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Abstract: A new technique of local model-order reduction (MOR) in 3-D finite element method
(FEM) for frequency-domain electromagnetic analysis of waveguide components is proposed in this
paper. It resolves the problem of increasing solution time of the reduced-order system assembled
from macromodels created in the subdomains, into which an analyzed structure is partitioned. This
problem becomes particularly relevant for growing size and count of the macromodels, and when they
are cloned in multiple locations of the structures or are used repeatedly in a tuning and optimization
process. To significantly reduce the solution time, the diagonalized macromodels are created by
means of the simultaneous diagonalization and subsequently assembled in the global system. For
the resulting partially diagonal matrix, an efficient dedicated solver based on the Schur complement
technique is proposed. The employed MOR method preserves frequency independence of the
macromodels, which is essential for efficient diagonalization, as it can be performed once for the
whole analysis bandwidth. The numerical validation of the proposed procedures with respect to
accuracy and speed was carried out for varying size and count of macromodels. An exemplary finite
periodical waveguide structure was chosen to investigate the influence of macromodel cloning on
the resultant efficiency. The results show that the use of the diagonalized macromodels provided
a significant solution speedup without any loss of accuracy.

Keywords: finite element method; model-order reduction (MOR); macromodels; diagonalization;
computational electromagnetics; matrix algebra

1. Introduction

Waveguide components, such as filters, diplexers, power dividers/combiners, junctions,
resonators, etc. have always been used in microwave technique. Although being gradually replaced
by monolithic and hybrid integrated circuits, they are still indispensable in space applications or in
millimeter-wave bands due to their low losses and high power handling capabilities. Since waveguide
components have the size comparable to the wavelength and cannot be described by mens of currents
and voltages, they can be accurately characterized only in rigorous full-wave electromagnetic analysis.
The finite element method (FEM) is widely recognized for its ability to accurately solve frequency
domain electromagnetic problems governed by the Maxwell equations in structures having arbitrary
geometry, such as waveguide components [1]. It is also known that in complex 3-D domains, especially
comprising small geometric features, the discretization mesh may grow dramatically, leading to very
large systems of linear equations [2]. With rapidly increasing number of unknowns, they become
very costly to solve in terms of both memory demand and computational time. An extensive mesh
refinement is needed to conform the discretization mesh to both complex shapes and strong field
variations within the structure. However, the resulting number of unknowns, regarded as the degrees
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of freedom (DOF) or the states of the FEM model, exceeds largely the necessary number of states of
a model, which could be created to capture accordingly the electromagnetic behavior of the structure
with respect to its external ports only. Such a reduced-order black-box model, meant to surrogate
the original FEM problem, is constructed in a process called model-order reduction (MOR). It adopts
the approach, formalism and selected techniques used in MOR for the linear time-invariant systems
(LTI) [3] that have been widely employed in the analysis of large RLC networks (consisting of resistors,
inductors and capacitors) [4–6].

This paper deals with MOR performed locally in subregions, into which the analyzed structure
is partitioned. The resulting reduced-order models are called macromodels and this technique is
referred to as macromodeling [7,8]. The macromodels for each of the subregions are subsequently
combined in the final system representing the whole structure. The advantage of macromodeling
over the model-order reduction in the entire domain is that the matrix problems solved during the
generation of macromodels are smaller and the reduction orders can be decreased selectively in each
subdomain, providing an essential reduction of memory demand and computation time. In this
respect, macromodeling can be considered as a combination of MOR and domain decomposition [9]
and it shares the benefits of both.

One of the earliest works on macromodeling in FEM is presented in [10], in which macromodels,
also called macro-elements, are developed in selected regions only in order to cover small geometric
features requiring strong mesh refinement. Each macromodel represents a transfer functions between
the electric and magnetic fields on its boundary and is built in the form of general impedance matrix
(GIM), order reduced by means of PRIMA (passive reduced-order interconnect macromodeling
algorithm) [11]. A formulation of macromodels for fully segmented structures is proposed in [12]
as a technique called SFELP (segmentation approach/finite elements/Lanczos-Pade). The Pade
approximation via the Lanczos process (PVL) [13] is employed to build the macromodels defined
as general admittance matrices (GAM). Based on the same MOR framework, a method of direct
decomposition is developed in [14]. Although in the aforementioned methods the most time consuming
computations are performed once in an analysis bandwidth, allowing for fast frequency sweeping
(FFS), the GIM and GAM macromodels are frequency dependent. Consequently, when used in
eigenproblems, these methods require computationally demanding nonlinear eigensolvers.

The MOR employed in this paper is based on the technique that alleviates this problem. It is
proposed in [15] for 2-D problems and extended to a 3-D formulation in [16]. Unlike the reduction of
GIM and GAM, this MOR procedure is applied to a transfer function between fields on the boundary
of macromodel region and in its interior. Each macromodel is represented by a couple of matrices
related to the mass and stiffness matrix of the FEM system. The whole MOR process is performed for
just one expansion frequency and, what is more, does not introduce any frequency dependent terms in
the macromodel matrices. Besides facilitating the solution of eigenproblems, this approach enables
very efficient FFS, especially if a subsequent diagonalization of macromodels is intended, because it
can be carried out entirely outside the frequency loop of the analysis bandwidth.

A very important advantage of macromodeling arises when optimization is employed in a design
process. It involves a sequence of repeated simulations preceded by some structure modifications,
which are usually carried out within small subregions that may be represented by macromodels.
As presented in [14,17,18], in each step, only a single macromodel that is in the subregion being
currently modified needs to be re-generated, while the rest remain unchanged. Since the generation of
macromodels is the most costly part of the simulations, the total optimization time can be significantly
reduced. Regarding this as a temporal macromodel reuse, one may also consider a similarly beneficial
spatial reuse. That strategy is called macromodel cloning and is proposed in [10]. If the analyzed
structure comprises repeated subregions of the same geometry and materials, the macromodels need
to be created only once for each group of them and they will be multiply copied in the final system.

The macromodels are represented by dense matrices being significantly smaller than their
corresponding sparse FEM matrix blocks. Therefore, the overall time of the solution obtained by



Electronics 2019, 8, 260 3 of 23

means of MOR is much shorter than in the original FEM problem, so that most of the computation
cost is shifted to the preparation of macromodels itself. However, the residual solution cost of the final
reduced-order system becomes significant in larger structures with increasing number of macromodels.
Moreover, if the subdomains are large, the macromodels require higher reduction orders, which
immediately increases their size and additionally slows down the solution. Consequently, the solution
time becomes comparable to the reduction time and may even largely exceed it, particularly if any
form of macromodel reuse is applied, as in the case of cloning or optimization. Another situation
when the solution time of the reduced system may be comparable to the time of MOR is an automatic
selection of reduction order q [19], in which the system is solved repeatedly at each try of increasing
value of q.

To mitigate these effects, a new approach to the model-order reduction in FEM problems is
proposed in this paper, which leads to the final system with a diagonal matrix, and thus significantly
accelerates its solution. The existing diagonalization procedures are not satisfactory for the reasons
explained below. A direct diagonalization of the original global FEM system involving orthogonal
decomposition of large sparse matrices is possible but practically useless, because it would produce
intermediate matrices that are equally large but dense, causing huge memory demand. Among the
techniques to overcome this problem, the mass lumping [20] is most popular, but originally restricted
to FEM in the time domain. As performed element-wise, the diagonalization is very efficient but
limited to the mass matrix only. This is sufficient, however, in the time domain, because it is only
the mass matrix that needs to be solved at every time step. An attempt to adopt the mass lumping
technique in the frequency domain has been very recently reported in [21], where the time-domain
FEM formulation with diagonalized mass matrix is transformed directly to the frequency domain only
in order to improve convergence of the iterative solution to the FEM system by efficiently limiting its
spectral radius to less than one. It results in good convergence speedup and accuracy, but has been
demonstrated for a very narrow bandwidth, limited to less than 1% only.

