
electronics

Article

A 1 Gbps Chaos-Based Stream Cipher Implemented
in 0.18 µm CMOS Technology

Miguel Garcia-Bosque * , Guillermo Díez-Señorans, Adrián Pérez-Resa,
Carlos Sánchez-Azqueta, Concepción Aldea and Santiago Celma

Group of Electronic Design, University of Zaragoza, 50009 Zaragoza, Spain; gds@unizar.es (G.D.-S.);
aprz@unizar.es (A.P.-R.); csanaz@unizar.es (C.S.-A.); caldea@unizar.es (C.A.); scelma@unizar.es (S.C.)
* Correspondence: mgbosque@unizar.es; Tel.: +34-876-55-3539

Received: 15 May 2019; Accepted: 29 May 2019; Published: 1 June 2019
����������
�������

Abstract: In this work, a novel chaos-based stream cipher based on a skew tent map is proposed and
implemented in a 0.18 µm CMOS (Complementary Metal-Oxide-Semiconductor) technology. The
proposed ciphering algorithm uses a linear feedback shift register that perturbs the orbits generated
by the skew tent map after each iteration. This way, the randomness of the generated sequences
is considerably improved. The implemented stream cipher was capable of achieving encryption
speeds of 1 Gbps by using an approximate area of ∼ 20, 000 2-NAND equivalent gates, with a power
consumption of 24.1 mW. To test the security of the proposed cipher, the generated keystreams were
subjected to National Institute of Standards and Technology (NIST) randomness tests, proving that
they were undistinguishable from truly random sequences. Finally, other security aspects such as the
key sensitivity, key space size, and security against reconstruction attacks were studied, proving that
the stream cipher is secure.

Keywords: stream cipher; PRNG; cryptography; chaotic map; skew tent map

1. Introduction

Despite the large number of encryption algorithms proposed in previous decades, there is still a
great interest in the field of cryptography [1,2]. This is mainly for two reasons: first, due to the growth
of computer processing power as well as developments in the field of cryptanalysis, many of the
previously proposed algorithms are currently considered to be insecure; second, new applications that
require specific constraints such as low power consumption can require specific encryption algorithms.

Usually, in applications where a high encryption speed is needed, stream ciphers are a suitable
option [3]. In these systems, the sender uses an initial seed (key) to generate a pseudo-random sequence
called a keystream. The ciphertext is then obtained by combining each bit of the plaintext with its
corresponding bit of the keystream (Figure 1). To decrypt the message, the receiver must use the
exact same key to generate an identical keystream. By applying the inverse combining operation, the
original plaintext can be recovered. Usually, an XOR (Exclusive Or) operation is used for the combining
operation and the inverse combining operation. The main advantage of stream ciphers against block
ciphers is that since they encrypt each bit individually, they do not need to store blocks of data, or
add extra bits to complete blocks (padding bits). Therefore, they usually have less-stringent memory
requirements and can achieve higher encryption speeds.

Electronics 2019, 8, 623; doi:10.3390/electronics8060623 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-8648-6248
http://www.mdpi.com/2079-9292/8/6/623?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8060623
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 623 2 of 10

Electronics 2019, 8, x FOR PEER REVIEW 2 of 10

implement. In this context, chaos-based stream ciphers have emerged in the past decade as a suitable
alternative, capable of achieving a good balance between all these three parameters [5].

Figure 1. Generic scheme of a stream cipher composed by a PRNG (Pseudo-Random Number
Generator) and an XOR gate. An internal state is constantly getting updated using a feedback
function. This way, each value of the internal state is obtained as a function of the previous value and
key. The final keystream is obtained from the internal states using an output function. Finally, the
ciphertext is generated by XORing the plaintext with the keystream.

The idea behind chaos-based stream ciphers is that chaotic systems present some intrinsic
properties such as random-like behavior and ergodicity that are closely related with the properties
of confusion and diffusion [6] that any cryptosystem should present in order to be considered secure
[7]. Usually, a common approach used in chaos-based stream ciphers consists of using an algorithm
based on a chaotic map of the form 𝑥௜ାଵ = 𝑓(𝑥௜, Γ). In these kinds of maps, starting with an initial
state, 𝑥଴ , and one or several control parameters, Γ = {γଵ, γଶ, … } , a sequence of elements {𝑥௜ } is
generated using a feedback function 𝑓. To use this map as a stream cipher, it is digitized and one or
several bits of each state is used to form the keystream. The control parameter Γ as well as the initial
state 𝑥଴ form the key that must be shared by both the transmitter and the receiver to encrypt and
decrypt the messages.

Among the possible maps, most of the recently proposed algorithms are based on logistic maps
[8–11], but other maps such as the Rényi map [12], the Lorenz’s attractor [13], the skew tent map [14],
or higher-dimensional chaotic systems have been used [15]. Unfortunately, in most of these maps
there are some initial values for which the output sequences are periodic and therefore unsuitable for
being used to generate secure keystreams. In these cases, the exact parameters that lead to periodic
windows are often unknown [16,17], so it can be very challenging to design a key-generation process
that guarantees that all the generated keys are secure (i.e., they lead to a chaotic behavior). On the
other hand, when a chaotic system is digitized it suffers a degradation in its dynamics due to
truncation or round-off errors and, as a consequence, the generated orbits become periodic (i.e., non-
secure) [18–20]. This effect has been widely studied, and although increasing the precision used in
the digitation can mitigate this effect, it also needs much more area to be implemented [21].

