
electronics

Article

A High-Performance Elliptic Curve Cryptographic
Processor of SM2 over GF(p)

Xianghong Hu 1, , Xin Zheng 1, Shengshi Zhang 1, Weijun Li 1,*, Shuting Cai 1

and Xiaoming Xiong 1,2*
1 School of Automation, Guangdong University of Technology, Guangzhou 510006, China;

xianghong_hu@163.com (X.H.); zx15521205871@gmail.com (X.Z.); xsshengshi_zhang@163.com (S.Z.);
shutingcai@gdut.edu.cn (S.C.)

2 Company of Chipeye Microelectronics Foshan Ltd., Foshan 528200, China
* Correspondence: weijunli@gdut.edu.cn (W.L.); xmxiong@gdut.edu.cn (X.X.);

Tel.: +86-020-3932-2553 (W.L.); +86-0757-8668-7032 (X.X.)

Received: 20 March 2019; Accepted: 10 April 2019; Published: 14 April 2019
����������
�������

Abstract: Elliptic curve cryptography (ECC) is widely used in practical applications because ECC has
far fewer bits for operands at the same level of security than other public-key cryptosystems such as
RSA. The performance of an ECC processor is usually determined by modular multiplication (MM)
and point multiplication (PM) operations. For recommended prime field, MM operation can consist
of multiplication and fast reduction operations. In this paper, a 256-bit multiplication operation is
implemented by a 129-bit (half-word) multiplier using Karatsuba–Ofman multiplication algorithm.
The fast reduction is a modulo operation, which gets 512-bit input data from multiplication and
outputs a 256-bit result (0 ≤ Z < p). We propose a two-stage fast reduction algorithm (TSFR) over
SCA-256 prime field, which can obtain an intermediate result of 0 ≤ Z < 2p instead of 0 ≤ Z < 14p
in traditional algorithm, avoiding a lot of repetitive subtraction operations. The PM operation is
implemented in width nonadjacent form (NAF) algorithm and its operational schedules are improved
to increase the parallelism of multiplication and fast reduction operations. Synthesized with a 0.13 µm
complementary metal oxide semiconductor (CMOS) standard cell library, the proposed processor
costs an area of 280 k gates and PM operation takes 0.057 ms at the frequency of 250 MHz. The design
is also implemented on Xilinx Virtex-6 platform, which consumes 27.655 k LUTs and takes 0.37 ms
to perform one 256-bit PM operation, attaining six times speed-up over the state-of-the-art. The
processor makes a tradeoff between area and performance, thus it is better than other methods.

Keywords: Elliptic curve cryptosystems; fast reduction; modular multiplication; point multiplication

1. Introduction

Elliptic curve cryptography (ECC) was proposed in 1986 by Miller [1] and Koblitz [2] to solve
the difficult problem of the elliptic curve discrete logarithm problem (ECDLP). ECC has played
an important role in the public key cryptography of information security. SM2 is as ECC and
was promulgated by State Cryptography Administration (SCA) of China in 2010. It was added
to ISO/IEC14888-3/AMD1 in November 2017. The recommended 256-bit prime field of SM2 is a
pseudo-Mersenne prime field called SCA-256 [3] and the details about SM2 can be found in [4].

ECC can be implemented on three platforms: software, Field Programmable Gate Array (FPGA)
and Application Specific Integrated Circuit (ASIC). Software platform is flexible, but slow and unsafe.
FPGA and ASIC platforms are excellent choices for ECC hardware acceleration. Many accelerators
of ECC have been proposed [3,5–20]. In ECC, the final goal is to speed up a point multiplication
(PM) operation. The modular multiplication (MM) is the most basic and critical operation in PM.

Electronics 2019, 8, 431; doi:10.3390/electronics8040431 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-1237-4945
http://dx.doi.org/10.3390/electronics8040431
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/4/431?type=check_update&version=2

Electronics 2019, 8, 431 2 of 13

The structure of MM operation can be classified into two categories [12]: multiplier-based structure
and adder-based structure. Specific prime field multiplication and Montgomery multiplication are
used in multiplier-based structures [21]. Interleaved multiplication algorithm is usually applied in
the adder-based structures [22]. The processors in [9,10,12,17,18] are based on adders and aim at low
hardware and power consumption. Most high-performance accelerators, as reported in [3,6,7,13,19],
are based on multiplier. The architectures in [13] are based on Montgomery multiplier whose size
ranges from 8-bit × 8-bit to 64-bit × 64-bit. Area efficiency and low latency are achieved at the sacrifice
of performance in their works. The processor in [3] is based on 256-bit × 256-bit full-word multiplier.
Its fast reduction operation in SCA-256 prime field gets intermediate result Z (0 ≤ Z < 14p), which will
cost thirteen subtraction operations to get the final result Z (0 ≤ Z < p) in the worst case. Moreover,
the full-word multiplier consumes much more hardware footage and brings severe latency.

On the one hand, small bit multiplier results in low performance, whereas full-word multiplier
leads to large area consumption. On the other hand, traditional fast reduction algorithms are one-stage,
which get intermediate result Z, such as Z ∈ [0, 14p) in [3], Z ∈ (−4p, 5p) in [6], followed by a lot of
iterative addition or subtraction operations to get the final result within [0, p).

In this paper, we present a high-performance processor of SM2 over GF(p). The main contributions
of this paper are as follows.

• A two-stage fast reduction (TSFR) algorithm in SCA-256 is proposed. TSFR performs fast
reduction operations twice and then gets the intermediate result Z (0 ≤ Z < 2p), avoiding
a lot of iterations of subtraction operation to get the final result.

• Multiplication operation is implemented with half-word multiplier using Karatsuba–Ofman
multiplication algorithm and takes five clock cycles. The MM operation includes five clock cycles
of multiplication operation and one clock cycle of fast reduction operation. With the pipeline
design, the MM operation completes in five clock cycles on average.

• A high-performance ECC architecture based on half-word multiplier is proposed. PM operation
consists of a series of point addition (PA) and point doubling (PD) operations. The novel
operational schedules of PA and PD are presented to reduce the MM operations and to improve
the parallelism of multiplication and fast reduction operations.

The arrangement of this paper is as follows. Section 2 reviews the elliptic curve over GF(p).
Section 3 presents a high-performance processor of SM2. The implementation results of the processor
are shown in Section 4, followed by the comparison with previous work. Section 5 concludes this paper.

2. Mathematical Background

Elliptic Curve

This subsection briefly describes the elliptic curve (EC). A non-super singular elliptic curve E
over GF(p) for p > 3. The Weierstrass equation [23] is defined as

y2 = x3 + ax + b (1)

where (x, y) ∈ E, a, b ∈ GF(p) and 4a3 + 27b2 6= 0 (mod p). The set of points (x, y) that satisfies
Weierstrass equation and the point at infinity makes an abelian group.

The elliptic curve PM operation is defined as kP = P + P + · · ·+ P︸ ︷︷ ︸
k times

, where P is a point of elliptic

curve and k is an integer. The width NAF point multiplication algorithm [24] is shown in Algorithm 1.

