in
signal challenging environments. Under this condition, the integration system will fade to a
standalone inertial navigation system outputting navigation solutions. However, without outer
aiding, positioning errors of the inertial navigation system diverge quickly due to the noise contained
in the raw data of the inertial measurement unit. In particular, the micromechanics system inertial
measurement unit experiences more complex errors due to the manufacturing technology. To improve
the navigation accuracy of inertial navigation systems, one effective approach is to model the
raw signal noise and suppress it. Commonly, an inertial measurement unit is composed of three
gyroscopes and three accelerometers, among them, the gyroscopes play an important role in the
accuracy of the inertial navigation system’s navigation solutions. Motivated by this problem, in this
paper, an advanced deep recurrent neural network was employed and evaluated in noise modeling
of a micromechanics system gyroscope. Specifically, a deep long short term memory recurrent
neural network and a deep gated recurrent unit–recurrent neural network were combined together to
construct a two-layer recurrent neural network for noise modeling. In this method, the gyroscope data
were treated as a time series, and a real dataset from a micromechanics system inertial measurement
unit was employed in the experiments. The results showed that, compared to the two-layer long short
term memory, the three-axis attitude errors of the mixed long short term memory–gated recurrent
unit decreased by 7.8%, 20.0%, and 5.1%. When compared with the two-layer gated recurrent unit,
the proposed method showed 15.9%, 14.3%, and 10.5% improvement. These results supported a
positive conclusion on the performance of designed method, specifically, the mixed deep recurrent
neural networks outperformed than the two-layer gated recurrent unit and the two-layer long short
term memory recurrent neural networks.

Keywords: global navigation satellite system (GNSS); inertial navigation system (INS); long short
term memory (LSTM); gated recurrent unit (GRU); microelectronics system (MEMS)

1. Introduction

With the booming of location based services (LBS), positioning, navigation, and timing (PNT)
information is more essential than at any time in human history, since more and more smart devices
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relies on PNT information [1]. Currently, the global navigation satellite system (GNSS) has been the
most widely used PNT information provider and generator, due to its easy access, low cost, and
high accuracy. Broadly speaking, the GNSS refers to all satellite based navigation systems, including
global and regional systems. Among them, the USA Global Positioning System (GPS), China BeiDou
Navigation System (BDS), Europe Galileo Satellite Navigation System (Galileo), and the Russia Global
Navigation Satellite System (GLONASS) are capable of global coverage, and other regional systems,
for instance Japan’s Quasi-Zenith Satellite System (QZSS) and the Indian Regional Navigation Satellite
System (IRNSS), offer an augmentation of GPS for performance enhancement in specific regions [1–3].
Generally, their working principles are similar, and the details are as follows: (1) firstly, the satellites in
orbit broadcast navigation signals to the Earth, and the signals are modulated with information of the
satellites’ orbit description parameters and some other information; (2) secondly, the user receives the
broadcast signals and de-modulates the information, which can be employed to obtain the distance
between the user and satellites; (3) thirdly, with at least four satellites in view, the PNT information
can be determined precisely using a least-square algorithm or Kalman filter [1–5]. The advantages
of GNSS are summarized as: (1) GNSS is able to provide precise navigation solutions at low cost,
since a handheld chip receiver is cheap and sufficient for common applications; (2) GNSS is an
all-weather navigation system covering the earth, and its positioning accuracy does not diverge
over time. However, apart from these advantages, it also has some drawbacks limiting its further
application: (1) firstly, the satellites are far away from the Earth, thus, the signals are pretty weak
when they reach the Earth; (2) secondly, GNSS civil signal structure is open to the public, which makes
GNSS extremely sensitive to interference and spoofing; (3) thirdly, temporary signal blockages or
obstruction can also render the GNSS receiver unavailable to the satellite signals [6–10]. A standalone
GNSS is not sufficient to provide seamless PNT information, thus they are commonly integrated with
an inertial navigation system (INS) to provide ubiquitous navigation solutions [6–10]. While the GNSS
is unavailable, the INS outputs the positioning information for users during the signal outage.