In this work, a chaos-based stream cipher is proposed and implemented in an application-
specific integrated circuit (ASIC). Its encryption algorithm is based on a skew tent map (STM) but
uses a linear feedback shift register (LFSR) to increase the randomness of the generated sequences.
The proposed cipher was implemented in a 0.18-μm CMOS process and was capable of achieving an
encryption speed of 1 Gbps using an approximate area of ~20,000 2-NAND equivalent gates, with
a power consumption of 24.1 mW. To prove the security of the proposed algorithm, several aspects
such as the key sensitivity, key space size, robustness against reconstruction attacks, and randomness
of the generated sequences were analyzed.

Figure 1. Generic scheme of a stream cipher composed by a PRNG (Pseudo-Random Number Generator)
and an XOR gate. An internal state is constantly getting updated using a feedback function. This
way, each value of the internal state is obtained as a function of the previous value and key. The
final keystream is obtained from the internal states using an output function. Finally, the ciphertext is
generated by XORing the plaintext with the keystream.

Typically, there are three parameters that must be taken into account when designing a secure
encryption system: encryption speed, security, and implementation cost [4]. While is it relatively easy
to design a secure but slow cipher, or to design a secure but area- and power-hungry cipher, it can
be very challenging to design an encryption algorithm that is fast, secure, low-power, and easy to
implement. In this context, chaos-based stream ciphers have emerged in the past decade as a suitable
alternative, capable of achieving a good balance between all these three parameters [5].

The idea behind chaos-based stream ciphers is that chaotic systems present some intrinsic
properties such as random-like behavior and ergodicity that are closely related with the properties of
confusion and diffusion [6] that any cryptosystem should present in order to be considered secure [7].
Usually, a common approach used in chaos-based stream ciphers consists of using an algorithm based
on a chaotic map of the form xi+1 = f (xi, Γ). In these kinds of maps, starting with an initial state, x0,
and one or several control parameters, Γ =

{
γ1,γ2, . . .

}
, a sequence of elements {xi} is generated using a

feedback function f . To use this map as a stream cipher, it is digitized and one or several bits of each
state is used to form the keystream. The control parameter Γ as well as the initial state x0 form the key
that must be shared by both the transmitter and the receiver to encrypt and decrypt the messages.

Among the possible maps, most of the recently proposed algorithms are based on logistic
maps [8–11], but other maps such as the Rényi map [12], the Lorenz’s attractor [13], the skew tent
map [14], or higher-dimensional chaotic systems have been used [15]. Unfortunately, in most of these
maps there are some initial values for which the output sequences are periodic and therefore unsuitable
for being used to generate secure keystreams. In these cases, the exact parameters that lead to periodic
windows are often unknown [16,17], so it can be very challenging to design a key-generation process
that guarantees that all the generated keys are secure (i.e., they lead to a chaotic behavior). On the other
hand, when a chaotic system is digitized it suffers a degradation in its dynamics due to truncation or
round-off errors and, as a consequence, the generated orbits become periodic (i.e., non-secure) [18–20].
This effect has been widely studied, and although increasing the precision used in the digitation can
mitigate this effect, it also needs much more area to be implemented [21].

In this work, a chaos-based stream cipher is proposed and implemented in an application-specific
integrated circuit (ASIC). Its encryption algorithm is based on a skew tent map (STM) but uses a linear
feedback shift register (LFSR) to increase the randomness of the generated sequences. The proposed
cipher was implemented in a 0.18-µm CMOS process and was capable of achieving an encryption
speed of 1 Gbps using an approximate area of ∼ 20, 000 2-NAND equivalent gates, with a power
consumption of 24.1 mW. To prove the security of the proposed algorithm, several aspects such as

Electronics 2019, 8, 623 3 of 10

the key sensitivity, key space size, robustness against reconstruction attacks, and randomness of the
generated sequences were analyzed.

As a result, we proved that the proposed stream cipher is secure and could be suitable for
applications that require the secure transmission of confidential information at a speed of up to 1 Gbps.

The paper is organized as follows: Section 2 explains the proposed stream cipher in detail;
Section 3 shows the ASIC implementation results of this proposal; Section 4 presents a comprehensive
cryptanalysis of the stream cipher; finally, the main conclusions are drawn in Section 5.

2. Proposed Stream Cipher

2.1. Skew Tent Map

The skew tent map (STM) is a one-dimensional chaotic map with a single control parameter γ
defined by the following equations:

f (xi) = xi+1 =

{
xi/γ xi ∈ [0,γ],
(1− xi)/(1− γ) xi ∈ (γ, 1],

(1)

where x0,γ ∈ (0, 1). The main advantage of this map is that, due to its simplicity, it can be easily
implemented. Furthermore, it has been proven that, for all values of x0 and γ, the behavior of this map
is chaotic (i.e., it does not present periodic windows) [22]. Therefore, it is a very good candidate for use
in chaos-based cryptosystems [23].

Because the STM algorithm has a division operation that can be costly to implement in hardware
but the divisors are constant for each seed, a common approach used in several works (including
this one) consists of pre-calculating the divisors (1/γ and 1/(1− γ)) and using multiplications
instead [24,25]. A block diagram of the STM can be seen in Figure 2.

Electronics 2019, 8, x FOR PEER REVIEW 3 of 10

As a result, we proved that the proposed stream cipher is secure and could be suitable for
applications that require the secure transmission of confidential information at a speed of up to 1
Gbps.

The paper is organized as follows: Section 2 explains the proposed stream cipher in detail;
Section 3 shows the ASIC implementation results of this proposal; Section 4 presents a comprehensive
cryptanalysis of the stream cipher; finally, the main conclusions are drawn in Section 5.