Electronics 2019, 8, 431 3 of 13

Algorithm 1: Width NAF Point Multiplication Algorithm
Input: scalar k and, EC point P
Output: EC point Q[0]: Q[0] = kP
Input: width w, scalar k, EC point P
Output: EC point Q: Q = kP
1: Precomputation: i ∈ {1, 3, ..., 2w−1 − 1}, P[i] = iP
2: compute NAFw(k) = ∑l−1

i=0 ki2i

2.1: i = 0
2.2: while k ≥ 1 do

2.2.1: if k is odd then: ki = 2− (k mod 2w), k = k− ki

2.2.2: else: ki = 0
2.2.3: k = k/2, i = i + 1

end while
3: Q = ∞
4: for i from l − 1 downto 0 do
4.1: Q = 2Q
4.2: if ki 6= 0 then

4.2.1: if ki > 0 then Q = Q + P[ki]

4.2.2: else Q = Q− P[−ki]

5: reture Q

A PM operation consists of a series of point addition (PA) and point doubling (PD) operations.
P1 = (X1, Y1, Z1), P2 = (X2, Y2, Z2) and P3 = (X3, Y3, Z3) are points of elliptic curve. The PA
operation is defined as P3 = P1 + P2 and the PD operation is defined as P3 = 2P1. To avoid
inversion/division, a tedious operation, mixed affine-Jacobian coordinates yield the fastest PA
operation, while Jacobian coordinates yield the fastest PD operation [24]. The PA formulas in mixed
affine-Jacobian coordinates are

X3 = (Y2Z3
1 −Y1)

2 − (X2Z2
1 − X1)

2(X1 + X2Z2
1)

Y3 = (Y2Z3
1 −Y1)(X1(X2Z2

1 − X1)
2 − X3)−Y1(X2Z2

1 − X1)
3

Z3 = (X2Z2
1 − X1)Z1

(2)

The PD formulas in Jacobian coordinates are
X3 = (3X2

1 + aZ4
1)

2 − 8X1Y2
1

Y3 = (3X2
1 + aZ4

1)(4X1Y2
1 − X3)− 8Y4

1

Z3 = 2Y1Z1

(3)

3. SM2 Architecture

In this section, the SM2 architecture based on one half-word multiplier is presented. PM operation
is made up of PA and PM operations. PA and PM operations consist of MM, modular addition (MA)
and modular subtraction (MS) operations. Fast-reduction operation and full-word multiplication
operations complete MM operation. Modular inversion (MI) operation is implemented using binary
modular inversion algorithm [5]. MI operation is used to convert the Jacobian coordinates to affine
coordinates at the end of PM operation.

Electronics 2019, 8, 431 4 of 13

3.1. Modular Multiplication

In SM2, the prime field SCA-256 can be denoted as p = 2256 − 2224 − 296 + 264 − 1. In the specific
prime field, MM operation can be achieved by multiplication and fast reduction operations.

A. Fast-Reduction

An existing fast reduction algorithm [3] over SCA-256 is given in Algorithm 2. It is a one-stage
fast reduction operation. After a series of addition and subtraction operations, the intermediate result
is Z = s1 + s2 + 2s3 + 2s4 + 2s5 + s6 + s7 + s8 + s9 + 2s10 − s11 − s12 − s13 − s14, Z ∈ [0, 14p). In the
worst case, it will cost thirteen subtraction operations to get the final result [0, p) and those repetitive
subtraction operations will bring a significant latency.

Algorithm 2: Fast reduction over SCA-256 in [3]

Input: A Integer c=(c15,c14,...,c0) in base 232; 0 ≤ c < p2

Output: c mod p
1: define 256-bit integers

s1 = (c7, c6, c5, c4, c3, c2, c1, c0), s2 = (c15, c14, c13, c12, c11, 0, c9, c8),
s3 = (c14, 0, c15, c14, c13, 0, c14, c13), s4 = (c13, 0, 0, 0, 0, 0, c15, c14),
s5 = (c12, 0, 0, 0, 0, 0, 0, c15), s6 = (c11, c11, c10, c15, c14, 0, c13, c12),
s7 = (c10, c15, c14, c13, c12, 0, c11, c10), s8 = (c9, 0, 0, c9, c8, 0, c10, c9),
s9 = (c8, 0, 0, 0, c15, 0, c12, c11), s10 = (c15, 0, 0, 0, 0, 0, 0, 0),
s11 = (0, 0, 0, 0, 0, c14, 0, 0), s12 = (0, 0, 0, 0, 0, c13, 0, 0),
s13 = (0, 0, 0, 0, 0, c9, 0, 0), s14 = (0, 0, 0, 0, 0, c8, 0, 0)
Z = s1 + s2 + 2s3 + 2s4 + 2s5 + s6 + s7 + s8 + s9 + 2s10 − s11 − s12 − s13 − s14

2: return Z mod p

In this paper, we propose a two-stage fast reduction algorithm over SCA-256 given in Algorithm 3.
After the second fast reduction operation, the intermediate result is Z2 = s15 + s16 − s17, Z2 ∈ [0, 2p).
It will cost only one subtraction operation to get the final result [0, p) in the worst case.

Algorithm 3: Two-stage fast reduction algorithm in SCA-256

Input: a and c=(c15,c14,...,c0) in base 232; 0 ≤ a < p, 0 ≤ c < p2

Output: (c + a) mod p
stage 1:

s1 = (c7, c6, c5, c4, c3, c2, c1, c0); s2 = (c15, 0, 0, 0, 0, 0, 0, 0);
s3 = (c12, 0, c15, c14, 0, 0, 0, c13); s4 = (c13, 0, 0, 0, 0, 0, c14, c15);
s5 = (c14, 0, 0, 0, c13, 0, c15, c14); s6 = (c8, c11, c13, c15, c14, 0, c9, c10);
s7 = (c9, c14, c10, c13, c8, 0, c11, c12); s8 = (c10, c15, c14, c12, c11, 0, c13, c8);
s9 = (c11, 0, 0, c9, c12, 0, c10, c9); s10 = (0, 0, 0, 0, 0, c15, 0, c12, c11);
s11 = (0, 0, 0, 0, 0, c8, 0, 0); s12 = (0, 0, 0, 0, 0, c9, 0, 0);
s13 = (0, 0, 0, 0, 0, c13, 0, 0); s14 = (0, 0, 0, 0, 0, c14, 0, 0);
Z1 = s1 + 3s2 + 2s3 + 2s4 + 2s5 + s6 + s7 + s8 + s9 + s10 − s11 − s12 − s13 − s14 − a + p

= (r8, r7, r6, r5, r4, r3, r2, r1, r0)
stage 2:

s15 = (r7, r6, r5, r4, r3, r2, r1, r0); s16 = (r8, 0, 0, 0, r8, 0, 0, r8);
s17 = (0, 0, 0, 0, 0, r8, 0, 0);
Z2 = s15 + s16 − s17;
return Z2 mod p

Electronics 2019, 8, 431 5 of 13

In Stage 1 of Algorithm 3, the intermediate result Z1 is computed by a series of addition and
subtraction operations, which can be implemented by a carry save addition structure to reduce the
carry propagation delay. Sometimes, MA or MS operation follows MM operation. It will reduce one
clock cycle when one MA/MS operation is carried into MM operation. It can be achieved by adding
one operant a in Z1 in Stage 1 and then getting the result (c + a) mod p. The max latency on carry
save addition is the final carry bit addition, hence adding one operand to some operands almost does
not increase latency.

B. Multiplication Structure

This subsection introduces a multiplication structure. Multiplier is typically used in traditional
high-performance architectures. To avoid the large hardware consumption caused by a full-word
multiplier, we split full-word multiplication into half-word multiplication, costing more clock cycles.
There are some works based on half-word multiplier. Cascading multipliers structure is applied in the
full-word multiplication in [7]. This structure is designed with four half-word multiplications, a1b1,
a1b0, a0b1and a0b0, shown in the formula below.