INS is another navigation system capable of providing position, velocity, and attitude information.
An INS is constructed through processing raw data or signals from the inertial measurement unit (IMU).
Commonly, an IMU consists of three accelerometers and gyroscopes. Positioning errors divergence is
usually caused by the noise contained in raw signals from the gyroscopes and accelerometers. Recently,
due to the low cost and small size of the advanced micro-mechanics system (MEMS) manufacturing
technology, the MEMS IMU has become more popular in the community for developing low cost and
highly accurate GNSS/INS integrated navigation systems. However, as the MEMS IMU experiences
more complex errors and noises, it is of great significance to develop a noise modeling method for the
MEMS IMU [11–19], especially for improving positioning accuracy during GNSS signal outages.

In INS, gyroscopes play an important role in INS positioning accuracy, thus, past works have
mostly focused on modeling and suppressing the noise of the MEMS gyroscopes [11–19]. Various
methods have been proposed and evaluated in MEMS gyroscope noise analysis and modeling; and
basically, the methods can be classified into two approaches: statistical method and artificial intelligence
method. In the statistical methods, Allan Variance (AV) and Auto Regressive Moving Average (ARMA)
are the most popular. AV was first employed in MEMS IMU noise analysis and errors description in
2004 [19]. In the AV method, five basic parameters are introduced to describe the gyroscopes’ and
accelerometers’ noise, and the parameters are termed as: quantization noise, angle random walk, bias
instability, rate random walk, and rate ramp [19–24]. ARMA is another method for MEMS gyroscope
noise modeling and compensation, in which the raw data are treated as time series. Variants of
ARMA have also been proposed to furtherly improve the performance [25–29]. Moreover, artificial
intelligence methods, such as support vector machines (SVM) and neural networks (NN), have
also been employed in this application to obtain better de-noising performance [30–32]. The results
demonstrate the effectiveness of these methods in this application. However, both of the two solutions
have some drawbacks, the statistical method usually has fixed parameters, which are not sufficient for
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certain applications; the artificial methods usually have limited ability to learn the model, due to their
simple structures.

Recently, Deep Learning (DL) has gained a boom and performed excellently in various
applications including image processing, Nature Language Processing (NLP) and sequential signal
processing [30–37]. In aspects of time series processing, a recurrent neural network (RNN) was always
the most feasible selection [30–37]. A common RNN was not sufficient, thus, variants of RNN were
proposed for enhancing the performance. Among the variants, Long Short Term Memory (LSTM)
and the Gated Recurrent Unit (GRU) were most popular. LSTM-RNN and GRU-RNN both obtained
excellent performance in NLP [30–37]. In addition, in our previous paper, LSTM was employed and
compared in MEMS gyroscope de-noising [8]. With fixed or identical length of training examples,
LSTM had better training accuracy, but GRU had better convergence efficiency for its unique design [8].
Commonly, GRU was designed with less parameters than LSTM, and this made GRU coverage faster
and quickly than LSTM in training procedures.

Inspired by the multi-layer RNN design scheme, a new architecture combing LSTM and GRU
together was explored for MEMS gyroscope noise modeling in the paper. As aforementioned, since
the GRU and LSTM had different characteristics, it was meaningful to explore the mixed LSTM and
GRU in this application. Specifically, in this paper, two multi-layer RNNs with different architectures
(LSTM–GRU: first layer, LSTM; second layer, GRU. GRU–LSTM: first layer, GRU; second layer: LSTM)
of LSTM and GRU combination were investigated.

In this method, a GRU unit was substituted by a LSTM unit in a two layer GRU-RNN, thus, the
method was expected to combine the advantages from the LSTM and GRU. An MEMS IMU dataset
was collected to evaluate the proposed method, and compare the results with a common multi–layer
GRU-RNN and multi-layer LSTM-RNN. Firstly, LSTM–GRU and GRU–LSTM were compared to select
the proper structure for this application. Secondly, the new method was compared with a multi-layer
LSTM-RNN and multi-layer GRU-RNN for a more specific analysis of performance. Finally, the
standard deviation of the filtered signals and the attitude errors were presented. We thought the
contributions of this paper could be summarized as:

(1) It was the first time a mixed LSTM and GRU method has been applied to MEMS gyroscope noise
modeling, which might be an inspiration for applying DL in MEMS IMU de-noising.