The novel procedure proposed in this paper is intended for direct solution of the system of
equations which is more suitable for the reduced system consisting of small and dense matrices.
It brings a substantial advantage of diagonalization to the frequency-domain FEM analysis by adopting
the simultaneous diagonalization of mass and stiffness matrix in the model-order reduction framework.
To maintain the diagonalization cost as low as possible, it is carried out in the subdomains after
the local MOR. As the macromodel matrices are already dense and small, the problem of excess
memory demand does not occur. Owing to the accordingly chosen MOR technique, they are also
frequency independent, and therefore the diagonalization is needed only once in the whole bandwidth.
The resulting diagonalized macromodels are combined in the final system in a way that allows for
cloning. Although only a part of the resulting system matrix becomes diagonal, it dominates so
that a dedicated solver, efficiently adopting the Schur complement technique, is proposed to achieve
additional solution speedup. Apart of the above mentioned main novelty aspects, a new simultaneous
diagonalization algorithm, alternative to that of Laub [22], is proposed. Moreover, three different
methods of matrix orthogonal decomposition are considered for the simultaneous diagonalization and
compared to propose an optimal combination of them with respect to diagonalization time.

The outline of the rest of the paper, which also reflects the sequence of steps in the proposed
procedure, is as follows. Section 2 starts with a brief formulation of FEM for the wave equation as
a background of the presented analysis. Then, the procedure of domain partitioning is presented
in the perspective of the subsequent MOR and diagonalization in separate subdomains. The final
assembly of the global system is not included, as it will be done only after diagonalization. Section
3 presents the port compression and MOR techniques adopted from Fotyga et al. [16] in such a way
that the macromodels diagonalized in the next step will be disconnected and thus ready for cloning.
In the end of this section, it is depicted how the diagonalized macromodels are created by means of the
simultaneous diagonalization algorithms and subsequently assembled in the global reduced system.
A dedicated solver based on the Schur complement technique for the resulting partially diagonal
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system is also proposed. The results of numerical validation with respect to accuracy and speed are
presented and discussed in Section 4.

2. Finite Element Method in Partitioned Domain

2.1. FEM Formulation

Consider a waveguide component being a source-free arbitrarily shaped region Ω bounded by
a surface Γ. Ω is loaded with lossless media of arbitrary distribution of electric permittivity ε and
magnetic permeability µ. The time-harmonic electric and magnetic fields ~E and ~H at angular frequency
ω in Ω are governed by the Maxwell equations:

∇× ~E = −jωµ~H, ∇× ~H = jωε~E (1)

For the finite element method used in the presented analysis, they are transformed to the vector
wave equation with respect to ~E:

∇× 1
µ
∇× ~E−ω2ε~E = 0. (2)

In the boundary-value problems with excitations, which is the case in this analysis, Γ comprises
NPn input/output ports denoted as Pn. They are referred to as external ports, on which the fields
related to excitations and loads are defined as the boundary conditions. On the remaining parts of Γ,
denoted as Γ0, perfect electric conductor (PEC) is assumed.

In the finite element method based on Galerkin approach, the following weak formulation is
derived from Equation (2) and the boundary condition in the external ports [12,23]:

∫∫∫
Ω
(∇× ~w · 1

µr
∇× ~E− k2

0~w · εr~E)dV = jωµ0

NPn

∑
n=1

∫∫
Pn

~w · (~nn × ~Htn)dS, (3)

where ~nn is a normal vector on the nth port, ~Htn is the distribution of the tangential magnetic field
on the nth port, µr, εr are relative permeability and permittivity, k0 = ω

√
µ0ε0 is the wavenumber,

and ~w is a vector testing function. The right-hand side represents excitation of the analyzed structure.
Distribution of the electric field ~E is sought as an approximate solution to Equation (3) in a finite
dimensional subspace of vector basis functions ~wi. The testing functions ~w are chosen to be the same as
these basis functions, and thus the electric field ~E is approximated by the following general expansion:

~E =
N

∑
i=1

ei~wi, (4)

where ei are the coefficients being the unknowns in the linear system of N equations to which the FEM
procedure eventually leads.

The basis functions ~wi are defined piecewise in finite elements, into which the entire domain is
divided. Usually tetrahedrons are used as they are the simplest shapes able to approximate arbitrarily
complex 3-D geometries. Further steps of the FEM procedure begin thus with discretization of Ω
by means of a 3-D tetrahedral mesh. At the same time, a 2-D triangular mesh is also defined as
a collection of faces of the tetrahedrons adjacent to all surfaces present in the domain. They include
the surfaces of all physical features and also any fictitious boundaries between subdomains into
which Ω will be partitioned. The first-order finite elements are assumed in this analysis, however, the
proposed technique with diagonalized macromodels is also applicable to higher-order FEM. In a single
tetrahedron, six first-order vector basis functions are associated with the six edges and are defined as:

~wm = Lm(αi∇αj − αj∇αi), (5)
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where m is an edge number, αi and αj are the simplex coordinates associated with nodes i and j of the
edge m, and Lm is the length of this edge [24]. Equation (4) splits into separate tetrahedrons Ω(t) and
3-D electric field vectors in each of their volumes are approximated as:

~E(t) =
6

∑
m=1

em~wm. (6)

This expansion can also represent 2-D distribution of the tangential field components on surfaces
if three-element subsets of ~wm for the corresponding triangular faces of tetrahedrons are considered.

Substituting the field expansion in Equation (6) into Equation (3) yields the set of linear systems
of equations for a collection of tetrahedrons Ω(t), which can be rewritten in matrix form:

(K(t) − k2
0M(t))e = b(t), (7)

where e is the element vector of unknown coefficients em in Equation (6). The element stiffness and
mass matrices K(t) and M(t), respectively, and the right-hand side vector of excitation b(t) are given by
the following integrals:

K(t)
ij =

1
µr

∫∫∫
Ω(t)
∇× ~wi · ∇ × ~wj dV,

M(t)
ij = εr

∫∫∫
Ω(t)

~wi · ~wj dV, (8)

b(t)i = jωµ0

∫∫
S(t)

n

~wi · (~n× ~Htn) dS

where i, j = 1, 2, . . . 6 are the matrix indices corresponding to tetrahedron edges, ~wi, ~wj are the testing

functions as defined in Equation (5),~n is a unit normal vector, and S(t)
n are the faces of tetrahedrons that

belong to the external port Pn in which the distribution of tangential magnetic vector ~Htn is defined.
For the elements not adjoining any of the external ports, b(t) = 0.

2.2. Domain Partitioning

To create M macromodels in the process of model-order reduction, Ω is divided into M
non-overlapping subdomains Ωk, as shown in Figure 1a for M = 3. They are separated by the interface
surfaces Pm, which we call internal ports. Although Pm are internal in Ω, their edges may connect to
Γ0. The internal ports are not physical boundaries but only fictitious geometrical object introduced in
order to partition the domain. Therefore, the only boundary conditions to be considered on the Pm

express the field continuity, exactly as it is on the interfaces between individual finite elements.

P2

W1 W3W2

P1 P3

(a) (b)

P4 P2

W3W2W1

P1 P32P31 P42 P43

Figure 1. A source-free domain Ω with external ports P1, P2 and internal ports P3, P4 interfacing
subdomains Ω1, Ω2, Ω3 (a). Partitioning of Ω into separate subdomains bounded by split internal ports
P3 → {P31, P32} and P4 → {P42, P43} (b).