A× B = (a12128 + a0)× (b12128 + b0)

= a1b12256 + a1b02128 + a0b12128 + a0b0
(4)

where A, B ∈ GF(p), a0, a1, b1 and b0 are 128-bit. The Karatsuba–Ofman multiplication [25] is based
on divide-and-conquer. Shown in the formula below, Karatsuba–Ofman multiplication takes three
half-word multiplications, a1b1, a0b0 and (a0 + a1)(b0 + b1).

A× B = a1b12256 + (a1b0 + a0b1)2128 + a0 b0

= a1b12256 + ((a0 + a1)(b0 + b1)− a1b1 − a0b0)2128 + a0b0
(5)

Corresponding Karatsuba–Ofman multiplication algorithm in [15] is shown in Algorithm 4. Three
half-word multiplication operations are performed separately, as a result only one half-word multiplier
are consumed.

Algorithm 4: Karatsuba–Ofman multiplication algorithm

Input: A: 256 bit integer, satisfy A = a1 ∗ 2128 + a0

B: 256 bit integer, satisfy B = b1 ∗ 2128 + b0

Output: C: 512 bit product, satisfy C = A ∗ B
1:P00 = a0 ∗ b0; asum = a0 + a1

2:P11 = a1 ∗ b1; bsum = b0 + b1

3:Pss = asum ∗ bsum; C = (P11, P00)− P002128

4:C = C− P112128

5:C = C + Pss2128

6:return C

Figure 1 shows the schedule comparison between the existing structure in [15] and our structure.
In [15], the half-word multiplier takes two clock cycles and the multiplication structure requires
six, while our multiplication structure consumes five clock cycles. With hardware reuse technology,
the full-word multiplication can be completed in five clock cycles with one 129-bit half-word multiplier
and one 512-bit adder (subtraction can be implemented in the form of complements with an adder).

Electronics 2019, 8, 431 6 of 13

 Z1[261] Z1[260] Z1[259] Z1[258] Z1[257] Z1[256] Z1[255] … Z1[0]

 ss20[260] ss20[259] ss20[258] ss20[257] ss20[256] ss20[255] … ss20[0]

sc20[260] sc20[259] sc20[258] sc20[257] sc20[256] sc20[255] sc20[254] … 0

sc21[260] sc21[259] sc21[258] sc21[257] sc21[256] sc21[255] sc21[254] … 0

r8[0]r8[4]

11

r8[5] r8[1]

1

r8[2]

1

0

r8[3]

mod

0

0

0
1

0 0 0 0 0 c8 0

c13
0

c12 0 c15 c14 0 0 0

c15 0 0 0 0 0 0 0
0

0
0
c0

0
0
c1

0
0
c2

0
0
c3

0
0
c4

0
0
c5

0
0
c6

c15
c15
c7 s1

s2
s2

s2

s3

c12 0 c15 c14 0 0 0 c13
0

p7 p6 p5 p4 p3 p2 p1 p0
0

- s12

p

r0r1r2r3r4r5r6r7

r8[0]r8[4] r8[3]

32-bit CSA

mod

mod

mod

mod

mod

mod

mod

mod

mod

mod

mod

T1=Z1*Z1 mod p

T2=T1*Z1 mod p

T1=T1*x2 mod p

T2=T2*y2 mod p

T1=T1-X1

T3=T1*T1 mod p

T2=T2-Y1

Z3=Z1*Y1 mod p

T4=T3*T1 mod p

T3=T3*X1 mod p

T5=(T2*T2-T4) mod p

T1=T3+2T3

T4=T4*Y1 mod p

T1=T1-T5

Y3=(T1*T2-T4) mod p

X3=T3-T1

mod

mod

mod

mod

mod

mod

mod

mod

Point addition Point doubling

mod

Multiplication

Modular subtraction

Modular reduction

Modular addition

mod

mod

mod

Point addition

mod

mod

mod

mod

Point doubling

mod

mod

mod

mod

Point doubling

mod

mod

mod

Point doubling

mod

mod

mod

Point addition

r8[0]r8[4]

11

r8[5] r8[1]

1

r8[2]

1

0

r8[3]
32-bit CSA

1-bit CSA

column 32-bit

8 7 6 5 4 3 2 1

column 1-bit

 5 4 3 2 1

 ss14[260] ss14[259] ss14[258] ss14[257] ss14[256] ss14[255] … ss14[0]

sc14[260] sc14[259] sc14[258] sc14[257] sc14[256] sc14[255] sc14[254] … 1

 1 1 1 1 1 s12[255] … s12[0]

 ss15[260] ss15[259] ss15[258] ss15[257] ss15[256] ss15[255] … ss15[0]

sc15[260] sc15[259] sc15[258] sc15[257] sc15[256] sc15[255] sc15[254] … 1

 1 1 1 1 1 s13[255] … s13[0]

 ss16[260] ss16[259] ss16[258] ss16[257] ss16[256] ss16[255] … ss16[0]

sc16[260] sc16[259] sc16[258] sc16[257] sc16[256] sc16[255] sc16[254] … 1

 1 1 1 1 1 s14[255] … s14[0]

 ss17[260] ss17[259] ss17[258] ss17[257] ss17[256] ss17[255] … ss17[0]

sc17[260] sc17[259] sc17[258] sc17[257] sc17[256] sc17[255] sc17[254] … 1

 1 1 1 1 1 s15[255] … s15[0]

 ss18[260] ss18[259] ss18[258] ss18[257] ss18[256] ss18[255] … ss18[0]

sc18[260] sc18[259] sc18[258] sc18[257] sc18[256] sc18[255] sc18[254] … 1

 1 1 1 1 1 d[255] … d[0]

 ss19[260] ss19[259] ss19[258] ss19[257] ss19[256] ss19[255] … ss19[0]

sc19[260] sc19[259] sc19[258] sc19[257] sc19[256] sc19[255] sc19[254] … 0

 0 0 0 0 0 p[255] … p[0]

P00 = a0 × b0, asum = a0 + a1

P11 = a1 × b1, bsum = b0 + b1

Pss = asum×bsum, C=(P11,P00)-P002
128

C=C - P112
128

C=C + Pss2
128

Control unit

 MA/MS unit

NAF unit

Reduction
unit

Multiplier

Mul. unitRegister

Register (all data)
 Inv unit

Adder

Control unit

 MA/MS unit

NAF unit

Reduction unit

Multiplier

Mul. unit
Register

Register
all data

 Inv unit

Adder

x,y

SM2

Z1*Z1 mod p

T1*Z1 mod p

T1*x2 mod p

T2*y2 mod p

T1-X1

T1*T1 mod p

T2-Y1

Z1*Y1 mod p

T3*T1 mod p

T3*X1 mod p

(T2*T2-T4) mod p

T3+2T3

T4*Y1 mod p

T1-T5

(T1*T2-T4) mod p

T3-T1

Point addition Point doubling

Multiplication

Modular subtraction

Fast reduction

Modular addition

Point addition Point doubling

Point doublingPoint doubling

Point addition

1
2

3
1
5

1
9

2
0

ro
w

 3
2
-b

it

1
0

1

6
9

ro
w

 1
-b

it

b0a0 a1 b1 a0 a1 b0 b1

Point addition

Point doubling

Multiplication

Modular subtraction

Modular reduction

Modular addition

Point addition

Point doubling Point doubling

Point doubling Point addition

(a) (b) (c) (d)

Register (all data)

 Inv unit

NAF unit

Reduction
unit

Multiplier

Mul. unitRegister

Control unit

Adder

x,y

SM2

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

mul1

mul2

mul3

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

mul1

mul2

mul3

Existing structure Our structure

Figure 1. Multiplication operational schedule between existing structure and our structure.