(2) It was a bright idea to develop a mixed multi-layer RNN; detailed analysis of the multi-layer
LSTM, multi-layer GRU, LSTM–GRU, and GRU–LSTM were presented and compared,
which could provide valid reference while selecting proper methods for MEMS gyroscope
noise modeling.

The remainder of this paper is organized as follows: Section 2 describes the structures and the
equations of the employed RNN, including the LSTM unit, GRU unit, and the mixed LSTM and GRU.
Section 3 introduces the experiments, results, and analysis of these methods. The remaining sections
are the discussion, conclusion, acknowledgements, and the references.

2. Methods

In this section, the basic structure and detailed mathematical equations are listed. This section
is divided into four subsections. Section 2.1 is the basic introduction of the LSTM unit, Section 2.2 is
about the GRU, Section 2.3 presents the combination of LSTM and GRU.

2.1. Long Short Term Memory (LSTM)

As is well-known, LSTM is built using a unique ‘gate’ structure. Figure 1 shows the basic
components of a LSTM. ‘Forget,’ ‘Input,’ and ‘Output’ gates work cooperatively to accomplish the
function of a LSTM unit and control the information flow. As presented in Figure 1, from left to the
right, the first component is the ‘forget’ gate, and a sigmoid function σ(·) is employed in this gate to
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decide what information will be memorized from the previous state cell. The details of this procedure
are listed as the following Equation (1).

ft = σ
(

W f · [ht−1, xt] + b f

)
(1)

where, σ(·) is the sigmoid function, W f and b f are the parameters that will be determined after training,
ht−1 is the hidden state at time epoch t− 1, and xt is the input vector at time epoch t. Vector ft is the
output of the sigmoid function.

The inputs of the function are the hidden state from the previous LSTM unit and input vector.
Outputs of the functions are values ranging from 0 to 1, which correspond to each number in the cell
state from the previous LSTM unit. The values represent the forgetting degree of each number in the
previous cell state Ct−1. A value of ‘1’ means ‘completely keeping this,’ and, oppositely, a value of ‘0’
means ‘completely forgetting or excluding.

After the “forget“ gate, the following is the ‘input’ gate, which controls the input and decides
what part of the new information will be stored in the current cell state. The procedure is operated
using the following two functions, Equations (2) and (3). Equation (2) is a sigmoid function similar to
Equation (1). This function is employed to decide the updating degree of each number in the input
vector. Equation (3) is a tanh layer, which outputs a new cell state C̃t. Later, the new, hidden C̃t is
multiplied with the vector i, and then added to the current cell state.

it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

where σ(·) is a sigmoid function, Wi, bi, WC, and bC are the parameters will be determined through
training procedure, ht−1 is the hidden state at time t− 1, and xt is the input vector.

Thirdly, an ‘output’ gate is employed to decide and control the outputs. This ‘gate’ is also
composed of two functions: a sigmoid function and a tanh function. The details are listed as
Equations (4) and (5). The output of the sigmoid function is ot, which decides the outputs of the hidden
state. The cell state is then put through a tanh function and multiplied with the vector ot, deciding the
outputs of the LSTM unit.

ot = σ(Wo · [ht−1, xt] + bo) (4)

ht = ot ∗ tanh(Ct) (5)

where, Wo and bo are the parameters determined during the training, and Ct is the cell state at time t.

Electronics 2018, 7, x FOR PEER REVIEW  4 of 14 

 

[ ]( )1,t f t t fσ −= ⋅ +f W h x b  (1) 

Where, ( )σ ⋅  is the sigmoid function, fW and fb are the parameters that will be determined 
after training, 1t−h is the hidden state at time epoch 1t − , and tx is the input vector at time epoch t . 
Vector tf  is the output of the sigmoid function.  