2. Proposed Stream Cipher

2.1. Skew Tent Map

The skew tent map (STM) is a one-dimensional chaotic map with a single control parameter 𝛾
defined by the following equations: 𝑓(𝑥௜) = 𝑥௜ାଵ = ൜ 𝑥௜/𝛾 𝑥௜ ∈ ሾ0, 𝛾],(1 − 𝑥௜)/(1 − 𝛾) 𝑥௜ ∈ (𝛾, 1], (1)

where 𝑥଴, 𝛾 ∈ (0,1). The main advantage of this map is that, due to its simplicity, it can be easily
implemented. Furthermore, it has been proven that, for all values of 𝑥଴ and 𝛾, the behavior of this
map is chaotic (i.e., it does not present periodic windows) [22]. Therefore, it is a very good candidate
for use in chaos-based cryptosystems [23].

Because the STM algorithm has a division operation that can be costly to implement in hardware
but the divisors are constant for each seed, a common approach used in several works (including this
one) consists of pre-calculating the divisors (1/𝛾 and 1/(1 − 𝛾)) and using multiplications instead
[24,25]. A block diagram of the STM can be seen in Figure 2.

Figure 2. Block diagram of the skew tent map (STM) generator. Each state 𝑥௜ାଵ is obtained as a
function of the previous state 𝑥௜ and the control parameter 𝛾. For this purpose, the internal state 𝑥௜
is compared to the value of 𝛾 to determine if it belongs to the ሾ0, 𝛾] range or to the (𝛾, 1] range. In
each case, by using two multiplexers, the correct factors (𝑥௜ or (1 − 𝑥௜)) and (1/𝛾 or 1/(1 − 𝛾)) are
selected and multiplied.

2.2. Dynamics Degradation Due to Digitization

As explained in the Introduction, due to the digitization of a chaotic map, if the state values are
implemented using a precision of 𝑛 bits, there is a finite number of different possible values, so the
generated orbits are periodic. Although the maximum possible period, 𝑃௠௔௫, is 𝑃௠௔௫ = 2௡, the mean

Figure 2. Block diagram of the skew tent map (STM) generator. Each state xi+1 is obtained as a function
of the previous state xi and the control parameter γ. For this purpose, the internal state xi is compared
to the value of γ to determine if it belongs to the [0,γ] range or to the (γ, 1] range. In each case, by using
two multiplexers, the correct factors (xi or (1− xi)) and (1/γ or 1/(1− γ)) are selected and multiplied.

2.2. Dynamics Degradation Due to Digitization

As explained in the Introduction, due to the digitization of a chaotic map, if the state values
are implemented using a precision of n bits, there is a finite number of different possible values, so
the generated orbits are periodic. Although the maximum possible period, Pmax, is Pmax = 2n, the

Electronics 2019, 8, 623 4 of 10

mean period, P, is usually much shorter and scales as P ∼ 2n/2 [26]. Furthermore, the periods of the
generated orbits are usually much smaller than the mean period [27].

As a consequence, with the typical precisions of 32 or 64 bits, the periods of the generated
keystreams are usually too short, and therefore the keystreams can repeat themselves if the transmitted
messages are long. Another consequence of these short periods is that the generated keystreams are
usually incapable of passing randomness tests.

This effect has been widely studied, and several solutions have been proposed [28,29]. Since (as
explained in the Introduction) using a higher precision also implies using a much larger area to obtain
the same throughput [21], a different approach was used in this work.

2.3. Encryption Algorithm

To address this dynamics degradation problem, the orbits generated by the STM can be perturbed
using an LFSR. In the proposed algorithm, after each iteration, the eight least-significant bits (LSBs) of
each xi

(
x0

i , x1
i , . . . x7

i

)
are combined with the last bits of the state of the LFSR yi with an XOR operation.

This way, the state is modified after each iteration and, this modified state (x̃i) is the one used to
generate the next state of the sequence: xi+1 = f (x̃i).

According to [30], if a sequence A(k) of period PA is XORed with a sequence B(k) of period PB,
the period of the resulting sequence, C(k) = A(k) ⊕ B(k), will be bigger than PA and PB as long as PA
and PB are coprime. Using this result, since the bits x̃k

i (k = 0, 1, . . . 7)) are generated as x̃k
i = xk

i ⊕ yk
i , as

long as the period of the LFSR (PA) and the period of the sequence
{
xk

i

}
(PB) are coprime, the period of

the sequence
{
x̃k

i

}
(PC) and, therefore the period of the sequence {xi} will be equal to or greater than PA.

In the proposed stream cipher, a 64-bit precision was used to represent the variables xi, γ, and a
61-order LFSR with a prime period 261

− 1 was used to perturb the orbits. By choosing the period of
the LFSR, PA, to be a prime number, the periods PA and PB will be coprime unless PB is a multiple of
PA. However, this case is extremely unlikely. Since PA = 261

− 1 and PB < 264, there are only eight
possible values of PB that are multiples of PA, so the chances of running into this case can be neglected.

To generate the keystreams, only the eight LSBs of each x̃i were used. This way, by using only
a small part of each state to form the keystream, its randomness is improved. Furthermore, as will
be explained in Section 4, the security against reconstruction attacks is greatly increased. The whole
scheme of the proposed stream cipher is shown in Figure 3.

Electronics 2019, 8, x FOR PEER REVIEW 4 of 10

period, 𝑃ത , is usually much shorter and scales as 𝑃 ഥ ~ 2௡/ଶ [26]. Furthermore, the periods of the
generated orbits are usually much smaller than the mean period [27].

As a consequence, with the typical precisions of 32 or 64 bits, the periods of the generated
keystreams are usually too short, and therefore the keystreams can repeat themselves if the
transmitted messages are long. Another consequence of these short periods is that the generated
keystreams are usually incapable of passing randomness tests.

This effect has been widely studied, and several solutions have been proposed [28,29]. Since (as
explained in the Introduction) using a higher precision also implies using a much larger area to obtain
the same throughput [21], a different approach was used in this work.