The mesh can be generated according to two different strategies: in a single run for the whole
structure or separately in the subregions. In the former, the triangular mesh on the internal ports
as well as the FEM basis functions on their tetrahedron faces are naturally shared by the adjacent
subdomains. Consequently, the corresponding expansion coefficients of the fields are the same on Pm,
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which guarantees continuity of the tangential electric vectors ~Et. In addition, the normal components
of the electric induction ~Dn = ε~En remain continuous on the internal ports, which is due to the natural
boundary conditions at the interfaces between tetrahedrons inherently present in the FEM weak
formulation. To proceed with FEM and MOR separately in each subdomain, the internal ports have
to be split, as shown in Figure 1b, in such a way that two identical copies of the surface mesh are
assigned to the disconnected subdomains. Despite this, the aforementioned boundary conditions for
the continuity of the fields will be fulfilled also on the separated interfaces without the need to impose
them explicitly, because the internal ports will eventually reconnect during the assembly of the final
system of equations.

The second meshing approach is preferred when cloning of macromodels is intended.
The subdomains are separated at the internal ports before mesh generation. However, entirely
independent 3-D meshing in each subregion would result in non-conforming 2-D meshes to meet
when the ports are reconnected. To avoid such situations and have the boundary conditions fulfilled as
straightforwardly as in the first strategy, the procedure is modified and divided into two steps. In the
initial step, only 2-D mesh is created on all surfaces in the entire structure. If needed, the meshes on the
selected internal ports are copied into the places where the cloned macromodels are to be embedded
later. The mesh on the internal ports is duplicated to build separate boundary of 2-D mesh enclosing
each unique subregion. The other subregions are regarded as non-unique, and do not require 3-D
meshing, because the macromodels will be cloned into them. Next, these surface meshes are used to
initiate generation of 3-D mesh in the enclosed volumes. This procedure can be easily applied using
the advancing front technique of mesh generation implemented in the NETGEN [25] software that is
chosen for this analysis.

2.3. Local Matrix Assembly

The element matrices and vectors in Equation (7) are assembled over each disconnected
subdomain Ωk separately, leading to the following M local FEM matrix equations with large
sparse matrices:

(Kk − k2
0Mk)ek = bk (9)

for k = 1, 2, . . . M. The term local refers here to the subdomains, not just individual finite elements,
and is used to oppose to a global system of equations in standard FEM procedure for an unpartitioned
domain. Although not necessary in the proposed macromodeling technique, the FEM global system
can be assembled from Equation (9) as well.

To proceed with subsequent model-order reduction, the local FEM matrices in Equation (9) are
reordered in such a way that the unknowns associated with all subdomain’s port are grouped together.
As a result, the matrices in Equation (9) split into the following blocks:

 KPk ST
Kk

SKk KΩk

− k2
0

 MPk ST
Mk

SMk MΩk


 ·

 ePk

eΩk

 =

 bk

0

 . (10)

The matrices KPk, SKk, MPk, and SMk, being a common representation of all ports on the boundary
of Ωk (∂Ωk) combined together, split further into the blocks corresponding to each separate port Pik in
the following way:

KPk = diag(. . . , KPik, . . .), MPk = diag(. . . , MPik, . . .),
SKk = [· · · SKik · · · ], SMk = [· · · SMik · · · ], for i : Pik ⊂ ∂Ωk,

(11)

where the indices ik correspond to a port whose global number is i and which belongs to the boundary
∂Ωk. The port numbers i represent a consecutive global numbering of the external and internal ports Pn

and Pm such that i ∈ {n, m}, where n = 1, 2, . . . P0 and m = P0+1, . . . , P. For i = m, the internal port Pm
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splits into two ports Pik1 and Pik2 associated with the adjacent subdomains Ωk1 and Ωk2, respectively.
For i = n, an external port Pn remains assigned to a single subdomain so that Pik ≡ Pn. Using the
definitions of matrix blocks in Equation (11), Equation (10) can be rewritten in the final form:


. . . 0 0

...
0 KPik 0 ST

Kik

0 0
. . .

...
. . . SKik . . . KΩk

− k2
0


. . . 0 0

...
0 MPik 0 ST

Mik

0 0
. . .

...
. . . SMik . . . MΩk



 ·


...
ePik

...
eΩk

 =


...

bnk
...
0

 . (12)

Let us illustrate this procedure with the exemplary domain partitioning scheme presented in
Figure 1a. There are two external ports Pn ∈ {P1, P2} and two internal ports Pm ∈ {P3, P4}, which
connect three subdomains. Split ports Pm on the separated subdomains are shown in Figure 1b.
The mass matrices Kk derived for each subdomain take the following form:

K1 =


KP11 0 ST

K11

0 KP31 ST
K31

SK11 SK31 KΩ1

 K2 =


KP32 0 ST

K32

0 KP42 ST
K42

SK32 SK42 KΩ2

 K3 =


KP22 0 ST

K22

0 KP43 ST
K43

SK22 SK43 KΩ3

 (13)

For the stiffness matrices Mk, the above formulas apply if the letter K is replaced by M.

3. Model-Order Reduction with Diagonalized Macromodels

The entire model-order reduction process is performed locally in each subdomain. As a result,
the reduced-order macromodels are created to replace the corresponding matrix blocks in the local
FEM system of equations in Equation (12). Consider a single subdomain, as defined in Section 2.2,
enclosed by physical boundary Γ0 and the ports, both external and internal. For the sake of clarity,
we temporarily, until the final matrix assembly, omit the global numbering, and thus any subdomain
under consideration is now denoted as Ω instead of Ωk. The local ports in each Ω is denoted as Pl , for
l = 1, 2, . . . L, while P represents a collection of all them. In this perspective, Equation (10) from which
subscripts k are removed is a starting point for the presented procedure.

3.1. Port Compression

The size of a macromodel and also the computational cost of MOR procedure grow with the
size of its all ports p counted as their overall number of degrees of freedom (DOF). It is, therefore,
desirable to decrease p before the subsequent steps of MOR. A geometrical reduction of DOF by local
mesh coarsening at the ports is presented in [15] for 2-D problems. That technique is simple but
inefficient in 3-D FEM analysis, for which a different approach based on orthogonal projection, referred
to as port compression, is proposed in [16]. The 2-D FEM basis on each port surface is projected onto
a new subspace defined by a basis of orthogonal functions Fl . As they span entire port surface, much
fewer functions in Fl are needed than those in FEM basisWl . To simplify definition of the new basis
functions, the ports are selected as surfaces conforming to basic coordinate systems, such as Cartesian,
cylindrical or spherical. Each port may use its own 2-D local coordinates (q1, q2) being a subset of
a locally chosen 3-D system.

The tangential electric vector in port Pl is expanded into the series of the orthogonal functions
from the basis Fl = {~f1, . . . , ~f j, . . .}. For ~f j ∈ {~i1 f1j(q1, q2), ~i2 f2j(q1, q2)}, where (~i1,~i2) are unit
vectors of the coordinates (q1, q2), j = 1, . . . , N′Pl and N′Pl = N1 + N2, this expansion is as follows:

~E′Pl(q1, q2) =
N1

∑
i=1

~i1 e1i f1i(q1, q2) +
N2

∑
i=1

~i2 e2i f2i(q1, q2) =
[
. . . ~f j . . .