The inputs of the function are the hidden state from the previous LSTM unit and input vector. 
Outputs of the functions are values ranging from 0 to 1, which correspond to each number in the 
cell state from the previous LSTM unit. The values represent the forgetting degree of each number 
in the previous cell state -1tC . A value of ‘1’ means ‘completely keeping this,’ and, oppositely, a 
value of ‘0’ means ‘completely forgetting or excluding. 

After the “forget“ gate, the following is the ‘input’ gate, which controls the input and decides 
what part of the new information will be stored in the current cell state. The procedure is operated 
using the following two functions, Equations (2) and (3). Equation (2) is a sigmoid function similar to 
Equation (1). This function is employed to decide the updating degree of each number in the input 
vector. Equation (3) is a tanh layer, which outputs a new cell state t

C . Later, the new, hidden t
C  is 

multiplied with the vector i , and then added to the current cell state.  

[ ]( )1,t i t t iσ −= ⋅ +i W h x b  (2) 

[ ]( )1tanh ,t C t t C−= ⋅ +C W h x b  (3) 

Where ( )σ ⋅  is a sigmoid function, iW , ib , CW , and Cb are the parameters will be determined 
through training procedure, 1t−h is the hidden state at time 1t − , and tx is the input vector.  

Thirdly, an ‘output’ gate is employed to decide and control the outputs. This ‘gate’ is also 
composed of two functions: a sigmoid function and a tanh function. The details are listed as 
Equations (4) and (5). The output of the sigmoid function is to , which decides the outputs of the 
hidden state. The cell state is then put through a tanh function and multiplied with the vector to , 
deciding the outputs of the LSTM unit. 

[ ]( )1,t o t t oσ −= ⋅ +o W h x b  (4) 

( )t ttanh= ∗th o C  (5) 

Where, oW and ob are the parameters determined during the training, and tC  is the cell state at 
time t . 

 
Figure 1. Basic structure of a long short term memory (LSTM) unit. 

2.2. Gated Recurrent Unit (GRU) 

Figure 1. Basic structure of a long short term memory (LSTM) unit.



Electronics 2019, 8, 181 5 of 14

2.2. Gated Recurrent Unit (GRU)

The gated recurrent unit is another popular variant of the common RNN, and was first proposed
by Cho in 2004 [32]. In a GRU, the information flow is also controlled and monitored based on a ‘gate’
structure, however, a GRU has no separate state cells. A GRU basic structure is shown in Figure 2.
In the figure, ht−1 is the hidden state at time t− 1, and ht is the hidden state at time epoch t. The
relationship between ht−1 and ht is as Equation (6):

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (6)

where h̃t is the candidate activation or hidden state, and the updating gate zt decides how much the
unit updates its hidden state, which is as Equation (7):

zt = σ(Wz · [ht−1, xt]) (7)

where σ(·) is a sigmoid function, and determining the degree of the new hidden state will be added to
the hidden state at time epoch t. In above, Wz is the parameters which will be determined after training.

In addition, the new or candidate hidden state h̃t calculation is as Equation (8):

h̃t = tanh(W · [rt ∗ ht−1, xt]) (8)

where rt is a set of reset gates, and when rt is close to 0, the unit acts as forgetting the previously
computed state. rt is calculated as:

rt = σ(Wr · [ht−1, xt]) (9)
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2.3. Mixed LSTM and GRU

As presented in Figures 1 and 2, the LSTM and GRU are just a single unit. A deep LSTM-RNN or
deep GRU-RNN is set up as Figure 3, the LSTM and GRU units are assembled and connected in the
time domain, and the parameters propagation is also illustrated in detail. The output is determined
by a LSTM or GRU sequence, thus, long term memory could also affect the current epoch output.
Furtherly, Figure 4 presents the mixed LSTM and GRU deep RNN structures, Figure 4a shows the
LSTM–GRU. In this structure, the cell state and hidden state are converted to the LSTM unit at the next
epoch. The hidden state is also converted to the parallel GRU unit, and the hidden state propagates
among the GRU units. In the GRU–LSTM structure (Figure 4b), the hidden state of GRU is converted
to the next GRU unit and the parallel LSTM unit. Since the GRU has no cell state, in the mixed
LSTM–GRU structure the cell state only propagates among the LSTM units.