2.3. Encryption Algorithm

To address this dynamics degradation problem, the orbits generated by the STM can be
perturbed using an LFSR. In the proposed algorithm, after each iteration, the eight least-significant
bits (LSBs) of each 𝑥௜ (𝑥௜଴, 𝑥௜ଵ, … 𝑥௜଻) are combined with the last bits of the state of the LFSR 𝑦௜ with
an XOR operation. This way, the state is modified after each iteration and, this modified state (𝑥෤௜) is
the one used to generate the next state of the sequence: 𝑥௜ାଵ = 𝑓(𝑥෤௜).

According to [30], if a sequence 𝐴(𝑘) of period 𝑃஺ is XORed with a sequence 𝐵(𝑘) of period 𝑃஻ , the period of the resulting sequence , 𝐶(𝑘) = 𝐴(𝑘) ⊕ 𝐵(𝑘), will be bigger than 𝑃஺ and 𝑃஻ as
long as 𝑃஺ and 𝑃஻ are coprime. Using this result, since the bits 𝑥෤௜௞ (𝑘 = 0, 1, … 7)) are generated as 𝑥෤௜௞ = 𝑥௜௞ ⊕ 𝑦௜௞, as long as the period of the LFSR (𝑃஺) and the period of the sequence ൛𝑥௜௞ൟ (𝑃஻) are
coprime, the period of the sequence ൛𝑥෤௜௞ൟ (𝑃஼) and, therefore the period of the sequence {𝑥௜} will be
equal to or greater than 𝑃஺.

In the proposed stream cipher, a 64-bit precision was used to represent the variables 𝑥௜, 𝛾, and
a 61-order LFSR with a prime period 2଺ଵ − 1 was used to perturb the orbits. By choosing the period
of the LFSR, 𝑃஺ , to be a prime number, the periods 𝑃஺ and 𝑃஻ will be coprime unless 𝑃஻ is a
multiple of 𝑃஺. However, this case is extremely unlikely. Since 𝑃஺ = 2଺ଵ − 1 and 𝑃஻ < 2଺ସ, there are
only eight possible values of 𝑃஻ that are multiples of 𝑃஺, so the chances of running into this case can
be neglected.

To generate the keystreams, only the eight LSBs of each 𝑥෤௜ were used. This way, by using only
a small part of each state to form the keystream, its randomness is improved. Furthermore, as will be
explained in Section 4, the security against reconstruction attacks is greatly increased. The whole
scheme of the proposed stream cipher is shown in Figure 3.

Figure 3. Scheme of the proposed stream cipher. The eight least-significant bits (LSBs) of each state, 𝑥௜, are XORed with the last 8 bits generated by a 61-order linear feedback shift register (LFSR). These
bits are the ones used to generate the keystream. On the other hand, the resulting modified state, 𝑥෤௜,
obtained by recombining these eight modified bits with the 56 remaining bits is used as an input of

Figure 3. Scheme of the proposed stream cipher. The eight least-significant bits (LSBs) of each state,
xi, are XORed with the last 8 bits generated by a 61-order linear feedback shift register (LFSR). These
bits are the ones used to generate the keystream. On the other hand, the resulting modified state, x̃i,
obtained by recombining these eight modified bits with the 56 remaining bits is used as an input of
the STM block. This block applies the STM equations as explained in Figure 2 to generate the next
state, xi+1.

Electronics 2019, 8, 623 5 of 10

Note that, although the possibility of combining an STM with an LFSR was advanced in [23,25],
in this work the encryption algorithm was optimized using 8 bits of the LFSR after each iteration step,
achieving better statistical properties while obtaining higher encryption speeds, as will be shown in
the next sections. Furthermore, this paper presents an ASIC implementation of the system as well as
experimental results and a comprehensive cryptanalysis.

3. Implementation Results

The proposed cipher was implemented in a 0.18-µm CMOS technology with six metal layers
provided by TSMC (Taiwan Semiconductor Manufacturing Company), fed at 1.8 V (core) and 3.3 V
(I/O). Some major constraints of the design were a maximum clock period of 14 ns, load ranging
from 0.01 to 1.0 pf at outputs, and drive up to 0.4 kΩ at inputs. This set of constraints proved to be
enough for this technology to satisfactorily implement the cipher, achieving an encryption speed of
1 Gbps using a total area of 0.197 mm2 or (∼ 20, 000 2-NAND equivalent gates using an equivalence
of 10 µm per 2-NAND [31]). At the maximum frequency of operation, its power consumption was
24.1 mW, which resulted in 24.1 pJ/bit. This result is lower than typical implementations of AES
(Advanced Encryption Standard), such as the ones presented in [32] (45 pJ/bit) and [33] (30–62 pJ/bit).
The full implementation results are shown in Table 1. From these results, it can be concluded that the
implemented stream cipher is capable of achieving high encryption speeds while using a small silicon
area and presenting a low power consumption.

Table 1. Implementation results.

Parameter Value

Technology (nm) 180
Area (mm2) 0.19682

Gate equivalent (2-NAND) 19682
Maximum frequency (MHz) 125

bits/cycle 8
Maximum throughput (Gbps) 1
Throughput/gate (kbps/gate) 50.8

Power at 125 MHz (mW) 24.1
Energy/bit (pJ/bit) 24.1

These implementation results were compared with other ASIC implementations of previously
proposed chaotic stream ciphers. Since other works do not provide information about some of the
parameters in Table 1 (e.g., power consumption or area), Table 2 only focuses on 2-NAND equivalent
gates and throughput. As can be seen, the proposed algorithm performed slightly better than the
works presented in [8,9] in terms of throughput/gate and achieved higher encryption speeds. Although
a work improving the algorithm proposed in [9] was presented in [10], this result was not included in
the table since it has not been implemented.