]
e′Pl , (14)
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where e′Pl is the vector of coefficients {e1i, e2i} corresponding to DOF in the compressed port
Pl . Similarly, the tangential fields have also been expanded by means of the FEM basis
Wl = {~w1, . . . , ~wi, . . .}, where ~wi are 2-D FEM basis functions on the surface of port Pl as defined
in Equation (5), i = 1, . . . , NPl and vector ePl represents DOF in the original FEM port:

~EPl =
NPl

∑
i=1

ei ~wi = [. . . ~wi . . .] ePl . (15)

Then, the port compression can be written as the following projection:

ePl −→ e′Pl such that e′Pl = FT
l ePl . (16)

The projection basis Fl is a NPl ×N′Pl matrix of N′Pl functions in the continuous basisFl discretized
on NPl-element FEM basisWl :

Fl =
[
· · · fj · · ·

]
, fj = M−1

Pl uj, uij =
∫∫

Pl

~wi · ~f j dS. (17)

MPl is a local mass matrix defined as MPk in Equations (8) and (11). For a collection of all ports P
on ∂Ω, the projection in Equation (16) reads as:

eP =
[
· · · eT

Pl · · ·
]T
−→ e′P =

[
· · · e′TPl · · ·

]T

e′P = FT eP, F =
[
· · · FT

l · · ·
]T

(18)

and is applied to all matrix blocks in Equation (10), yielding the system with compressed ports P:
 K′P S′TK

S′K KΩ

− k2
0

 M′P S′TM

S′M MΩ



 e′P

eΩ

 =

 b′P

0

 , (19)

where
K′P = FTKPF, M′P = FTMPF, S′K = FTSK, S′M = FTSM. (20)

Although subscripts k have been omitted for the sake of clarity, this equation applies to each
separate subdomain Ωk. The overall number of DOF in the original and compressed ports of a single
subdomain is NP = ∑l NPl and p = N′P = ∑l N′Pl , respectively, where N′P � NP. Assuming that each
subdomain has kp ports compressed to p0 DOF each, p = kp · p0.

On the ports whose surfaces are constrained by physical boundaries of the structure, the
trigonometric expansion with sine and cosine functions is possible as Equation (14). A typical example
of such case is the cross section of a rectangular waveguide where Equation (14) is equivalent to the
modal expansion by means of p0 waveguide modes. The sine and cosine functions are also a natural
choice on a cylinder or sphere along full turns of angular coordinates. For the surfaces without
prescribed boundary conditions, such as walls of a floating cube box, one may resort to Lagrange
polynomials. More details on the port compression by means of the aforementioned expansions are
in [16,26].

3.2. Model-Order Reduction

The FEM model-order reduction procedure used in the proposed macromodeling technique was
previously proposed by Fotyga et al. [15] and Fotyga et al. [16] for 2-D and 3-D problems, respectively.
It utilizes the techniques developed for the second-order linear time-invariant systems (LTI) [3], where
the response is defined as a matrix transfer function H(s) between inputs and internal states in the
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Laplace domain. To adopt this approach in FEM for the local MOR, this transfer function is derived
from the system in Equation (19) for each subdomain as follows:(

KΩ − k2
0MΩ

)
eΩ = −

(
S′K − k2

0S′M
)

e′P

H(s) = −
(

KΩ + s2MΩ

)−1
s
(

s−1 S′K + sS′M
)

, eΩ = H(s)e′P (21)

for the complex frequency parameter s = jk0 = jω/c.
The objective of MOR is to create the reduced-order model representing the following

transfer function:

H̃(s) = −
(

K̃Ω + s2M̃Ω

)−1
s
(

s−1 S̃′K + sS̃′M
)

, ẽΩ = H̃(s)e′P. (22)

H̃(s) is supposed to approximate the transfer function in Equation (21) in a limited frequency
range in order to capture the behavior of the fields in Ω with respect to its ports P by significantly
fewer unknowns ẽΩ. To this end, the original vector of unknowns eΩ, whose length is NΩ, is projected
onto a new ÑΩ-dimensional solution space by means of an appropriately constructed basis V being
a NΩ × ÑΩ matrix of orthonormal vectors such that ÑΩ � NΩ. The ÑΩ × ÑΩ matrices K̃Ω and M̃Ω
become dense but are significantly smaller than KΩ and MΩ. They are regarded as the macromodel,
which represents the transfer function H̃(s) when considered together with their respective coupling
matrices S̃′K and S̃′M. The macromodel size is denoted as Nm ≡ ÑΩ. Equation (22) is transformed back
to the matrix form (Equation (19)) yielding the reduced system:

 K′P S̃′
T
K

S̃′K K̃Ω

− k2
0

 M′P S̃′
T
M

S̃′M M̃Ω



 e′P

ẽΩ

 =

 b′P

0

 , (23)

where the projection by means of V is performed as:

K̃Ω = VTKΩV, M̃Ω = VTMΩV, S̃′K = VTS′K, S̃′M = VTS′M, ẽΩ = VTeΩ. (24)

To generate the reduction basis V, we employ the Efficient Nodal Order Reduction (ENOR)
algorithm proposed in [27] for multiport RLC circuits, which refers to the transfer function of the form:

HE(s) =
(

Γ + sG + s2C
)−1

sB. (25)

This algorithm can by applied to the FEM transfer function in Equation (21) for the following
substitution: Γ = KΩ, C = MΩ, G = 0, B = −(s−1 S′K + sS′M).

The columns in V are combined as first q block moments of eΩ expanded around a frequency
s0, each of them being a NΩ × p matrix. By increasing the reduction order q, the accuracy of the
macromodel improves but it is achieved at the price of higher numerical cost of its generation and
larger macromodel size Nm = qp. Higher orders q are needed for larger subregion and stronger field
variations, which is usually due to discontinuities and small geometric features within the subdomain.

As the projection basis, V is computed for a single expansion frequency s = s0; it is
frequency independent and valid within a certain bandwidth depending on the required accuracy.
The projection in Equation (24) is also performed only once in this bandwidth and does not introduce
any frequency dependent terms in the macromodel matrices. For this reason, and since they are very
small, the high cost of macromodel generation can be compensated by fast frequency sweeps during
the solution of the final system of equations, which eventually leads to a significant analysis speedup.

In structures which comprise repeating subregions, cloning of macromodels is possible. It means
that the reduction is not performed in the subdomains represented by the macromodels that have
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already been created elsewhere and can be copied to different locations. The matrices and vectors
corresponding to the cloned macromodels are added in the global system after the diagonalization.
This allows for substantial reduction of the overall computational cost of MOR and diagonalization.

3.3. Diagonalization

In the time-domain FEM, only mass matrix needs to be diagonalized in order to accelerate
the solution time stepping. This technique, known as mass lumping [20], involves an efficient
diagonalization performed on the element level. For the diagonalization to accelerate the system solution
in case of the frequency-domain FEM, one must resort to more complex algorithms, which diagonalize
both mass and stiffness matrices. They are known in the literature as simultaneous diagonalization [22,28]
and usually refer to generalized eigenvalue problems. As they all involve orthogonal decomposition
of matrices in the global system, which produces dense intermediate matrices, their numerical cost in
case of large sparse FEM systems would exceed the solution cost of the original FEM problem. Based
on the same generic framework, a new approach is proposed, which brings a substantial advantage
of diagonalization to the frequency-domain FEM analysis by combining it with local model-order
reduction. To this end, the diagonalization is performed locally in separate subdomains, prior the
global matrix assembly, and applies only to the macromodel matrix blocks K̃Ω and M̃Ω in Equation
(23). The remaining blocks (K′P, S̃′K, M′P, S̃′M) can be omitted, because they are much smaller than the
macromodel blocks. Although they are present in the system matrix after diagonalization, their influence
on the solution time is rather small and will be even further reduced by appropriate decomposition of
the final system with the Schur complement technique. It should be noted that, due to the frequency
independence of the macromodels, the diagonalization is extremely efficient, as it is performed only
once for the whole analysis bandwidth.

As a result of the diagonalization, Equation (23) transforms into the following system:
 K′P ST

KD

SKD DK

− k2
0

 M′P ST
MD

SMD DM



 e′P

eD

 =

 b′P

0

 , (26)

where DK and DM are diagonal matrices representing the diagonalized macromodel. Along with
other blocks denoted by subscript D, which are new in this system, they are computed in one of the
following algorithms.

Diag-I

1. Define matrix Z = M̃
1
2
Ω and compute Z1 = Z−1.

2. Derive DM = Z1(Z · Z)Z1 = IM as a result of left multiplication of Equation (23) by diag(IP, Z1)

and make the following substitutions in Equation (26): Z1S̃′M → SMD, Z1S̃′K → SKD, ZẽΩ → eD,
where IP and IM are unit matrices of the size of M′P and M̃Ω, respectively.