Electronics 2019, 8, 181 6 of 14

Electronics 2018, 7, x FOR PEER REVIEW  6 of 14 

 

 

(a) 

 

(b) 

Figure 3. Deep LSTM and GRU with single layers. (a) A single layer LSTM; (b) a single layer GRU. 

 
(a) 

 

 
(b) 

Figure 4. Structures of the mixed LSTM and GRU. (a) LSTM–GRU; (b) GRU–LSTM. 

3. Results 

This section introduces the experimental setup and the results. Figure 5 presents the data 
collecting procedure; a MEMS IMU (MT Microsystem Company, Hubei, China) is employed, and 
the details are listed in Table 1 [33]. The MEMS IMU is same model that is employed in our 

Figure 3. Deep LSTM and GRU with single layers. (a) A single layer LSTM; (b) a single layer GRU.

Electronics 2018, 7, x FOR PEER REVIEW  6 of 14 

 

 

(a) 

 

(b) 

Figure 3. Deep LSTM and GRU with single layers. (a) A single layer LSTM; (b) a single layer GRU. 

 
(a) 

 

 
(b) 

Figure 4. Structures of the mixed LSTM and GRU. (a) LSTM–GRU; (b) GRU–LSTM. 

3. Results 

This section introduces the experimental setup and the results. Figure 5 presents the data 
collecting procedure; a MEMS IMU (MT Microsystem Company, Hubei, China) is employed, and 
the details are listed in Table 1 [33]. The MEMS IMU is same model that is employed in our 

Figure 4. Structures of the mixed LSTM and GRU. (a) LSTM–GRU; (b) GRU–LSTM.



Electronics 2019, 8, 181 7 of 14

3. Results

This section introduces the experimental setup and the results. Figure 5 presents the data collecting
procedure; a MEMS IMU (MT Microsystem Company, Hubei, China) is employed, and the details are
listed in Table 1 [33]. The MEMS IMU is same model that is employed in our previous paper, but they
are not from the same batch [8]. Thus, they have similar parameters, but are actually different after
precise calibration. This difference is caused by the MEMS manufacturing technology.

Figure 5 presents the data collecting equipment. The power supply delivers 12 V and 0.11 A while
the MEMS IMU is connected. A computer is also connected to the MEMS IMU through a USB 2.0 cable.
Control software is run by the computer to monitor the data collecting procedure, obtain, and store the
data. The sampling frequency is set at 200 Hz, and the collecting time length is approximately 600 s.

The remainder of this section is divided into three sections: Section 3.1 illustrates the formulae of
the gyroscope output data errors, the structure of the input, and output data for training and testing.
Section 3.2 details the investigation of the training data length on the proposed mixed LSTM and
GRU method, since the GRU had better performance with less training data length compared to the
LSTM. The aim of the Section 3.2 was to explore the performance of the mixed LSTM and GRU RNN,
as compared with multi-layer LSTM and multi-layer GRU. In Section 3.3, the performance of the new
method was compared with the two-layer LSTM and two-layer GRU to provide a detailed description
of the proposed method. Attitude errors are also presented for further comparison of these methods.

Table 1. Specifications of MSI3200 IMU.

MEMS IMU

Gyroscope

range ±300 ◦/s
Bias stability (1 σ) ≤10 ◦/h

Bias stability (Allan) ≤2 ◦/h
Angle random walk ≤10 ◦/

√
h

Accelerometer
range ±15 g

Bias stability (1 σ) 0.5 mg
Bias stability (Allan) 0.5 mg

Power consumption 1.5 W
Weight 250 g

Size 70 mm × 54 mm × 39 mm
Sampling rate 400 Hz
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3.1. Input Data and Training