Table 2. Comparison with other chaotic stream ciphers.

System [8] [9] This Work

Technology (µm) 0.18 0.18 0.18
Gate equivalent (2-NAND) 9622 10,218 19,682

Throughput (Gbps) 0.2 0.25 1
Throughput/gate (kbps/gate) 20.8 24.5 50.8

To check the correct functioning of the chip, the keystreams generated by different initial parameters
(x0,γ, y0) were measured and compared with the theoretical values. To set the frequencies of operation,
a Zybo board, which includes a Zynq 7000 series FPGA (Field Programmable Gate Array), was used to
feed the ASIC with a clock signal at different frequencies (Figure 4). The output signals were captured

Electronics 2019, 8, 623 6 of 10

with a DSAV334A Infiniium V-Series oscilloscope and were later post-processed to extract the binary
sequence. A sample signal obtained at a clock frequency of 250 kHz is shown in Figure 5.

Electronics 2019, 8, x FOR PEER REVIEW 6 of 10

Array), was used to feed the ASIC with a clock signal at different frequencies (Figure 4). The output
signals were captured with a DSAV334A Infiniium V-Series oscilloscope and were later post-
processed to extract the binary sequence. A sample signal obtained at a clock frequency of 250 kHz
is shown in Figure 5.

Figure 4. PCB (Printed Circuit Board) for the ASIC test setup connected to the Zybo board used to
feed the clock and the reset signals. PMOD (Peripheral Module) ports have been used for the
connection.

Figure 5. Sample signal obtained using a clock frequency of 31.25 kHz (in this case the throughput
was 250 kHz).

We checked that the system worked properly (i.e., the generated keystreams matched the
theoretical ones) at all the measured frequencies up to 125 MHz, which is the maximum clock
frequency that the FPGA was capable of supplying. This way, we can assure that this stream cipher
can achieve encryption speeds of at least 1 Gbps.

4. Cryptanalysis

First, in order to be secure, the stream cipher should generate keystreams that are
undistinguishable from truly random sequences. To check that the proposed stream cipher is capable
of generating random keystreams, several keystreams of one million bits were generated and
subjected to the National Institute of Standards and Technology (NIST) randomness tests [34]. All of
them passed the NIST tests, proving that the generated keystreams were indeed undistinguishable
from truly random sequences (Figure 6a). Furthermore, we checked that if the sequences were

Figure 4. PCB (Printed Circuit Board) for the ASIC test setup connected to the Zybo board used to feed
the clock and the reset signals. PMOD (Peripheral Module) ports have been used for the connection.

Electronics 2019, 8, x FOR PEER REVIEW 6 of 10

Array), was used to feed the ASIC with a clock signal at different frequencies (Figure 4). The output
signals were captured with a DSAV334A Infiniium V-Series oscilloscope and were later post-
processed to extract the binary sequence. A sample signal obtained at a clock frequency of 250 kHz
is shown in Figure 5.

Figure 4. PCB (Printed Circuit Board) for the ASIC test setup connected to the Zybo board used to
feed the clock and the reset signals. PMOD (Peripheral Module) ports have been used for the
connection.

Figure 5. Sample signal obtained using a clock frequency of 31.25 kHz (in this case the throughput
was 250 kHz).

We checked that the system worked properly (i.e., the generated keystreams matched the
theoretical ones) at all the measured frequencies up to 125 MHz, which is the maximum clock
frequency that the FPGA was capable of supplying. This way, we can assure that this stream cipher
can achieve encryption speeds of at least 1 Gbps.

4. Cryptanalysis

First, in order to be secure, the stream cipher should generate keystreams that are
undistinguishable from truly random sequences. To check that the proposed stream cipher is capable
of generating random keystreams, several keystreams of one million bits were generated and
subjected to the National Institute of Standards and Technology (NIST) randomness tests [34]. All of
them passed the NIST tests, proving that the generated keystreams were indeed undistinguishable
from truly random sequences (Figure 6a). Furthermore, we checked that if the sequences were

Figure 5. Sample signal obtained using a clock frequency of 31.25 kHz (in this case the throughput was
250 kHz).

We checked that the system worked properly (i.e., the generated keystreams matched the theoretical
ones) at all the measured frequencies up to 125 MHz, which is the maximum clock frequency that
the FPGA was capable of supplying. This way, we can assure that this stream cipher can achieve
encryption speeds of at least 1 Gbps.

4. Cryptanalysis

First, in order to be secure, the stream cipher should generate keystreams that are undistinguishable
from truly random sequences. To check that the proposed stream cipher is capable of generating
random keystreams, several keystreams of one million bits were generated and subjected to the
National Institute of Standards and Technology (NIST) randomness tests [34]. All of them passed the
NIST tests, proving that the generated keystreams were indeed undistinguishable from truly random
sequences (Figure 6a). Furthermore, we checked that if the sequences were generated only with the
STM (i.e., without the LFSR) they failed these tests (Figure 6b). On the other hand, it is well known that
the raw sequences generated by an LFSR fail the linear complexity randomness tests. Furthermore, the

Electronics 2019, 8, 623 7 of 10

operations involved in LFSRs can be easily inverted, and thus these systems are insecure. Therefore,
we can conclude that the proposed algorithm is capable of generating keystreams with much better
statistical properties than the STM or the LFSR separately.

Electronics 2019, 8, x FOR PEER REVIEW 7 of 10

generated only with the STM (i.e., without the LFSR) they failed these tests (Figure 6b). On the other
hand, it is well known that the raw sequences generated by an LFSR fail the linear complexity
randomness tests. Furthermore, the operations involved in LFSRs can be easily inverted, and thus
these systems are insecure. Therefore, we can conclude that the proposed algorithm is capable of
generating keystreams with much better statistical properties than the STM or the LFSR separately.