3. Compute KΩZ = Z1K̃ΩZ1.

4. Compute QK and ΛK as the orthogonal decomposition KΩZ = QKΛKQT
K.

5. Derive and calculate the following matrices as a result of left multiplication of Equation (26)
by diag(IP, QT

K): DM = QT
KIMQK = IM, DK = ΛK, SKD = QT

KZ1S̃′K, SMD = QT
k Z1S̃′M,

eD = QT
k ZẽΩ.

Diag-II

1. Perform the orthogonal decomposition M̃Ω = QMΛMQT
M and compute matrix

X = (QMΛ
1
2
M)−1 = Λ

− 1
2

M QT
M.
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2. Derive DM = XM̃ΩXT = (Λ
− 1

2
M QT

M)M̃Ω(QMΛ
− 1

2
M ) = Λ

− 1
2

M ΛMΛ
− 1

2
M = IM as a result of

left multiplication of Equation (23) by diag(IP, X) and make the following substitutions in
Equation (26): XS̃′M → SMD, XS̃′K → SKD, XẽΩ → eD, where IP and IM are unit matrices
of the size of M′P and M̃Ω, respectively.

3. Compute KΩX = XK̃ΩXT .

4. Compute QK and ΛK as the orthogonal decomposition KΩX = QKΛKQT
K.

5. Derive and calculate the following matrices as a result of left multiplication of Equation (26) by
diag(IP, QT

K): DM = QT
KIMQK = IM, DK = ΛK, SKD = QT

KXS̃′K, SMD = QT
k XS̃′M, eD = QT

k XẽΩ.

Diag-I is an original algorithm, while Diag-II adopts an approach similar to those presented
in [22,28] for generalized eigenvalue problems. Both consist of the same Steps (3)–(5), which provide
diagonalization of stiffness matrix K̃Ω. The main difference between these algorithms lays in Steps
(1) and (2) where in Diag-I there is an inverse of square root of the mass matrix M̃Ω instead of its
orthogonal decomposition. It should be noticed, however, that usually the algorithms for matrix square
root involve orthogonal decomposition. In this respect, both procedures should have comparable
computational costs to which the orthogonal decompositions contribute most. To perform orthogonal
decomposition, the following algorithms are possible:

• eigendecomposition (EVD) QΛQT , where diagonal matrix of eigenvalues Λ and orthogonal matrix
of eigenvectors Q are directly used in the presented algorithms;

• singular value decomposition (SVD) UΣVT with the substitution Λ = Σ and Q = U; and
• Schur decomposition (SchD) QUQ−1 with Q being used directly and the diagonal of triangular

matrix U being substituted for Λ.

3.4. Assembly and Solution of the Global System

Now, the matrices of the global system of equations are being finally assembled from Equation (26)
rewritten for each subdomain Ωk by restoring subscripts k and i to indicate subdomain and its ports in
the same form as in Equation (12). The resulting system takes the same form as Equation (26), in which
all terms are denoted with superscript (a). They are defined as the following matrices:

D(a)
K = diag(. . . , DKk, . . .), D(a)

M = diag(. . . , DMk, . . .), e(a)
D =

[
· · · eT

Dk · · ·
]T

, (27)

K′(a)
P = diag(. . . , K′Pi, . . .), M′(a)

P = diag(. . . , M′Pi, . . .),

K′Pi = K′Pik1 + K′Pik2, M′Pi = M′Pik1 + M′Pik2 for Pi ⊂ ∂Ωk1 ∧ Pi ⊂ ∂Ωk2,

K′Pi = K′Pik, M′Pi = M′Pik for Pi ⊂ ∂Ωk,

e′(a)
P =

[
· · · e′TPi · · ·

]T , b′(a)
P =

[
· · · b′TPi · · ·

]T ,

(28)

S(a)
KD =


SKD11 · · · SKDi1 · · ·
· · · · · · · · · · · ·

SKD1k · · · SKDik · · ·
· · · · · · · · · · · ·

 , S(a)
MD =


SMD11 · · · SMDi1 · · ·
· · · · · · · · · · · ·

SMD1k · · · SMDik · · ·
· · · · · · · · · · · ·

 , (29)

where i = 1, . . . , P, k = 1, . . . , M and SKDik = SMDik = 0 for Pi 6⊂ Ωk.
The same assembly procedure can be applied to the local FEM matrices in Equation (12). Although

not required, this would provide a standard FEM system useful as a reference for investigation of the
efficiency improvement and accuracy of the proposed procedures of MOR and diagonalization.

If there is a group of identical subdomains, macromodel cloning is recommended. In only one of
them, 3-D mesh, FEM matrices and the diagonalized macromodel need to be created. The remaining
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subdomains are represented by multiple copies of this macromodel to be introduced as their respective
submatrices in Equations (27)–(29). For example, if in the structure in Figure 1 all subdomains are
assumed identical, Ω1 may be selected as the one where the primary diagonalized macromodel
is to be created. Subdomains Ω2 and Ω3 are represented by the matrices which are copied from
Ω1 in the following scheme depicted for the stiffness matrix K (it is the same for the mass matrix
M): DK1 → {DK2, DK3}, K′P11 → {K′P32, K′P43}, K′P31 → {K′P42, K′P22}, SKD11 → {SKD32, SKD23},
SKD31 → {SKD42, SKD43}.

The resulting assembled system is solved in the following compact form: P ST

S D

 ·
 eP

eD

 =

 bP

bD

 , (30)

where eP = e′(a)
P , eD = e(a)

D , bP = b′(a)
P , bD = 0, P = K′(a)

P − k2
0M′(a)

P , D = D(a)
K − k2

0D(a)
M and

S = S(a)
KD − k2

0S(a)
MD. It is worth mentioning that this is the first time the frequency sweeping is involved,

which means that computationally demanding operations of MOR and diagonalization have been
performed just once for the whole frequency range. For the same reason, it also means that the
subsequent procedures of solving Equation (30) are inside the frequency loop, and therefore should be
thoroughly optimized.

The size of square blocks P and D is N(a)
P = ∑P

i=1 N′Pi and N(a)
D = ∑M

k=1 ÑΩk, respectively. The total
number of unknowns after diagonalization is equal to those after MOR and for structures represented
by cascaded macromodels (kp = 2) it is:

Ñ = N(a)
D + N(a)

P = 2Mqp0 + (M + 1)p0. (31)

Diagonal matrix D is the largest block in the system and usually N(a)
D � N(a)

P approximately by
the factor 2q. If, for instance, the analyzed structure consists of M = 10 macromodels of order q = 10
and 11 ports compressed to p0 = 10 DOF each, then N(a)

P = 110, N(a)
D = 2000 and Ñ = 2110.

To take full advantage of the fact that the dominating block in the system is just a diagonal matrix,
we propose to partition Equation (30) and solve it with respect to eP and eD separately by means of
the Schur complement technique [28] in the following procedure:

Schur-complement based solver (Schur solver).

1. Compute the Schur complement Σ = P − STD−1S = P − STSD, where SDij = Sij/Dii for

i = 1, . . . , N(a)
D , j = 1, . . . , N(a)

P

2. Derive the right-hand side vector of the Schur complement equation Σ eP = bP−STD−1bD = bP

3. Solve Σ eP = bP → eP

4. (optional) Solve D eD = −S eP → eD = −D−1S eP

The inversion of the diagonal matrix D in Steps (1) and (2) is as trivial as a scalar division by its
entries. Thus, time complexity of the Schur complement creation reduces to approximately one matrix
multiplication STSD involving very narrow matrices. Due to significantly smaller size of P and eP
compared to D and eD, the solution of the system in Step (3) is even less costly. Step (4) is denoted as
optional, because in most cases only the response with respect to the ports of analyzed structure is
sought after. Therefore, computation of eD can be omitted to provide additional savings, if only the
field distribution inside the domain volume is not needed.