As illustrated in Figure 5, the gyroscope dataset was collected. The bias was calculated using the
mean values of the collected data. After subtracting the bias, the processed dataset was labeled as
X = [x1, x2, x3, . . . , xN ]. The subscript N was termed as the number of input gyroscope samples. In the
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experiments, the dataset was divided into two parts: training part (Xtraining) and testing part (Xtesting).
The training dataset was employed to train the model, and the testing dataset was utilized to evaluate
the performance of the trained model. The input vector of the RNNs could be described as:

inputi =
[
xi, xi+1, . . . , xi+step

]
, i ∈

[
1, Ntraining − step

]
(10)

where inputi is the input vector of the RNNs and the variable step is the length of the inputi vector.
The output vector outputi is described by:

outputi =
[
xi+step+1

]
, i ∈

[
1, Ntraining − step

]
(11)

Equations (10) and (11) give the dataset for the training procedure, and the dataset in the testing
step was similar to that of training procedure.

RNNs were trained using the errors back propagation method (BP). Since the RNNs were designed
to process time series datasets, the BP method is termed BPTT (back-propagation through time) [36–38].

3.2. Comparison of LSTM–GRU and GRU–LSTM

As aforementioned in Section 2.3, there were two different architectures in mixed LSTM and GRU.
This section aimed to compare these two architectures in aspects of training loss and prediction accuracy.
The date lengths of the training dataset and testing dataset were 1000 and 100,000, respectively.
The learning rate was 0.01 for both, the hidden unit was 1, and the training epoch was 50. Figures 6–8
present the training loss comparison of the LSTM–GRU and GRU–LSTM in the three-axis MEMS
gyroscope de-noising. In addition, training loss means the errors between the predicted values and the
real signal values were not included in the training dataset.

In these figures (Figures 6–8), the red line represents the LSTM–GRU training loss, and the
blue line represents the GRU–LSTM results. Figure 6 shows the x axis MEMS gyroscope results; the
GRU–LSTM and LSTM–GRU both converged within 50 training epochs, but the GRU–LSTM delivered
a lower convergence speed with smaller training loss. In Figure 7, the GRU–LSTM and LSTM–GRU
seemed not to converge, while the LSTM–GRU had a better performance in reducing training loss.
For the z axis MEMS gyroscope, LSTM–GRU converged fast to a stable value, while the GRU–LSTM
did not converge within the set training epoch. We thought the difference was caused by the different
architectures between LSTM–GRU and GRU–LSTM. LSTM-RNN had more parameters, which needed
to be determined during the training procedure, When the LSTM was placed on the second layer,
it was not sufficient for LSTM unit training. Overall, the LSTM–GRU was more feasible for this
application, compared with the GRU–LSTM. Specifically, the prediction results are not presented, since
the GRU–LSTM was not well trained with the settings.
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3.3. Comparison of LSTM–GRU, Two-Layer LSTM, and Two-Layer GRU

This sub-section presents the comparison results from the two-layer LSTM, two-layer GRU,
and the mixed LSTM–GRU. Tables 2–4 show the training loss, standard deviation of the prediction
results, and standard deviation of the raw MEMS gyroscope signals. In particular, the structure of the
LSTM–GRU is shown in Figure 4. For the x axis gyroscope, the LSTM–GRU delivered the smallest
training loss, however, the standard deviations of the de-noised signals were minor. In aspects of the
y axis results, the training loss decreased by 12.2% and 14.7%, compared with that of the two-layer
LSTM and two-layer GRU. However, the standard deviation of the de-noised signals did not show a
significant improvement. For the z axis gyroscope results, the differences in the training loss between
the two-layer LSTM, two-layer GRU, and LSTM–GRU were trivial.

In addition, Figures 9–12 present the detailed training losses during the training procedure.
In these figures, the red line represents the training loss of the LSTM, the blue line shows the GRU
results, and the last green line shows the LSTM–GRU training loss. Specifically, in Figure 9, the
two-layer GRU and two-layer LSTM had better performance than the LSTM–GRU. For the LSTM–GRU,
the training loss remained almost unchanging, and it converged quickly from the 10th to the 20th
training epoch. In Figure 10, the LSTM–GRU outperformed the LSTM and GRU. Figures 11 and 12
show the z axis gyroscope de-noised results. Figure 12 shows a magnified picture of the results from
the 5th to the 20th epoch.