(a)

(b)

Figure 6. National Institute of Standards and Technology (NIST) test results for a sequence generated
by: (a) the proposed algorithm; (b) an algorithm that only uses the STM.

An issue with all stream ciphers is that in order to be secure, the same keystream should not be
used to encrypt several messages. To avoid having to create a new key each time a new message is
encrypted, most modern ciphers include an initialization vector that is changed (in a publicly known
way) every time a new message is encrypted. This way, the resulting keystream is changed without
having to create (and possibly exchange) a new key. In the proposed cryptosystem, a possible way to
use an initialization vector to encrypt several messages using the same key could be to XOR the
initialization vector with the key (or part of the key) and use this result as the new key. The
initialization vector could start with a known value and be increased by one each time that a new
message must be encrypted. Providing that the system exhibits a high sensitivity on the key, the
generated keystreams would be independent of each other.

On the other hand, to be considered secure, the key space size, 𝜅, (i.e., number of possible keys)
must be large enough to prevent brute-force attacks. In particular, NIST and European Union Agency
for Network and Information Security (ENISA) guidelines [35,36] recommend using a key space size
of at least 𝜅 ≥ 2ଵଵଶ.

Figure 6. National Institute of Standards and Technology (NIST) test results for a sequence generated
by: (a) the proposed algorithm; (b) an algorithm that only uses the STM.

An issue with all stream ciphers is that in order to be secure, the same keystream should not be
used to encrypt several messages. To avoid having to create a new key each time a new message is
encrypted, most modern ciphers include an initialization vector that is changed (in a publicly known
way) every time a new message is encrypted. This way, the resulting keystream is changed without
having to create (and possibly exchange) a new key. In the proposed cryptosystem, a possible way
to use an initialization vector to encrypt several messages using the same key could be to XOR the
initialization vector with the key (or part of the key) and use this result as the new key. The initialization
vector could start with a known value and be increased by one each time that a new message must be
encrypted. Providing that the system exhibits a high sensitivity on the key, the generated keystreams
would be independent of each other.

On the other hand, to be considered secure, the key space size, κ, (i.e., number of possible keys)
must be large enough to prevent brute-force attacks. In particular, NIST and European Union Agency
for Network and Information Security (ENISA) guidelines [35,36] recommend using a key space size
of at least κ ≥ 2112.

Electronics 2019, 8, 623 8 of 10

In the proposed algorithm, the key size is composed of the total number of possible initial values
(x0, γ, y0). Since the precision of the digitization of x0 and γ is 64, and a 61-order LFSR was used, the
key space size in this case was κ = 264+64+61 = 2189, which is greater than the recommended value of
2112. Since a key size of 189 bits is not standard, to adapt this algorithm to some standard protocols
that use a key size of 80 or 128 bits, some of the bits of the key could be fixed. For example, the initial
state of the LFSR could be a fixed known value. This way, the key would be composed of the total
number of possible values of γ and x0, resulting in a standard key size of 128 bits.

Another important aspect of the proposed algorithm is that, because the map used in this algorithm
is chaotic, there is a high sensitivity to the key (i.e., for similar keys the output sequences are very
different). To test this property, 300 pairs of keys were used, each pair differing in only one bit (the
differing bit in each simulation was chosen randomly). With each of these pairs, a pair of 10,000 length
keystreams was generated, and in each case we counted how many bits of these keystreams were
different (i.e., how many bits of the keystreams changed when the key was slightly modified). In an
ideal stream cipher, the probability that a certain bit of the keystream is changed when the key
is modified should be P = 0.5, and therefore, 5000 out of 10, 000 bits should change in each case.
According to the binomial distribution properties, the mean µ and the standard deviation σ of these
experiments would be given by: µ = nP = 5000, σ =

√
nP(1− P) = 50. With this test, we obtained

values of µ = 4998 and σ = 51.6, which are very close to the theoretical ones. Therefore, the system
presented a high sensitivity to the key, and so it would be very difficult for an attacker to find statistical
relationships between different keystreams even if they were generated with very similar keys.

Finally, one of the possible attacks that can be effective in several chaos-based stream ciphers is
the reconstruction attack. This attack consists of trying to obtain two or more consecutive state values
at a certain time and applying Equation (1) to find the values of γ, xi, and therefore the whole sequence
{xi} as well as the output sequence. However, in the proposed algorithm, this attack is prevented by
using only a small part (the LSBs) of each state value xi to form the final keystream. Furthermore, the
presence of the LFSR considerably increases the complexity of the system so Equation (1) cannot be
used directly. Even in a worst-case scenario where the initial state of the LFSR was known (it was not
used as part of the key) and 8 bits of two consecutive states xi, xi+1 were leaked, there would still be
56 bits of xi and 56 bits of xi+1 that would remain unknown. Therefore, if an attacker wanted to use

Equation (1) to obtain the values of xi, xi+1, and γ, they would have to solve
(
256

)2
possible equations.

Therefore, even if an attacker managed to know a part of the keystream, they would not be able to
use that information to guess (in a reasonable amount of time) the state of the system (xi, γ, yi) and,
therefore, guess the whole keystream. This fact combined with the fact that the output sequences have
proven to be random, assure that this system presents forward and backward secrecy.

In summary, according to the security aspects considered in this manuscript, the proposed
algorithm is cryptographically secure. However, to guarantee the security of this cipher for use in
security-related applications, other security aspects such as the internal structure of the keystream
generator should be considered. Finally, to fully prove its security, no effective specific attacks against
this cipher should be found in the following years. For this purpose, for anyone interested in testing
the security of this algorithm, the authors will give away the code upon request.