It should be noted that the presented algorithm of the Schur solver does not involve direct domain
partitioning and is performed in the global system at once. This is because the diagonal matrix D
dominates in the system and its inversion scales perfectly with the number of subdomains, while P is
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small enough not to be worth partitioning. The only operation where some kind of partitioning can be
successfully applied is the matrix multiplication STSD. Since the coupling block S consists of sparsely
distributed small dense matrices Sik = SKDik − k2

0SMDik (SD has the same structure), a dedicated
block multiplication is proposed instead of the generic MATLAB multiplication. Unlike the MATLAB
routine, this procedure takes advantage of the fact that there are many empty blocks in S and omits
them during the multiplication. The occupancy ratio of nonzero blocks in S for cascaded macromodels
is 2M/(M(M + 1)), which for M = 10 equals 18%. It is therefore expected to provide additional time
savings, especially for large macromodels.

4. Numerical Results

All numerical experiments were performed on a PC with i7-4510U CPU @ 2.6 GHz and 16 GB RAM
(model PORTEGE Z30-A-1E1, Toshiba, Tokyo, Japan). The proposed procedures were implemented in
MATLAB (R2016a, MathWorks Inc., Natick, MA, USA). The built-in matrix operations and the linear
algebra procedures from MATLAB libraries were utilized, the most important of which are: mldivide
(generic direct solver for sparse systems of linear equations which for the systems being investigated
uses block LDL factorization), eig (eigendecomposition), svd (singular value decomposition), schur
(Schur decomposition), and lu (LU factorization).

As a test structure, the rectangular waveguide loaded with periodically distributed pairs of
metallic cylindrical posts in E-plane was chosen (Figure 2). It is divided into M cascaded subdomains
in such a way that Ω1 and ΩM are empty sections of the waveguide and each of Ω2 . . . ΩM−1 comprises
one symmetrically placed pair of posts, where Dk = (Lk + Lk+1)/2. The dimensions in millimeters
are: a = 22.86, b = 10.16, d = 3.0, L1 = LM = 15.1, gk = 17.0, and Lk = 14.5 for k = 2 . . . M− 1. The
posts create M− 3 resonators so that the structure behaves as a band pass filter, which provides large
variations in the frequency response. This makes the structure suitable for an accuracy analysis of the
presented methods. Moreover, it allows for easy changing of the number of macromodels and cloning.
For maximal cloning, Ω2 . . . ΩM−1 are kept the same and so are Ω1 and ΩM. In this case, there are
M0 = 2 unique subdomains Ω1 and Ω2, so the mesh as well as the diagonalized macromodels need to
be created only therein (see Figure 2b). The remaining subdomains are represented by the macromodels
that are copied from these unique ones and introduced in the global system matrix during the final
assembly. To this end, 2-D meshes on the ports of Ω1 and Ω2 are the same. Denoting the macromodel
in Ωi as MMi, the cloning scheme reads as follows: MM1 → MMM and MM2 → {MM3 . . . MMM−1}.

Figure 2. The test structure—rectangular waveguide loaded with pairs of metallic cylindrical posts in
E-plane and divided into M subdomains Ω1 . . . ΩM. The dimensions are shown in x-z plane view (a).
The waveguide height is b. The perspective view (b) for M = 6 shows that the mesh is generated in Ω1

and Ω2 only.

The test structure for varying number of macromodels (M = 4 . . . 12) was analyzed towards
S-parameters for the excitation mode TE01 in the frequency band covering all fundamental
resonances—from 7 GHz, which is right above the waveguide cut-off, to 16 GHz. Frequency sweeping
with 201 frequency points and 45 MHz step was chosen to capture correctly the S-characteristics with
sharp resonances. The 3-D mesh consists of 4457 and 12,071 tetrahedrons in Ω1 and Ω2, respectively,
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while the 2-D mesh has 238 triangles in each port. The port compression for the model-order reduction
of the order q was performed using modal expansion by means of the first p0 analytically defined
waveguide TE modes.

To demonstrate accuracy of the model-order reduction, the plots of S11 and S21 for FEM with
MOR (FEM-MOR) are compared with the plain FEM in Figure 3a. For this test, the structure with six
pairs of posts and M = 8 subdomains was chosen. A more detailed insight into the accuracy of MOR
is given in Figure 3b as S-parameter error plots for the error defined as follow:

Sijerr[dB] = 20 log(|SijFEM−MOR − SijFEM|) (32)

It expresses the distance in dB on a complex plane between Sij for the analyses being compared.
For the reduction order q = 10 and the port size p0 = 10, the errors are below −45 dB in the
full frequency band (mostly below −55 dB), which is sufficient to make the S-parameter plots
indistinguishable. The number of unknowns in the FEM system is N = 80,326 and Ñ = 1690
for FEM-MOR, which results in the reduction ratio N/Ñ = 47.5.
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Figure 3. S-parameters (a); and MOR error S11err and S21err (b) of the structure in Figure 2 for M = 8
subdomains and macromodels, port size p0 = 10 and reduction order q = 10.

To investigate the accuracy of diagonalization, the S-parameters for FEM-MOR with
diagonalization (FEM-MOR-Diag) were compared with FEM-MOR. The error defined similarly
to Equation (32) was below −240 dB for both diagonalization algorithms and each of the possible
orthogonal decompositions (EVD, SVD, and SchD), meaning the diagonalization contributes only
a negligible addition to the error introduced by MOR itself, thus the plots in Figure 3 would look
exactly the same if FEM-MOR were replaced by FEM-MOR-Diag.

The subsequent tests focused on the performance of macromodel diagonalization in terms
of computational time. The diagram in Figure 4 defines the execution times of the steps leading
from the original FEM system to the solution of the systems of equations at different stages of the
procedure involving MOR and diagonalization. The blocks MM and MM-Sol represent the standard
MOR procedure presented in [16] to which the proposed MOR with diagonalized macromodels was
compared in the following tests.

In the initial approach, only the solution times tRS, tDS and tDSS were considered to show direct
effects of diagonalization and the Schur solver. The block matrix multiplication was assumed in the
Schur solver if not stated otherwise. The times tRS and tDSS are compared for M = 8 macromodels in
Figure 5 as the plots versus port size p0 and reduction order q. They both grew with the problem size
Ñ (dependent on q and p0) similarly, however the diagonalization combined with the Schur solver
clearly brought a substantial decrease of the solution time.
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FEM -
MOR

tR

?

tFS

MM -
diagonalization

tD

?

tRS

DiagMM

?

tDS

?

tDSS

FEM-Sol MM-Sol DiagMM-Sol DiagMM-SchurSol

Figure 4. Diagram defining the time cost of MOR, diagonalization and solution of the systems of
equations. Abbreviations: FEM, initial FEM system; MM, system with macromodels; DiagMM, system
with diagonalized macromodels; -Sol, solution by means of the MATLAB solver mldivide; -SchurSol,
solution by means of the Schur solver.
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Figure 5. Solution time of the final system for M = 8 macromodels: original macromodels (a); and
diagonalized macromodels and the Schur solver (b).

For better insight into these effects, we analyzed solution speedup (speedup ratio), referred to as
gain, which is defined as follows: diagonalization gain GDS = tRS/tDSS, Schur solver gain GS = tDS/tDSS.
The latter is a speedup component in GDS contributed by the Schur solver used instead of the
MATLAB solver. Since the diagonalization gain depends on two factors determining the problem size
Ñ—macromodel size 2qp0 and the number of macromodels M— it is depicted as a pair of plots in
Figure 6, versus p0 and M, both with q as a parameter. The GDS plots show a significant speedup,
which grows almost proportionally with q and p0, however, the influence of q on GDS is roughly twice
as large as that of p0. It makes the proposed diagonalization procedure particularly attractive for
problems with strong field variations within subdomains. What is more, GDS was almost independent
of M—it deteriorateD very slowly with M increasing from 4 to 12, and thus diagonalization is suitable
even for analysis with large number of macromodels.