3.2. Point Addition and Point Doubling

Since the PM operation consists of PA and PD operations, an efficient implementation of modular
multiplication operations does not necessarily yield a high-performance PM operation. The algorithm
optimization at the point arithmetic layer is also very important.

Algorithm 5 gives the traditional point addition and point doubling algorithms shown in [23].
Each step can only performs one operation at modular arithmetic layer because these algorithms are
not designed for enhance computational parallelism. There are 18 steps including 11 MM operations
in PA algorithm, while there are 17 steps containing eight MM operations in PD algorithm.

Algorithm 5: Point addition and point doubling algorithms shown in [23]

Input: P1 = (X1, Y1, Z1) in Jacobian coordinates,
P2 = (x2, y2) in affine coordinates
Output:P3 = P1 + P2 = (X3, Y3, Z3)

1: T1 = Z1Z1

2: T2 = T1Z1

3: T1 = T1x2

4: T2 = T2y2

5: T1 = T1 − X1

6: T2 = T2 −Y1

7: Z3 = Z1T1

8: T3 = T1T1

9: T4 = T3T1

10: T3 = T3X1

11: T1 = 2T3

12: X3 = T2T2

13: X3 = X3 − T1

14: X3 = X3 − T4

15: T3 = T3 − X3
16: T3 = T3T2

17: T4 = T4Y1

18: Y3 = T3 − T4

19: return (X3, Y3, Z3)

Input: P1 = (X1, Y1, Z1) in Jacobian coordinates
Output:P3 = 2P1 = (X3, Y3, Z3)

1: T1 = Z1Z1

2: T2 = X1 − T1

3: T1 = X1 + T1

4: T2 = T2T1

5: T2 = 3T2

6: Y3 = 2Y1

7: Z3 = Y3Z1

8: Y3 = Y3Y3

9: T3 = Y3X1

10: Y3 = Y3Y3

11: Y3 = Y3/2
12: X3 = T2T2

13: T1 = 2T3

14: X3 = X3 − T1

15: T1 = T3 − X3

16: T1 = T1T2

17: Y3 = T1 −Y3

18: return (X3, Y3, Z3)

Electronics 2019, 8, 431 7 of 13

There are some modified point addition and point doubling algorithms to reduce computation
steps, such as Algorithm 6 reported in [3]. For improving performance, each step except the last one
should perform MM operation. There are 13 steps including 12 MM operations in its PA algorithm,
while there are nine steps containing eight MM operations in PD algorithm.

Algorithm 6: Point addition and point doubling algorithms reported in [3]

Input: P1 = (X1, Y1, Z1) in Jacobian coordinates,
P2 = (x2, y2) in affine coordinates
Output:P3 = P1 + P2 = (X3, Y3, Z3)

1: T1 = Z1Z1

2: T2 = y2Z1

3: T3 = x2T1

4: T1 = T1T2, T2 = T3 − X1, T3 = T3 + X1

5: T4 = T2T2, T1 = T1 −Y1

6: Z3 = Z1T2

7: T2 = T2T4

8: T3 = T3T4

9: T5 = T1T1

10: T4 = X1T4, X3 = T5 − T3

11: T2 = Y1T2, T3 = T4 − X3

12: T1 = T1T3

13: Y3 = T1 − T2

14: Return (X3, Y3, Z3)

Input: P1 = (X1, Y1, Z1) in Jacobian coordinates
Output:P3 = 2P1 = (X3, Y3, Z3)

1: T1 = Z1Z1

2: T2 = Y1Y1, T3 = X1 + T1, T4 = X1 − T1

3: T1 = T3T4

4: T3 = Y1Z1, T4 = 8T2

5: T5 = X1T4, T1 = 3T1

6: T3 = T1T1, Z3 = T3 + T3

7: T2 = T2T4, X3 = T3 − T5, T4 = 1.5T5 − T3

8: T1 = T1T4

9: Y3 = T1 − T2

10: Return (X3, Y3, Z3)

In this paper, we propose the novel point addition and point doubling algorithms given in
Algorithm 7. There are 11 steps including 11 MM operations totally in our PA algorithm, fewer steps
than that in [3,23] and fewer MM operations than that in [3]. There are eight steps containing eight MM
operations in our PD algorithm, fewer steps than that in [3,23]. Therefore, our PA and PD algorithms
are more efficient those that in [3,23].

Algorithm 7: Point addition and point doubling algorithms

Input: P1 = (X1, Y1, Z1) in Jacobian coordinates,
P2 = (x2, y2) in affine coordinates
Output:P3 = P1 + P2 = (X3, Y3, Z3)

1: T1 = Z1Z1

2: T2 = T1Z1

3: T1 = T1x2

4: T2 = T2y2, T1 = T1 − X1

5: T3 = T1T1, T2 = T2 −Y1

6: Z3 = Z1Y1

7: T4 = T3T1

8: T3 = T3X1

9: T5 = T2T2 − T4, T1 = 3T3

10: T4 = T4Y1, T1 = T1 − T5

11: Y3 = T1T2 − T4, X3 = T3 − T1

12: return X3,Y3,Z3

Input: P1 = (X1, Y1, Z1) in Jacobian coordinates
Output:P3 = 2P1 = (X3, Y3, Z3)

1: T1 = Z1Z1, Y3 = 2Y1

2: T2 = Y3Y3, T3 = X1 − T1, T1 = X1 + T1

3: T3 = T3T1

4: T4 = T2X1, T3 = 3T3

5: Z3 = Y3Z1, T1 = 2T4

6: X3 = T3T3 − T1

7: Y3 = T2T2, T1 = T4 − X3

8: T2 = Y3/2, Y3 = T1T3 − T2

9: return X3,Y3,Z3

Electronics 2019, 8, 431 8 of 13

Figure 2 gives the detailed pipeline operational schedules. Figure 2a,b shows the internals of
PA and PD operations. The fast reduction, MA and MS operations are completely parallel with
the continuous multiplication. Figure 2c demonstrates the transition from PA to PD operations and
Figure 2d shows the switch between PD and PD operations. In these schedules, the multiplication
operation is constantly running, not affected by switch between PA and PD and shifting from PD
to PD.

 Z1[261] Z1[260] Z1[259] Z1[258] Z1[257] Z1[256] Z1[255] … Z1[0]

 ss20[260] ss20[259] ss20[258] ss20[257] ss20[256] ss20[255] … ss20[0]

sc20[260] sc20[259] sc20[258] sc20[257] sc20[256] sc20[255] sc20[254] … 0

sc21[260] sc21[259] sc21[258] sc21[257] sc21[256] sc21[255] sc21[254] … 0

r8[0]r8[4]

11

r8[5] r8[1]

1

r8[2]

1

0

r8[3]

mod

0

0

0
1

0 0 0 0 0 c8 0

c13
0

c12 0 c15 c14 0 0 0

c15 0 0 0 0 0 0 0
0

0
0
c0

0
0
c1

0
0
c2

0
0
c3

0
0
c4

0
0
c5

0
0
c6

c15
c15
c7 s1

s2
s2

s2

s3

c12 0 c15 c14 0 0 0 c13
0

p7 p6 p5 p4 p3 p2 p1 p0
0

- s12

p

r0r1r2r3r4r5r6r7

r8[0]r8[4] r8[3]