5. Conclusions

In this paper a stream cipher based on a skew tent map (STM) and a linear feedback shift register
(LFSR) was proposed and implemented in a 0.18-µm standard CMOS technology. The proposed cipher
achieved an encryption rate of 1 Gbps using a low area and low power consumption.

The security of the proposed algorithm was analyzed, focusing on different aspects such as the
randomness of the generated sequences, the key size, the sensitivity to the key, and the security against
reconstruction attacks. With this study, we concluded that the proposed stream cipher is secure against
all these attacks.

Electronics 2019, 8, 623 9 of 10

Therefore, the proposed stream cipher is suitable for use in applications (including
cryptography-related ones) that need to generate pseudo-random numbers at a high speed (up
to 1 Gbps).

Author Contributions: Conceptualization, M.G.-B. and S.C.; methodology, M.G.-B. and S.C.; software, M.G.-B.,
C.S.-A., and G.D.-S.; investigation, M.G.-B. and G.D.-S.; formal analysis, M.G.-B.; resources, S.C.; writing—original
draft preparation, M.G.-B.; writing—review and editing, M.G.-B., G.D.-S., A.P.-R., C.S.-A., C.A., and S.C.;
supervision, S.C.; project administration, S.C.; funding acquisition, S.C.

Funding: This work has been supported by the “Ministerio de Economía y Competividad” MINECO-FEDER
(TEC2014-52840 and TEC2017-85867), “Formación de Profesorado Universitario” FPU fellowship to M.
Garcia-Bosque (FPU14/03523) and “Diputación General de Aragón” DGA fellowship to G. Díez-Señorans.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jin, Y. Introduction to Hardware Security. Electronics 2015, 4, 763–784. [CrossRef]
2. Zhang, J.; Wu, N.; Zhou, F.; Rehan Yahya, M.; Li, J. A Novel Differential Fault Analysis on the Key Schedule

of SIMON Family. Electronics 2019, 8, 93. [CrossRef]
3. Klein, A. Stream Ciphers, 1st ed.; Springer: London, UK, 2013; p. 11.
4. Alvarez, G.; Li, S. Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos

2006, 16, 2129–2151. [CrossRef]
5. Hasimoto-Beltrán, R. High-performance multimedia encryption system based on chaos. Chaos 2008, 18,

023110. [CrossRef]
6. Shannon, C.E. A Mathematical Theory of Cryptography; Bell System Technical Memorandum MM-45-110-02;

Alcatel-Lucent: Boulogne-Billancourt, France, 1945.
7. Kocarev, L. Chaos-based cryptography: A brief overview. IEEE Circuits Syst. Mag. 2001, 1, 6–21. [CrossRef]
8. Chen, S.-L.; Hwang, T.; Lin, W.-W. Randomness Enhancement Using Digitized Modified Logistic Map.

IEEE Trans. Circuits Syst. II Express Briefs 2010, 57, 996–1000.
9. Li, G.-Y.; Chang, T.-Y.; Huang, C.-C. A Nonlinear PRNG Using Digitized Logistic Map with Self-Reseeding

Method. In Proceedings of the 2010 International Symposium on VLSI Design, Automation and Test,
Hsin Chu, Taiwan, 26–29 April 2010; pp. 108–111.

10. Li, G.-Y.; Chen, Y.-H.; Chang, T.-Y.; Deng, L.-Y.; To, K. Period Extension and Randomness Enhancement
Using High Throughput Reseeding-Mixing PRNG. IEEE Trans. VLSI Syst. 2012, 20, 385–389. [CrossRef]

11. Pande, A.; Zambreno, J.A. A chaotic encryption scheme for real-time embedded systems: Design and
implementation. Telecommun. Syst. 2013, 52, 215–561.

12. Addabbo, T.; Alioto, M.; Fort, A.; Pasini, A.; Rocchi, S.; Vignoli, V. A class of maximum-period nonlinear
congruential generators derived from the Rènyi chaotic map. IEEE Trans. Circuits Syst. I Reg. Pap. 2007, 54,
816–828. [CrossRef]

13. Azzad, M.S.; Tanougast, C.; Sadoudi, S.; Dandache, A. Real-time FPGA implementation of Lorenz’s chaotic
generator for ciphering telecommunications. In Proceedings of the IEEE International Circuits and Systems
and TAISA Conference, Toulouse, France, 28 June 2009; pp. 1–4.

14. Palacios-Luengas, L.; Pichardo-Méndez, J.L.; Díaz-Méndez, J.A.; Rodríguez-Santos, F.; Vázquez-Medina, R.
PRNG Base on Skew Tent Map. Arab. J. Sci. Eng. 2019, 44, 3817–3830. [CrossRef]

15. Wang, Q.; Yu, S.; Li, C.; Lü, J.; Fang, X.; Guyeux, C.; Bahi, J. Theoretical design and FPGA-based
implementations of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I Reg. Pap.
2016, 63, 302–309. [CrossRef]

16. Tucer, W.; Wilczak, D. A rigorous lower bound for the stability regions of the quadratic map. Physica D 2009,
238, 1923–1936.

17. Galias, Z.; Garda, B. Detection of all low-period windows for the logistic map. In Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), Lisbon, Portugal, 24–27 May 2015; pp. 1698–1700.