The Schur solver gain plots versus p0 are shown in Figure 7 for two options of matrix
multiplication. The dedicated block matrix multiplication improved the Schur solver performance
more for larger values of p0 (Figure 7a), which makes it more appealing than the standard MATLAB
matrix multiplication (Figure 7b). Although the latter brought higher gain for small p0, it is much less
relevant, as the corresponding time savings expressed in absolute values were much smaller that those
for large p0. When comparing GDS with the gain of diagonalization involving the standard MATLAB
solver equal GDSS/GS, one may notice that the Schur solver brought an important contribution to
the overall speedup. For instance, for the largest values of q and p0, the Schur solver increased the
diagonalization gain from 9.2 to 40.5.
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Figure 6. Gain of diagonalization with the Schur solver GDS: versus port size p0 for M = 8 (a);
and versus number of macromodels M for p0 = 10 (b).
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Figure 7. Gain of the Schur solver over the standard MATLAB solver for the system comprising
diagonalized macromodels. The Schur solver is in two options: with (a) or without (b) the dedicated
block matrix multiplication.

For a more complete and practical view of performance of the presented procedures,
the computational costs of MOR tR and diagonalization tD have to be taken into account. To this end,
the following definitions of effective gains are introduced:

• Effective diagonalization gain: GDSeff = tRS/(tD + tDSS)
• Effective MOR gain: GReff = tFS/(tR + tRS)
• Effective MOR and diagonalization gain: GRDSeff = tFS/(tR + tD + tDSS).

When referring to the diagram in Figure 4, these effective gains correspond to different routes
leading from different starting systems to all possible solutions. GDSeff compared the times needed
to reach MM-Sol and DiagMM-SchurSol from the box MM (DiagMM-Sol was disregarded as always
tDSS < tDS). When starting from the original FEM system, two routes were compared with tFS: one
leading via MM and the other one via MM and DiagMM. They defined GReff and GRDSeff , respectively,
and expressed the overall performance improvement brought by MOR and MOR with diagonalized
macromodels as compared to the plain FEM solution.

The solution time of the original FEM system by means of the MATLAB solver mldivide tFS was
104, 372 and 638 for 4, 8 and 12 subdomains, respectively. All times are given in seconds if not stated
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otherwise. The reduction time for the unique subdomains Ω1 and Ω2 is tR1 = 0.51 and tR2 = 1.82,
respectively, for q = 10, p0 = 10. Since the diagonalization time depended only on the macromodel
size Nm = 2qp0 regardless of the physical properties of its corresponding subdomain and was the
same for all macromodels, it is presented for just one of them and denoted as tD1. Figure 8a compares
tD1 for all possible combinations of the orthogonal decompositions—SVD, SchD, and EVD—used in
Steps (1) and (4) of the diagonalization algorithm Diag-I. As the plots in Figure 8b show for the best
two options—SchD-SVD and EVD-SVD—both algorithms Diag-I and Diag-II had almost the same
performance. For further analysis, the configuration SchD-SVD-Diag-II was chosen.
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Figure 8. Diagonalization time tD1 for one macromodel of the size Nm = 2qp0 for the following
configurations: algorithm Diag-I with all possible combinations of orthogonal decompositions (a); and
both algorithms Diag-I and Diag-II with the best performing orthogonal decompositions (b).

The overall MOR and diagonalization times tR and tD depended on how much macromodel
cloning was involved in the analysis, which eventually influenced the aforementioned effective gains.
To demonstrate the role of cloning, the following two options were considered:

• Maximal cloning possible in the analyzed structure: only M0 = 2 original macromodels were
generated in Ω1 and Ω2 out of all M macromodels used: tD = 2tD1, tR = tR1 + tR2.

• No cloning: MOR and diagonalization was performed in all M subdomains: tD = MtD1,
tR = 2tR1 + (M− 2) tR2.

The computation times defined in Figure 4 and the derived gains are summarized in Table 1 for
small, medium and large macromodels (Nm = 72, 200 and 360, respectively) and the above-mentioned
cloning options. The influence of the macromodel count (M = 8 and 12) is presented for their medium
size, which corresponds to the S-parameters characteristics in Figure 3. More detailed profiles of the
resultant gain of the proposed analysis GRDSeff are presented in Figure 9 for maximal cloning and
Figure 10 for the case without cloning.
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Table 1. The times of MOR, diagonalization and solution of the systems of equations (in seconds) along
with MOR and diagonalization gains for selected combinations of q, p0, M and two options of cloning.

Cloning q p0 M tFS tR tD tRS tDSS GDS GDSeff GReff GRDSeff

yes

6 6 8 372 0.85 0.008 1.2 0.144 8.1 7.7 183.2 369.5

10 10 8 372 2.33 0.052 11.3 0.421 26.9 23.9 27.3 132.9

12 15 8 372 4.94 0.168 37.6 0.928 40.5 34.3 8.7 61.7

10 10 12 638 2.33 0.052 16.4 0.642 25.6 23.7 34.0 211.4

no

6 6 8 372 4.38 0.044 1.2 0.144 8.1 6.2 66.9 81.4

10 10 8 372 11.94 0.289 11.3 0.421 26.9 15.9 16.0 29.4

12 15 8 372 25.34 0.943 37.6 0.928 40.5 20.1 5.9 13.7

10 10 12 638 18.78 0.434 16.4 0.642 25.6 15.3 18.1 32.2
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Figure 9. Effective gain of MOR with diagonalization GRDSeff , with cloning: versus port size p0 for
M = 8 (a); and versus number of macromodels M for p0 = 10 (b).

5 7 9 11 13 15

port size p
0
 [DOF]

(a)

0

20

40

60

80

100

120

140

sp
ee

du
p 

ra
tio

G
RDSeff

, M = 8, no clonning

q =  4
q =  8
q = 12

5 7 9 11

number of macromodels M
(b)

20

30

40

50

60

70

80

90

100

sp
ee

du
p 

ra
tio

G
RDSeff

, p
0
 = 10, no clonning

q =  4
q =  8
q = 12

Figure 10. Effective gain of MOR and diagonalization GRDSeff , without cloning: versus port size p0 for
M = 8 (a); and versus number of macromodels M for p0 = 10 (b).
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The influence of diagonalization cost on the effective diagonalization gain depended mostly on
cloning—GDSeff decreaseD with respect to GDS less than 1.2 times with cloning and not more than
2 times without it, thus GRDSeff = 20.1 for the largest macromodels. The most appealing result is
that the overall effective speedup of MOR with diagonalization GRDSeff could reach extremely high
rates for small macromodels, i.e. as large as 369.5 times for Nm = 2 q p0 = 72 (q = 6, p0 = 6), if the
maximal possible cloning was involved. It increased from 183.2 times for MOR only, owing to the
diagonalization. Without cloning, GRDSeff reduceD down to 81.4; however, this was still a very high
speedup rate. This effect was mostly related to the loss of GReff itself, because, although the lack of
cloning affected equally the resultant costs per macromodel of both MOR and diagonalization, the
influence of tR prevailed as it is much larger than tD.

More details regarding the influence of cloning on the resultant effective speedup can be seen
by comparing the plots in Figures 9 and 10. Although cloning apparently improved the overall
performance, it nearly did not change the degree of influence of the macromodel size on GRDSeff . The
plots in Figures 9a and 10a look almost the same and they are scaled by the factor approximately equal
M/M0. The analogous relations regarding the number of macromodels M were rather different. In the
case of cloning, GRDSeff increased largely with M, because the cost of MOR and diagonalization per
macromodel decreased (Figure 10b). Without cloning, this did not occur and GRDSeff remained almost
constant with respect to M with only slight tendency to increase (Figure 10b). This is an important
property, as it shows that, even without cloning, which was the worst case, the resultant performance
was not affected by the number of macromodels, and thus the proposed approach is advantageous
even for the structures partitioned into an increasing number of subdomains.