32-bit CSA

mod

mod

mod

mod

mod

mod

mod

mod

mod

mod

mod

T1=Z1*Z1 mod p

T2=T1*Z1 mod p

T1=T1*x2 mod p

T2=T2*y2 mod p

T1=T1-X1

T3=T1*T1 mod p

T2=T2-Y1

Z3=Z1*Y1 mod p

T4=T3*T1 mod p

T3=T3*X1 mod p

T5=(T2*T2-T4) mod p

T1=T3+2T3

T4=T4*Y1 mod p

T1=T1-T5

Y3=(T1*T2-T4) mod p

X3=T3-T1

mod

mod

mod

mod

mod

mod

mod

mod

Point addition Point doubling

mod

Multiplication

Modular subtraction

Modular reduction

Modular addition

mod

mod

mod

Point addition

mod

mod

mod

mod

Point doubling

mod

mod

mod

mod

Point doubling

mod

mod

mod

Point doubling

mod

mod

mod

Point addition

r8[0]r8[4]

11

r8[5] r8[1]

1

r8[2]

1

0

r8[3]
32-bit CSA

1-bit CSA

column 32-bit

8 7 6 5 4 3 2 1

column 1-bit

 5 4 3 2 1

 ss14[260] ss14[259] ss14[258] ss14[257] ss14[256] ss14[255] … ss14[0]

sc14[260] sc14[259] sc14[258] sc14[257] sc14[256] sc14[255] sc14[254] … 1

 1 1 1 1 1 s12[255] … s12[0]

 ss15[260] ss15[259] ss15[258] ss15[257] ss15[256] ss15[255] … ss15[0]

sc15[260] sc15[259] sc15[258] sc15[257] sc15[256] sc15[255] sc15[254] … 1

 1 1 1 1 1 s13[255] … s13[0]

 ss16[260] ss16[259] ss16[258] ss16[257] ss16[256] ss16[255] … ss16[0]

sc16[260] sc16[259] sc16[258] sc16[257] sc16[256] sc16[255] sc16[254] … 1

 1 1 1 1 1 s14[255] … s14[0]

 ss17[260] ss17[259] ss17[258] ss17[257] ss17[256] ss17[255] … ss17[0]

sc17[260] sc17[259] sc17[258] sc17[257] sc17[256] sc17[255] sc17[254] … 1

 1 1 1 1 1 s15[255] … s15[0]

 ss18[260] ss18[259] ss18[258] ss18[257] ss18[256] ss18[255] … ss18[0]

sc18[260] sc18[259] sc18[258] sc18[257] sc18[256] sc18[255] sc18[254] … 1

 1 1 1 1 1 d[255] … d[0]

 ss19[260] ss19[259] ss19[258] ss19[257] ss19[256] ss19[255] … ss19[0]

sc19[260] sc19[259] sc19[258] sc19[257] sc19[256] sc19[255] sc19[254] … 0

 0 0 0 0 0 p[255] … p[0]

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

P00 = a0 × b0, asum = a0 + a1

P11 = a1 × b1, bsum = b0 + b1

Pss = asum×bsum, C=(P11,P00)-P002
128

C=C - P112
128

C=C + Pss2
128

Control unit

 MA/MS unit

NAF unit

Reduction
unit

Multiplier

Mul. unitRegister

Register (all data)
 Inv unit

Adder

Control unit

 MA/MS unit

NAF unit

Reduction unit

Multiplier

Mul. unit
Register

Register
all data

 Inv unit

Adder

x,y

SM2

Z1*Z1 mod p

T1*Z1 mod p

T1*x2 mod p

T2*y2 mod p

T1-X1

T1*T1 mod p

T2-Y1

Z1*Y1 mod p

T3*T1 mod p

T3*X1 mod p

(T2*T2-T4) mod p

T3+2T3

T4*Y1 mod p

T1-T5

(T1*T2-T4) mod p

T3-T1

Point addition Point doubling

Multiplication

Modular subtraction

Fast reduction

Modular addition

Point addition Point doubling

Point doublingPoint doubling

Point addition

1
2

3
1
5

1
9

2
0

ro
w

 3
2
-b

it

1
0

1

6
9

ro
w

 1
-b

it

b0a0 a1 b1 a0 a1 b0 b1

Point addition

Point doubling

Multiplication

Modular subtraction

Modular reduction

Modular addition

Point addition

Point doubling Point doubling

Point doubling Point addition

(a) (b) (c) (d)

Register (all data)

 Inv unit

NAF unit

Reduction
unit

Multiplier

Mul. unitRegister

Control unit

Adder

x,y

SM2

Figure 2. Operational schedule without idle clock cycle: (a) point addition; (b) point doubling;
(c) between point addition and point doubling; and (d) between point doubling and point doubling.

3.3. SM2 Architecture

In this section, a SM2 architecture is demonstrated. The block diagram of SM2 is given in Figure 3.
The Control unit block is a two-level controller. The top level is responsible for point arithmetic
layer including PM, PA and PD operations, and the sublevel is in charge of modular arithmetic layer
including MA, MS, MM and MI operations. MM operation is run by the Mult. unit and the NAF unit
blocks. The Inversion unit block is applied to coordinate conversion from Jacobian coordinates to
affine coordinates at the end of PM operation. For saving hardware footage, the Inversion unit block
can also perform the MA/MS operation.

Elliptic curve cryptosystems contain Elliptic Curve Digital Signature Algorithm (ECDSA)
signature generation, ECDSA signature verification, and Elliptic Curve Integrated Encryption Scheme
(ECIES) encryption and decryption [23]. The PM operation of the architecture here is limited to the
SCA-256 prime field. This architecture can also perform PM operation in other specific prime field, if a
fast reduction algorithm of other specific prime field is also considered. The architecture we proposed
mainly focuses on the acceleration of PM operation, which can be configured to perform the operation
at modular arithmetic layer as well. By hardware/software co-design, our hardware module can be
used by the software in an embedded system, and the ECC encryption and decryption, signature and
verification algorithm can be realized.

Electronics 2019, 8, 431 9 of 13

 Z1[261] Z1[260] Z1[259] Z1[258] Z1[257] Z1[256] Z1[255] … Z1[0]

 ss20[260] ss20[259] ss20[258] ss20[257] ss20[256] ss20[255] … ss20[0]

sc20[260] sc20[259] sc20[258] sc20[257] sc20[256] sc20[255] sc20[254] … 0

sc21[260] sc21[259] sc21[258] sc21[257] sc21[256] sc21[255] sc21[254] … 0

r8[0]r8[4]

11

r8[5] r8[1]

1

r8[2]

1

0

r8[3]

mod

0

0

0
1

0 0 0 0 0 c8 0

c13
0

c12 0 c15 c14 0 0 0

c15 0 0 0 0 0 0 0
0

0
0
c0

0
0
c1

0
0
c2

0
0
c3

0
0
c4

0
0
c5

0
0
c6

c15
c15
c7 s1

s2
s2

s2

s3

c12 0 c15 c14 0 0 0 c13
0

p7 p6 p5 p4 p3 p2 p1 p0
0

- s12

p

r0r1r2r3r4r5r6r7

r8[0]r8[4] r8[3]

32-bit CSA

mod

mod

mod

mod

mod

mod

mod

mod

mod

mod

mod

T1=Z1*Z1 mod p

T2=T1*Z1 mod p

T1=T1*x2 mod p

T2=T2*y2 mod p

T1=T1-X1

T3=T1*T1 mod p

T2=T2-Y1

Z3=Z1*Y1 mod p

T4=T3*T1 mod p

T3=T3*X1 mod p

T5=(T2*T2-T4) mod p

T1=T3+2T3

T4=T4*Y1 mod p

T1=T1-T5

Y3=(T1*T2-T4) mod p

X3=T3-T1

mod

mod

mod

mod

mod

mod

mod

mod

Point addition Point doubling

mod

Multiplication

Modular subtraction

Modular reduction

Modular addition

mod

mod

mod

Point addition

mod

mod

mod

mod

Point doubling

mod

mod

mod

mod

Point doubling

mod

mod

mod

Point doubling

mod

mod

mod

Point addition

r8[0]r8[4]

