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Abstract: In conventional model predictive control, the dimensions of the control variables are
different from each other, which makes adjusting the weighted factors in the cost function complicated.
This issue can be solved by adopting the model predictive flux control. However, the performance of
the electromagnetic torque is affected by the change of the cost function. A novel model predictive
torque control of the interior permanent magnet synchronous motor is presented in this paper, and the
cost function involving the excitation torque and reluctance torque is established. Combined with the
model predictive flux control and discrete space vector modulation, the current ripple and torque
ripple are reduced. The performance of torque under an overload condition is superior to model
predictive flux control. The effectiveness of the proposed algorithm is verified by the simulation and
experimental results.

Keywords: weighted factor; model predictive flux control; interior permanent magnet synchronous;
discrete space vector modulation

1. Introduction

The interior permanent magnet synchronous motor (IPMSM) is widely used in the fields of industry,
transportation, and aerospace, because of advantages such as high-power density, high-torque density,
and high efficiency [1,2]. Because of the asymmetry rotor magnetic circuit structure, the reluctance
torque can be generated by IPMSM. In the traditional control strategy, the d-axis stator current is equal
to zero, such that the q-axis current is proportional to the torque required for the PMSMs. However,
with the so-called id = 0 control algorithm, the reluctance torque of the IPMSM is not fully employed.
Therefore, the maximum torque per ampere control is presented for IPMSM in order to increase the
output torque and the efficiency of the motor [3,4].

Traditional control methods of IPMSM mainly include space vector control (SVM) and direct
torque control (DTC) [5–7]. DTC has advantages of a simple structure, good dynamic performance,
and strong robustness, but the torque ripple is high because of adopting the hysteresis controller.
An online hysteresis loop adjustment controller is proposed in the literature [8]. It reduces the torque
ripple using a proportional-integral (PI) controller to adjust the width of the torque and flux hysteresis
loop. Based on duty cycle modulation, other methods combine active vectors with zero vectors to
suppress the torque ripple [9,10], but the duty ratio calculation is complex in these methods.

The finite control set model predictive control (FCS-MPC) is adopted to the motor drive system
with the development of a digital signal processor (DSP). This method can solve non-linear problems
easily [11,12]. The model predictive torque control (MPTC) uses a mathematical model and cost
function to replace the torque and flux hysteresis controller and look-up table, compared with the
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traditional DTC. The optimal switching state is selected from all of the possible switching states in
each control period of MPTC. The optimal switching state will be applied in the next control period.
Thus, the torque ripple can be reduced, and the output performance of the system will be improved.

The cost function plays a key role in the selection of the optimal switching state [13]. In traditional
MPTC, the cost function includes a torque component and stator flux component, which have different
units. Weighted factors need to be designed for the two components. The weighted factor is usually
determined by the trial-and-error method. Thus, knowing how to avoid the adjusting of the weighted
factor has attracted the attention of researchers from all over the world. A multi-objective sorting
method is used to eliminate the weighted factor of cost function in the literature [14], which sorts the
errors generated by the different switching states from small to large. A new cost function, which is
free of a weighted factor, can be established by the sorting results. The authors of [15] use the VIKOR
sorting method to eliminate the weighted factor. The authors of [16] built a cost function of the vector
duty cycle without a weighted factor. The torque and flux errors in a traditional cost function are
replaced by the two deadbeat duty ratios of the adopted vectors. This method solves the problem of
duty cycle optimization in traditional MPTC. A model predictive flux control (MPFC) is presented in
the literature [17]. Based on the online predictive control of the stator flux vector, the weighted factor is
removed from the cost function, and the algorithm is simplified.

In this paper, the torque characteristics of the IPMSM under the MTPA control is analyzed, and an
improved MPTC method is proposed based on an IPMSM system driven by a three-phase two-level
voltage source inverter. Firstly, instead of the torque and flux components, excitation torque and
reluctance torque components are adopted to consist the cost function. As the two torque components
share the same unit, the weighted factor is eliminated. Furthermore, the torque ripple under an
overload condition is reduced by the adoption of MPFC, and the torque ripple caused by the traditional
single vector control is also suppressed by the improved discrete space vector modulation method.
Finally, the effectiveness of the proposed method is verified in the whole speed range by the simulation
and experimental results.

2. The Two-Level Voltage Source Inverters

The topology of a three-phase two-level voltage source inverter (VSI) is shown in Figure 1.
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Figure 1. The topology of a two-level voltage source inverter (VSI) fed interior permanent magnet
synchronous motor (IPMSM).