Another important observation can be made concerning the dependence of the effective gains
on macromodel size. GRDSeff decreased severely due to the growth of the macromodel generation
cost tR and the solution time tRS. This effect was inherited after GReff but was partly compensated by
the diagonalization, owing to two factors:GDSeff was large enough that tDSS + tD � tRS and it grew
with Nm. As a result, for Nm changing from 72 to 360, the initial decrease rate of GReff equalled 21
times (with cloning) or 11.3 times (without cloning), reducing to 6 times for GRDSeff . Favoring larger
macromodels, the diagonalization brought larger relative speedup where it implied more absolute
time savings, and thus was needed most. For instance, in the case of the results presented in Figure 3
(q = 10, p0 = 10, M = 8, cloning with M0 = 2), which involved medium size macromodels, the
initial time of the FEM solution was reduced from over 6 min (tFS) to less than 3 s for MOR with
diagonalization (tRDS = tR + tD + tDSS). It may be concluded that the diagonalization was particularly
beneficial if macromodels represented large subdomains having complex shapes. This effect was even
stronger if cloning was applied: the improvement ratio of the effective gain due to the diagonalization
GRDSeff /GReff for the largest macromodels (Nm = 360) and M = 8 was 2.3 and 7.1 without and with
cloning, respectively.

To show the performance of the proposed methods in the case of tuning, the following scenarios
were investigated. The structure presented in Figure 2 for M = 8 subdomains was regarded as an
initial design of a waveguide bandpass filter, which may be tuned by modifying the subdomain lengths
Lk and the distances between the posts gk. The structure was assumed symmetrical with respect to
its external ports, thus the following subdomains and their macromodels were identical: Ω2 = Ω7,
Ω3 = Ω6, Ω4 = Ω5. Consequently, there were six possible independent tuning parameters: L2 = L7,
g2 = g7, L3 = L6, g3 = g6, L4 = L5, g4 = g5. Due to the symmetry, half of all M macromodels
were cloned, thus M0 = 4. The MOR parameters were p0 = 10 and q = 10, corresponding to the
S-parameter characteristics depicted in Figure 3a. Two scenarios of tuning were considered: (A) with
all Nv = 6 tuning parameters in all Mv = 3 modified subdomains; and (B) with Nv = 2 in a single
subdomain (Mv = 1). The tuning procedure involved a simplified gradient optimization algorithm.
In each iteration (out of K), two steps were performed: (1) estimation of the goal function gradient by
small perturbations of all Nv tuning parameters; and (2) calculation of a new parameter vector. In the
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case of MOR, Step (1) required Nv solutions performed in just one subdomain, whereas, in Step (2), all
Mv macromodels were recalculated.

The results are presented in Table 2 for two different iteration counts K. The computation times
and gains were defined as in previous tests, but the times were cumulated throughout all K tuning
iterations. Consequently, the resultant cost of MOR, diagonalization and solution of the final system
was: tFS for the plain FEM, tRSS = tR + tRS for FEM-MOR and tRDS = tR + tD + tDSS for FEM-MOR
with diagonalized macromodels. The corresponding effective gains show that the speedup brought by
MOR and MOR with diagonalization was significant and comparable to that of a single simulation for
maximal cloning (M0 = 2) with the same p0, q, M, as presented in Table 1. What is also important, the
speedup was not or hardly dependent on the iteration count and the number of tuned parameters,
which makes the proposed methods robust and thus suitable for CAD applications.

Table 2. The cumulated times of MOR, diagonalization and solution of the systems of equations (in
seconds) along with MOR and diagonalization gains for two tuning scenarios, q = 10, p0 = 10, M = 8,
M0 = 4, and for varying numbers of tuning parameters Nv, modified subdomains Mv and iterations K.

Scenario Nv Mv K tFS tR tD tRS tDSS tRRS tRDS GReff GRDSeff

A
6 3 5 13,396 87.9 1.77 407 15.2 495 105 27.1 127.8

6 3 100 260,842 1644 32.7 7932 295.1 9576 1972 27.2 132.3

B
2 1 5 5954 33.3 0.69 181 6.7 214 41 27.8 146.3

2 1 100 112,002 552 11.0 3406 126.7 3958 690 28.3 162.4

In the final test, the structure depicted in Figure 2 for M = 8 was simulated by means of two
commercial software packages—FEKO (version 2018-309, Altair Engineering, Troy, MI, USA) and
EMPro (version 2019, Keysight Technologies, Santa Rosa, CA, USA)—which belong to the leading CAD
tools for electromagnetic analysis based on FEM. Similar mesh size, first-order FEM basis function and
201-point frequency sweeping were set to make the results comparable with the analysis presented in
this paper.

In Figure 11, the S-parameter characteristics are compared and a view of the structure meshed
in FEKO is depicted. The plots are almost indistinguishable, which additionally proves very good
accuracy of the proposed method. The solution times for the commercial software and this analysis
are compared in Table 3. For the FEM-MOR-Diag, the solution time was tR + tD + tDSS. The results
show that even an in-house FEM software based on the proposed method of MOR with diagonalized
macromodels could significantly outperform commercial FEM software packages.
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Figure 11. S-parameters obtained in the commercial software and this analysis (a); and a view of the
tested structure meshed in FEKO (b).

Table 3. The solution times for the commercial software and this analysis.

Software FEKO FEKO EMPro This FEM FEM-MOR-Diag FEM-MOR-Diag with Cloning

solver precond. Bi-CGSTAB direct direct direct direct direct

no. of FEM DOF 81,331 81,331 80,119 80,326 80,326 80,326

solution time [s] 813 664 416 372 12.6 2.8

5. Conclusions

A new technique of local model-order reduction (MOR) in 3-D finite element method (FEM)
for electromagnetic analysis of waveguide components has been proposed to resolve the problem of
increasing solution time of the reduced-order system combined from the macromodels in a decomposed
domain. To this end, the diagonalized macromodels created by means of the simultaneous
diagonalization are used to build the global system. To the best of the author’s knowledge, diagonalized
macromodels have not been used previously in FEM analysis to speed up the solution of the system
obtained in MOR. The proposed approach is very efficient for two reasons: diagonalization is
performed on small macromodel matrices and can be carried out just once in the whole bandwidth,
which is owing to the frequency independency of macromodels. Although the resulting matrix is
only partially diagonal, it can be solved very efficiently by a dedicated solver based on the Schur
complement technique, which has also been proposed. The numerical validation of the proposed
procedures with respect to accuracy and speed was carried out for an exemplary finite periodical
waveguide structure partitioned into the macromodels of varying size and count and for different
options of macromodel cloning. The results show that the introduction of diagonalized macromodels
in this work provided a significant solution speedup without accuracy degradation. This makes an
essential performance improvement in comparison to the work in [16], where similar methods of
MOR and port compression are used. The solution time reduces to such extent that the resultant
efficiency of the entire analysis becomes determined almost solely by the cost of MOR. It means
that proposed technique eventually improves robustness of the model-order reduction with respect
to macromodel size. Although the overall speedup of MOR with diagonalized macromodels still
decreases with the growth of macromodels, the decrease rate is lower than that without diagonalization.
The proposed technique is particularly beneficial, when the system solution time becomes comparable
to the reduction time, which occurs for growing size and count of the macromodels. It also takes place
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when they are cloned in multiple locations of the structures or are used repeatedly in a tuning and
optimization process, which makes the proposed technique desirable in CAD applications.
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