11

r8[5] r8[1]

1

r8[2]

1

0

r8[3]
32-bit CSA

1-bit CSA

column 32-bit

8 7 6 5 4 3 2 1

column 1-bit

 5 4 3 2 1

 ss14[260] ss14[259] ss14[258] ss14[257] ss14[256] ss14[255] … ss14[0]

sc14[260] sc14[259] sc14[258] sc14[257] sc14[256] sc14[255] sc14[254] … 1

 1 1 1 1 1 s12[255] … s12[0]

 ss15[260] ss15[259] ss15[258] ss15[257] ss15[256] ss15[255] … ss15[0]

sc15[260] sc15[259] sc15[258] sc15[257] sc15[256] sc15[255] sc15[254] … 1

 1 1 1 1 1 s13[255] … s13[0]

 ss16[260] ss16[259] ss16[258] ss16[257] ss16[256] ss16[255] … ss16[0]

sc16[260] sc16[259] sc16[258] sc16[257] sc16[256] sc16[255] sc16[254] … 1

 1 1 1 1 1 s14[255] … s14[0]

 ss17[260] ss17[259] ss17[258] ss17[257] ss17[256] ss17[255] … ss17[0]

sc17[260] sc17[259] sc17[258] sc17[257] sc17[256] sc17[255] sc17[254] … 1

 1 1 1 1 1 s15[255] … s15[0]

 ss18[260] ss18[259] ss18[258] ss18[257] ss18[256] ss18[255] … ss18[0]

sc18[260] sc18[259] sc18[258] sc18[257] sc18[256] sc18[255] sc18[254] … 1

 1 1 1 1 1 d[255] … d[0]

 ss19[260] ss19[259] ss19[258] ss19[257] ss19[256] ss19[255] … ss19[0]

sc19[260] sc19[259] sc19[258] sc19[257] sc19[256] sc19[255] sc19[254] … 0

 0 0 0 0 0 p[255] … p[0]

P00 = a0 × b0, asum = a0 + a1

P11 = a1 × b1, bsum = b0 + b1

Pss = asum×bsum, C=(P11,P00)-P002
128

C=C - P112
128

C=C + Pss2
128

Control unit

 MA/MS unit

NAF unit

Reduction
unit

Multiplier

Mul. unitRegister

Register (all data)
 Inv unit

Adder

Control unit

 MA/MS unit

NAF unit

Reduction unit

Multiplier

Mul. unit
Register

Register
all data

 Inv unit

Adder

x,y

SM2

Z1*Z1 mod p

T1*Z1 mod p

T1*x2 mod p

T2*y2 mod p

T1-X1

T1*T1 mod p

T2-Y1

Z1*Y1 mod p

T3*T1 mod p

T3*X1 mod p

(T2*T2-T4) mod p

T3+2T3

T4*Y1 mod p

T1-T5

(T1*T2-T4) mod p

T3-T1

Point addition Point doubling

Multiplication

Modular subtraction

Fast reduction

Modular addition

Point addition Point doubling

Point doublingPoint doubling

Point addition

1
2

3
1

5
1
9

2
0

ro
w

 3
2

-b
it

1
0

1

6

9

ro
w

 1
-b

it

b0a0 a1 b1 a0 a1 b0 b1

Point addition

Point doubling

Multiplication

Modular subtraction

Modular reduction

Modular addition

Point addition

Point doubling Point doubling

Point doubling Point addition

(a) (b) (c) (d)

Register (all data)

 Inversion

unit

NAF unit

Reduction

unit

Multiplier

Mult. unitRegister

Control unit

Adder

x,y

SM2

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

mul1

mul2

mul3

cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

mul1

mul2

mul3

Existing structure Our structure

Figure 3. SM2 Architecture diagram.

4. Hardware Implementation Result

The ECC architecture described above was implemented with Verilog-HDL language.
This architecture was synthesized by Synopsys Design Compiler with the SMIC 130-nm CMOS standard
cell library. The circuit area was evaluated based on two-way NAND gate. For better comparison, this
architecture was also implemented on different Xilinx FPGA boards, including Virtex-6 xc6vlx760, Virtex-5
xc5vfx130t and Virtex-4 xc4vlx200. Xilinx ISE 14.7 was chosen for synthesis, mapping, and routing.

In Algorithm 1, since the results of P[i] = iP, i ∈ {1, 3, ..., 2w−1 − 1}, can be pre-calculated, the PM
operation took clock cycle as follows:

N +
m− 1
(w + 1)

∗ A + (m− 1) ∗ D + 2 ∗ I (6)

where m is the length of scalar k, w is the width of NAF, N is the clock cycle for calculating NAF(k),
D and A are the clock cycle to perform PD and PA operations, and I stands for the clock cycle of
MI operation.

Table 1 shows the clock cycle of each EC operation. The MM operation took five clock cycles.
The number of PA operations could be reduced by scalar k being coded by NAF4 in PM operation.
By testing 1000 times, the PM operation required 14,242 clock cycles on average, including the time of
coordinate conversion, which took two MI operations.

Table 2 shows the hardware consumption of each block on ASIC platform. The Mult. unit block
consists of one 129-bit multiplier, one 512-bit adder and some registers. The Mult. unit block occupies
half of the total area, as the table shows, since the multiplier consumes a lot of hardware resources.
Table 3 gives the resource utilization on FPGA platform.

Table 1. The clock cycle of EC operations.

Operation Clock Cycle Operation Clock Cycle Operation Clock Cycle

MA 1 NAF(k) 120 MI 540
MS 1 PA 56 PM 14242
MM 5 PD 40

Table 2. Hardware consumption of each block on ASIC platform.

Block Mult. Unit Reduction Unit NAF Unit Inversion Unit SM2 (Total)

area (gate) 141,661 22,417 14,913 29,226 280,137
Percent (%) 50.57 8.00 5.32 10.43 -

Electronics 2019, 8, 431 10 of 13

Table 3. Resource utilization on FPGA platform.

Resource Slice LUTs Flip Flops DSP Slice

Virtex-6 27,662 11,911 80 10,089
Virtex-5 26,717 11,596 80 7943
Virtex-4 40,817 14,173 78 22,242

Table 4 shows the result of ECC hardware performance comparison among different architecture
on ASIC platform. The processor in [3] is designed with a full-word multiplier and took 0.02 ms to
perform a PM operation. Although full-word multiplier only needed one clock cycle to perform full
multiplication operation, it brought large area consumption and severe latency. This design has a
circuit area of 659 k gates, 2.35 times ours, and can run at a frequency of 163.7 MHz, while ours design
based on half-word multiplier runs at a frequency of 250 MHz. Our design can run at higher frequency
and has better point operational schedules, and the width of NAF w is set to 4 while w is set to 3 in [3].
Therefore, although multiplication operation of our design took five clock cycles, five times that of the
method in [3], the PM operation of our design took 2.8 times over the method in [3] but not 5.

Table 4. ECC hardware performance comparison on ASIC platform.