18. Kocarev, L.J.; Szczepanski, J.; Amigó, J.M.; Tomovski, I. Discrete chaos-I: Theory. IEEE Trans. Circuits Syst. I
Reg. Pap. 2006, 53, 1300–1309. [CrossRef]

19. Oteo, J.A.; Ros, J. Double precision errors in the logistic map: Statistical study and dynamical interpretation.
Phys. Rev. E 2007, 76, 036214. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/electronics4040763
http://dx.doi.org/10.3390/electronics8010093
http://dx.doi.org/10.1142/S0218127406015970
http://dx.doi.org/10.1063/1.2903758
http://dx.doi.org/10.1109/7384.963463
http://dx.doi.org/10.1109/TVLSI.2010.2103332
http://dx.doi.org/10.1109/TCSI.2007.890622
http://dx.doi.org/10.1007/s13369-018-3688-y
http://dx.doi.org/10.1109/TCSI.2016.2515398
http://dx.doi.org/10.1109/TCSI.2006.874181
http://dx.doi.org/10.1103/PhysRevE.76.036214
http://www.ncbi.nlm.nih.gov/pubmed/17930330

Electronics 2019, 8, 623 10 of 10

20. Galias, Z. The dangers of rounding errors for simulations and analysis of nonlinear circuits and systems—And
how to avoid them. IEEE Circuits Syst. Mag. 2013, 13, 35–52. [CrossRef]

21. Machicao, J.; Bruno, O.M. Improving the pseudo-randomness properties of chaotic maps using deep-zoom.
Chaos 2017, 27, 053116-1–053116-14. [CrossRef] [PubMed]

22. Baranovsky, A.; Daems, D. Design of one-dimensional chaotic maps with prescribed statistical properties.
Int. J. Bifurc. Chaos 1995, 16, 1585–1598. [CrossRef]

23. Garcia-Bosque, M.; Pérez-Resa, A.; Sánchez-Azqueta, C.; Celma, S. Application of a MEMS-Based TRNG in a
Chaotic Stream Cipher. Sensors 2017, 17, 646. [CrossRef]

24. Garcia-Bosque, M.; Pérez-Resa, A.; Sánchez-Azqueta, C.; Celma, S. A new simple technique for improving
the random properties of chaos-based cryptosystems. AIP Adv. 2018, 8, 035004-1–035004-10. [CrossRef]

25. Pérez-Resa, A.; Garcia-Bosque, M.; Sánchez-Azqueta, C.; Celma, S. Chaotic Encryption for 10-Gb Ethernet
Optical Links. IEEE Trans. Circuits Syst. I Reg. Pap. 2019, 66, 859–868. [CrossRef]

26. Harris, B. Probability distributions related to random mappings. Ann. Math. Stat. 1960, 31, 1045–1062.
[CrossRef]

27. Grebogy, C.; Ott, E.; Yorke, J.A. Roundoff-induced period and the correlation dimension of chaotic attractores.
Phys. Rev. A Gen. Phys. 1998, 38, 3688–3692. [CrossRef]

28. Li, C.; Feng, B.; Li, S.; Kurths, J.; Chen, G. Dynamic Analysis of Digital Chaotic Maps via State-Mapping
Networks. IEEE Trans. Circuits Syst. I Reg. Pap. 2019, 66, 2322–2335. [CrossRef]

29. Garcia-Bosque, M.; Pérez-Resa, A.; Sánchez-Azqueta, C.; Aldea, C.; Celma, S. Chaos-Based Bitwise Dynamical
Pseudorandom Number Generator On FPGA. IEEE Trans. Instrum. Meas. 2019, 68, 291–293. [CrossRef]

30. Lewis, P.A.W.; Orav, E.J. Simulation Methodology for Statisticians, Operation Analyst, and Engineers, Vol. 1;
Wadsworth & Brooks/Cole Advanced Books & Software: Pacific Growe, CA, USA, 1998; p. 83.

31. Artisan Components. TSMC 0.18µm Process 1.8-Volt SAGE-XTM Standard Cell Library Databook; Release 3.1;
Artisan Components Inc.: Sunnyvale, CA, USA, 2001.

32. Feldhofer, M.; Wolkerstorfer, J.; Rijmen, V. AES implementation on a grain of sand. IEEE Proc. Inf. Secur.
2005, 152, 13–20. [CrossRef]

33. Hämäläinen, P.; Alho, T.; Hännikäinen, M.; Hämäläinen, T.D. Design and implementation of Low-area and
Low-power AES Encryption Hardware Core. In Proceedings of the 9th EUROMICRO Conference on Digital
System Design (DSD’06), Prague, Czech Republic, 29–31 August 2006; pp. 577–583.

34. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.;
Heckert, A.; et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications; NIST Special Publication 800-22 Rev.1a; NIST-Information Technology Laboratory: Gaithersburg,
MD, USA, 2010.

35. Turan, M.S.; Barker, E.; Kelsey, J.; Mcay, K.A.; Baish, M.L.; Boile, M. Recommendation for the Entropy Sources
Used for Random Bit Generation; NIST Special Publication 800-90B; NIST-Information Technology Laboratory:
Gaithersburg, MD, USA, 2016.

36. ENISA. Algorithms, Key Size and Parameters Report. November 2014. Available
online: www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-
parameters-report-2014 (accessed on 12 April 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MCAS.2013.2271444
http://dx.doi.org/10.1063/1.4983836
http://www.ncbi.nlm.nih.gov/pubmed/28576110
http://dx.doi.org/10.1142/S0218127495001198
http://dx.doi.org/10.3390/s17030646
http://dx.doi.org/10.1063/1.5017015
http://dx.doi.org/10.1109/TCSI.2018.2867918
http://dx.doi.org/10.1214/aoms/1177705677
http://dx.doi.org/10.1103/PhysRevA.38.3688
http://dx.doi.org/10.1109/TCSI.2018.2888688
http://dx.doi.org/10.1109/TIM.2018.2877859
http://dx.doi.org/10.1049/ip-ifs:20055006
www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014
www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed Stream Cipher
	Skew Tent Map
	Dynamics Degradation Due to Digitization
	Encryption Algorithm

	Implementation Results
	Cryptanalysis
	Conclusions
	References