Basically, LSTM–GRU showed a slower convergence speed, especially the training epochs from 1
to 10. The phenomenon is obvious in Figures 9 and 11. However, in Figure 10, the training loss of the
LSTM–GRU was always below the two-layer LSTM and two-layer GRU. Moreover, the LSTM–GRU
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delivered smaller training loss than the two-layer LSTM and two layer GRU for the de-noised y axis
and z axis gyroscope signals.

Table 2. Standard deviation of gyroscope outputs (two-layer LSTM-RNN).

X (degree/s) Y (degree/s) Z (degree/s)

Training loss 0.00132 0.00534 0.00139
LSTM-RNN 0.060 0.037 0.025

Original signals 0.069 0.083 0.047

Table 3. Standard deviation of gyroscope outputs (two-layer GRU-RNN).

X (degree/s) Y (degree/s) Z (degree/s)

Training loss 0.00136 0.0055 0.00142
LSTM-RNN 0.059 0.034 0.026

Original signals 0.069 0.083 0.047

Table 4. Standard deviation of gyroscope outputs (mixed LSTM–GRU RNN).

X (degree/s) Y (degree/s) Z (degree/s)

Training loss 0.00127 0.00469 0.00134
LSTM-RNN 0.060 0.035 0.0246

Original signals 0.069 0.083 0.047
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Furthermore, Table 5 presents the attitude errors comparison of the three recurrent neural
networks (60 s). In Table 5, the three axes referred to pitch, roll, and yaw angles respectively. From the
results, three major conclusions were obtained:

(1) There was an obvious improvement in the attitude errors for all the three deep neural networks.
The two-layer LSTM performed 64.4%, 49.3%, and 53.3% improvements in attitude errors, the
two-layer GRU performed 56.3%, 54.5%, and 47.9% decreases in attitude errors, and the attitude
errors of LSTM–GRU decreased by 72.2%, 69.3%, and 58.4%.

(2) Specifically, for the x axis gyroscope data, LSTM–GRU had a large training loss, but the
LSTM–GRU still showed 7.8% and 15.9% improvements compared with the two-layer LSTM
and two-layer GRU. The minor difference of the standard deviation of the de-noised signals may
account for this.

Table 5. Attitude errors comparison.

X (degree) Y (degree) Z (degree)

two-layer LSTM 0.136 0.240 0.184
two-layer GRU 0.167 0.215 0.205

LSTM–GRU 0.104 0.145 0.164
Original signals 0.382 0.473 0.394
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4. Discussion

In this paper, the influence of data length on the training performance was not presented and
analyzed, as we were limited by the computer computation capacity. Longer training datasets might
improve the performance of the deep recurrent neural network.

In the experiment, only static data were employed to evaluate the proposed method; a trajectory
from field testing might be more feasible for sufficient testing.

As we were limited by computer capacity, only two-layer LSTM or GRU were employed and
implemented in this paper. It may be meaningful to explore the LSTM or GRU with more layers.

5. Conclusions

In this paper, a proposed artificial intelligence method was employed and evaluated in
MEMS three-axis gyroscope signal de-noising. Through the experiments, the following conclusions
were obtained:

(1) Two-layer LSTM, two-layer GRU, LSTM–GRU, and GRU–LSTM were effective for this application.
The two-layer LSTM performed a 64.4%, 49.3%, and 53.3% improvement in attitude errors, the
two-layer GRU performed a 56.3%, 49.3%, and 47.9% decrease in attitude errors, and the attitude
errors of LSTM–GRU decreased by 72.2%, 69.3%, and 58.4%;

(2) With a limited training dataset, LSTM–GRU outperformed GRU–LSTM; LSTM–GRU had a large
training loss, but the LSTM–GRU still showed an improvement compared with the two-layer
LSTM and two-layer GRU.

Future works might include: It might be meaningful to explore the LSTM and GRU with more
layers, which might give better performance; a dynamic trajectory could be employed to evaluate
the performance of the artificial intelligence in this application; as this paper deals only with MRMS
gyroscope de-noising, artificial intelligence could be integrated with the GNSS/INS method to improve
the accuracy during GNSS signal outages.
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