Design Platform Prime Field Frequency (MHz) Clock Cycle (k) Area (k Gate) PM * (ms) AT 1

This work 0.13-µm SCA-256 250 14.24 280 0.057 15.96
3 0.13-µm SCA-256 163.7 3.3 659 0.02 13.28
9 0.13-µm 256 110 - 167.5 3.01 504

12 0.13-µm 256 150 610 57.05 4.07 232
13 0.13-µm 256 137.7 340 120.26 2.47 297
14 0.13-µm 256 556 562 122 1.01 123

1 AT: Area * PM, area-time product.

In [9,12], the MM and MI operations are based on adder, using interleaved modular multiplication
algorithm and binary inversion algorithm. The design in [9] has two multiplier units and two inversion
units, whereas the design in [12] combines inversion unit and multiplier unit into one common unit.
Therefore, the processor area of the design in [9] is 2.5 times larger than that of the design in [12].
Because their PA and PD operations are implemented in affine coordinates, there are MM and MI
operations in PA or PD operations. Since both designs are based on adder, they cost lower areas but
more run time of PM operation, reaching 3.01 ms in [9] and 4.07 ms in [12].

The processors proposed in [13,14] employ NAF in PM operation and do not focus on optimizing
the operational schedules of PM operation. The processor in [13] employs Montgomery multipliers
with sizes ranging from 8-bit × 8-bit to 64-bit × 64-bit. Small size of multiplier results in low hardware
consumption but low performance. As a result, this processor costs an area of 120.26k gate, 57.05% less
than ours, and requires 2.47 ms, 43 times slower than ours. The processor in [14] is based on a systolic
arithmetic unit. It can run at very high frequency of 556 MHz and takes 1.01 ms for one PM operation,
2.65 times faster than the design in [13].

The design we proposed is based on half-word multiplier and the point operational schedules are
optimized to increase efficiency. Synthesized with a 130 nm CMOS standard cell library, the area of our
design is 280 k gates with PM operation time of 0.057 ms at the frequency of 250 MHz. For parameter
AT, our design is small than [9,12–14].

Table 5 shows the performance results on FPGA platform. The designs in [9,10,12,17,18] are all
based on adder and have lower performance than our design. The multiplication reported in [9,12] are
implemented with interleaved modular multiplication algorithm, that is the simplest multiplication
algorithm but costs less adders. Radix-8 booth encoded interleaved modular multiplication algorithm
is applied to realize multiplication in [10], while radix-4 booth encoding interleaved modular
multiplication algorithm is adopted in [17,18].

Electronics 2019, 8, 431 11 of 13

Table 5. ECC hardware performance comparison on FPGA platform.

Design Platform Prime Field Frequency (MHz) Clock Cycle (k) Area PM (ms) AT TP (ops)

This work Virtex-6 SCA-256 38.045 14.24 27.655k LUTs 0.37 10.35 2672
Virtex-5 34.15 26.717 LUTs 0.42 11.14 2398
Virtex-4 20.87 22.242 Slice 0.68 15.18 1466

9 Virtex-4 256 43 331 20.123k Slices 7.7 154.95 130

10 Virtex-4 256 40 200 13.158k Slices 5 65.79 200

12 Virtex-4 256 20.44 610 9.37k Slices 29.84 279.61 34

17 Virtex-5 256 73 191.815 31.431k LUTs 2.62 82.35 382
Virtex-4 49 20.579k Slices 3.91 80.46 256

18 Virtex-6 256 144 207.10 32.4k LUTs 1.43 46.33 699
Virtex-4 70 35.7k Slices 2.96 105.67 337

19 Virtex-6 256 221 144.5 44.3k LUTs 0.65 28.80 1538
Virtex-5 172 44.6k LUTs 0.84 37.46 1190
Virtex-4 141 78.5k LUTs 1.02 80.07 980

20 Virtex-6 NIST-256 327 153.16 65.6k LUTs 0.47 30.83 2128
Virtex-5 255 65k LUTs 0.6 39.00 1666
Virtex-4 191 96.6k LUTs 0.8 77.28 1250

Radix-8 booth encoded algorithm is more efficient than radix-8 booth encoded algorithm.
Compared with the method in [17,18], the design in [10] achieves a similar PM’s clock cycle (200 k)
with less Slices resource (9.37 k). Implemented in Virtex-4 platform, the design in [10] costs 13.158 k
Slices and needs 5 ms for PM operation, 7.35 times slower than our design.

NAF point multiplication algorithm is applied in [17] while double-and-always-add point
multiplication algorithm is adopted in [18]. Since NAF2 representation of scalar k has the merits
of reducing point multiplication time complexity from m

2 A + mD to m
3 A + mD, compared to the

design in [17], the design in [18] occupies more LUTs (35.7 k vs. 20.579 k slices on Virtex-4) to attain
a similar PM’s clock cycle (207.10 k vs. 191.815 k). On Virtex-5 platform, the design in [17] occupies
31.431 k LUTs and takes 2.62 ms to perform PM operation at a maximum clock frequency of 73 MHz.
On Virtex-6 FPGA, the design in [18] occupies 32.4k LUTs and computes PM operation in 1.43 ms
operating at a maximum frequency of 144 MHz. Our design was 6.24 times faster than the design
in [17] on Virtex-5 platform and 3.86 times faster than the design in [18] on Virtex-6 platform.

The design in [19] is based on the redundant-signed-digit-based parallel programmable unit with
four Montgomery multipliers. On Virtex-6 platform, it consumes 44.3 k LUTs and takes 0.65 ms to
compute a single PM operation at a maximum frequency of 144.5 MHz. Our design was 1.76 times
faster and saved 37.57% LUTs on the same platform. The processor reported in [20] is a LUTs based
design for National Institute of Standards and Technology (NIST) recommended prime NIST-256.
It takes 0.47 ms to compute a 256-bit PM operation and occupies 65.6 k LUTs on Virtex-6 platform.
Our design was 1.27 times faster and saved 57.84% LUTs on the Virtex-6 platform.

Our design took 0.37 ms, 0.77 ms, and 0.64 ms to perform one 256-bit PM operation, and occupied
27.655 LUTs, 26.718 LUTs, and 21.882 k Slices on Virtex-6, Virtex-5, and Virtex-4 platforms, respectively.
Compared to the designs shown in Table 5, our architecture achieved higher performance and
lower AT.

5. Conclusions

A high-performance ECC processor over GF(p) is proposed in this paper. Two-stage fast reduction
algorithm over SCA-256 is presented to avoid iterative addition/subtraction operations to get the
final result, resulting in lower latency and less hardware consumption. Half-word multiplier is
chosen to balance area consumption and performance. The PA and PD operational schedules are
redesigned to improve the parallelism of MM and MA/MS operations and to maximize hardware
reuse. Pipeline design is fully explored to enhance parallel computing of MM operation, and includes
both multiplication and fast reduction. The implementation results reveal that the proposed ECC

Electronics 2019, 8, 431 12 of 13

processor offers higher speed over the state-of-the-art ECC processors with just a small area overhead.
The processor is better than others since it makes a tradeoff between area and performance.

Author Contributions: Data curation, X.H.; Formal analysis, X.H. and X.Z.; Investigation, X.H. and S.Z.;
Methodology, X.H., S.Z., S.C. and X.X.; Software, X.H. and X.Z.; Writing—original draft, X.H.; and Writing—review
and editing, W.L., S.C. and X.X.

Funding: This research received no external funding.

Acknowledgments: This work was supported by Science and Technology Planning Project of Guangdong
Province of China (2017B010124003 and 2015B010128013).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ECC elliptic curve cryptography
MM modular multiplication
PM point multiplication
TSFR two-stage fast reduction
NAF nonadjacent form
CMOS complementary metal oxide semiconductor
ECDLP elliptic curve discrete logarithm problem
SCA State Cryptography Administration
FPGA Field Programmable Gate Array
ASIC Application Specific Integrated Circuit
PA point addition
PD point doubling
EC elliptic curve
MI modular inversion
MA modular addition
MS modular subtraction
ECDSA Elliptic Curve Digital Signature Algorithm
ECIES Elliptic Curve Integrated Encryption Scheme
NIST National Institute of Standards and Technology

References

1. Miller, V.S. Use of elliptic curves in cryptography. In Proceedings of the Annual International Cryptology
Conference (CRYPTO), Santa Barbara, CA, USA, 18–22 August 1985; pp. 417–426.

2. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209. [CrossRef] [CrossRef]
3. Zhao, Z.; Bai, G. Ultra High-Speed SM2 ASIC Implementation. In Proceedings of the 2014 IEEE 13th

International Conference on Trust, Security and Privacy in Computing and Communications, Beijing, China,
24–26 September 2014; pp. 182–188.

4. State Cryptography Administration of China. Public Key Cryptographic Algorithm SM2 Based on Elliptic Curves;
State Cryptography Administration of China: 2010, Beijing, China. Available online: http://www.oscca.gov.
cn/sca/xxgk/2010-12/17/content_1002386.shtml (accessed on 12 April 2019)

5. Ghosh, S.; Alam, M.; Gupta, I.S.; Chowdhury, D.R. A Robust GF(p) parallel arithmetic unit for public key
cryptography. In Proceedings of the 10th Euromicro Conference on Digital System Design Architectures,
Methods and Tools (DSD 2007), Lubeak, Germany, 29–31 August 2007; pp. 109–115.

6. Guneysu, T.; Paar, C. Ultra High Performance ECC over NIST Primes on Commercial FPGAs. In Proceedings
of the International Workshop on Cryptographic Hardware and Embedded Systems, Washington, DC, USA,
10–13 August 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 62–78.

7. McIvor, C.J.; McLoone, M.; McCanny, J.V. Hardware elliptic curve cryptographic processor over GF(p).
IEEE Trans. Circuits Syst. I Reg. Pap. 2006, 53, 1946–1957. [CrossRef]

8. Khan, Z.-U.-A.; Benaissa, M. Throughput/Area-efficient ECC Processor Using Montgomery Point
Multiplication on FPGA. IEEE Trans. Circuits Syst. II Express Br. 2015, 62, 1078–1082. [CrossRef] [CrossRef]

http://dx.doi.org/10.1090/S0025-5718-1987-0866109-5
http://dx.doi.org/10.1090/S0025-5718-1987-0866109-5
http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
http://dx.doi.org/10.1109/TCSI.2006.880184
http://dx.doi.org/10.1109/TCSII.2015.2455992
http://dx.doi.org/10.1109/TCSII.2015.2455992

Electronics 2019, 8, 431 13 of 13

9. Ghosh, S.; Alam, M.; Chowdhury, D.R.; Gupta, I.S. Parallel crypto-devices for GF(p) elliptic curve
multiplication resistant against side channel attacks. Comput. Electr. Eng. 2009, 35, 329–338. [CrossRef]
[CrossRef]

10. Javeed, K.; Wang, X. FPGA Based High Speed SPA Resistant Elliptic Curve Scalar Multiplier Architecture.
Int. J. Reconfig. Comput. 2016, 2016, 6371403. [CrossRef] [CrossRef]

11. Sghaier, A.; Zeghid, M.; Massoud, C.; Mahchout, M. Design And Implementation of Low Area/Power
Elliptic Curve Digital Signature Hardware Core. Electronics 2017, 6, 46. [CrossRef] [CrossRef]

12. Hu, X.; Zheng, X.; Zhang, S.; Cai, S.; Xiong, X. A Low Hardware Consumption Elliptic Curve Cryptographic
Architecture over GF(p) in Embedded Application. Electronics 2018, 7, 104. [CrossRef]

13. Satoh, A.; Takano, K. A scalable dual-field elliptic curve cryptographic processor. IEEE Trans. Comput. 2003,
52, 449–460. [CrossRef] [CrossRef]

14. Chen, G.; Bai, G.; Chen, H. A High-Performance elliptic curve cryptographic processor for general curves
over GF(p) based on a systolic arithmetic unit. IEEE Trans. Circuits Syst. II Express Briefs 2007, 54, 412–416.
[CrossRef] [CrossRef]

15. Feng X., Li S. A High Performance FPGA Implementation of 256-bit Elliptic Curve Cryptography Processor
Over GF(p). Ieice Trans. Fundame. 2015, E98.A, 863–869 [CrossRef]

16. Marzouqi, H.; Al-Qutayri, M.; Salah, K. Review of Elliptic Curve Cryptography processor designs.
Microprocess. Microsyst. 2015, 39, 97–112. [CrossRef] [CrossRef]

17. Javeed, K.; Wang, X.; Scott, M. High performance hardware support for elliptic curve cryptography over
general prime field. Microprocess. Microsyst. 2016, 51, 331-342. [CrossRef]

18. Javeed, K.; Wang, X. Low latency flexible FPGA implementation of point multiplication on elliptic curves
over GF(p). Int. J. Circuit Theory Appl. 2017, 45, 214–228. [CrossRef]

19. Ali, S.Y.; Khalid, J.; Shoaib, A.; Wang, X. A high-speed RSD-based flexible ECC processor for arbitrary curves
over general prime field. Int. J. Circuit Theory Appl. 2018, 46, 1858–1878.

20. Shah, Y.A.; Javeed, K.; Azmat, S.; Wang, X. Redundant Signed Digit based High Speed Elliptic Curve
Cryptographic Processor. J. Circuits Syst. Comput. 2018. [CrossRef]

21. Montgomery, P.L. Modular multiplication without trial division. Math. Comput. 1985, 44, 519–521. [CrossRef]
[CrossRef]

22. Amanor, D.N.; Paar, C.; Pelzl, J.; Bunimov, V. Efficient Hardware Architectures for Modular Multiplication
on fpgas. In Proceedings of the International Conference on Field Programmable Logic and Applications,
Tampere, Finland, 24–26 August 2005 .

23. Hankerson, D.; Vanstone, S.; Menezes, A. Guide to Elliptic Curve Cryptography; Springer, New York, NY,
USA, 2004.

24. Solinas J.A. Efficient Arithmetic on Koblitz Curves. Des. Codes Cryptogr. 2000, 19, 195–249. [CrossRef]
25. Karatsuba A. Multiplication of multidight numbers on automata. Doklady Akad Nauk SSSR 1963, 7, 145.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compeleceng.2008.06.009
http://dx.doi.org/10.1016/j.compeleceng.2008.06.009
http://dx.doi.org/10.1155/2016/6371403
http://dx.doi.org/10.1155/2016/6371403
http://dx.doi.org/10.3390/electronics6020046
http://dx.doi.org/10.3390/electronics6020046
http://dx.doi.org/10.3390/electronics7070104
http://dx.doi.org/10.1109/TC.2003.1190586
http://dx.doi.org/10.1109/TC.2003.1190586
http://dx.doi.org/10.1109/TCSII.2006.889459
http://dx.doi.org/10.1109/TCSII.2006.889459
http://dx.doi.org/10.1587/transfun.E98.A.863
http://dx.doi.org/10.1016/j.micpro.2015.02.003
http://dx.doi.org/10.1016/j.micpro.2015.02.003
http://dx.doi.org/10.1016/j.micpro.2016.12.005
http://dx.doi.org/10.1002/cta.2295
http://dx.doi.org/10.1142/S0218126619500816
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1023/A:1008306223194
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Background
	SM2 Architecture
	Modular Multiplication
	Point Addition and Point Doubling
	SM2 Architecture

	Hardware Implementation Result
	Conclusions
	References