There are 23 = 8 basic voltage vectors in the space diagram, corresponding to eight switching
states, including six active basic vectors and two zero basic vectors. The control performance will be
affected if one single vector is adopted in each control period. Consequently, if the control period is
equally divided into three intervals, two adjacent active vectors and one zero vector are applied in
each time interval, and more virtual vectors will be synthesized, as shown in Figure 2. For example,
V100 can be synthesized by V1 and V0, which are applied in 1/3 control period and 2/3 control period,
respectively, and V112 can be synthesized by V1 and V2, which are applied in a 2/3 control period
and 1/3 control period, respectively. If more virtual vectors are applied, the control performance will
be improved.
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where, d and q represent the d-axis and q-axis components of the stator flux linkage, respectively, 
and p is the number of pole pairs. As Ld ≠ Lq in IPMSM, the electromagnetic torque can be divided 
into two components. One is the excitation torque, and the other is the reluctance torque. 

For IPMSM, the traditional id = 0 control algorithm is not suitable, because the reluctance torque 
is not considered. The maximum torque per ampere (MTPA) control is usually adopted. The d-axis 
and q-axis current are distributed according to Equation (2), so as to realize the maximization of the 
electromagnetic torque. As shown in Figure 3, the blue solid lines represent the constant torque loci 
for different values of Te as a function of the d-axis and q-axis current components. So, there must be 
a certain point in each constant torque locus corresponding to the minimum amplitude of the stator 
current. The red solid line represents the minimum points for different values of Te, which is usually 
referred to as the MTPA trajectory. 
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3. Model Predictive Torque Control for IPMSM

3.1. IPMSM Model

The stator voltage equation of the IPMSM in d–q axis rotation coordinate system based on the
rotor magnetic field orientation can be expressed as Equation (1). ud = Rsid + Ld

did
dt −weLqiq

uq = Rsiq + Lq
diq
dt + we(ψf + Lqiq)

, (1)

where, ud and uq represent the d-axis and q-axis components of the stator voltage, respectively; id and
iq represent the d-axis and q-axis components of the stator current, respectively; Ld and Lq represent
the d-axis and q-axis the stator inductance; Rs represents the stator resistance; ωe is the electrical rotor
speed; and ψf is the permanent magnet flux linkage.

The expressions of the electromagnetic torque (Te) and d–q axis stator flux components are
as follows:

Te =
3p
2
[ψfiq + (Ld − Lq)idiq], (2){
ψd = Ldid +ψf
ψq = Lqiq

, (3)

where, ψd and ψq represent the d-axis and q-axis components of the stator flux linkage, respectively,
and p is the number of pole pairs. As Ld , Lq in IPMSM, the electromagnetic torque can be divided
into two components. One is the excitation torque, and the other is the reluctance torque.

For IPMSM, the traditional id = 0 control algorithm is not suitable, because the reluctance torque
is not considered. The maximum torque per ampere (MTPA) control is usually adopted. The d-axis
and q-axis current are distributed according to Equation (2), so as to realize the maximization of the
electromagnetic torque. As shown in Figure 3, the blue solid lines represent the constant torque loci for
different values of Te as a function of the d-axis and q-axis current components. So, there must be a
certain point in each constant torque locus corresponding to the minimum amplitude of the stator
current. The red solid line represents the minimum points for different values of Te, which is usually
referred to as the MTPA trajectory.
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3.2. Model Predictive Torque Control

The feedback signals of the stator current, position, and speed of the rotor can be obtained by the
current sensor and the encoder. Then, combined with the mathematical model of the motor, the impact
of each vector on the stator current can be predicted. The relationship is as follows: idn(k + 1) = id(k) +

1
Ld
[we(k)Lqiq(k) −Rsid(k) + Vdn]Ts

iqn(k + 1) = iq(k) +
1

Lq
[−we(k)Ldid(k) −Rsiq(k) −we(k)ψf + Vqn]Ts

, (4)

where, n = 1, 2, 3 . . . is the number of voltage vectors and its related variables; Ts is the control period;
and x(k) and x(k + 1) are the values of variable x at the beginning of the kth and (k + 1)th control period,
respectively. The electromagnetic torque (Ten(k + 1)) and the stator flux (ψsn(k + 1)) generated by the
voltage vector (Vn) can be obtained by Equations (2) to (4).

The reference value and predictive value of the torque and flux are substituted in Equation (5).
The optimal vector can be determined according to the value of the cost function. g(n) =

∣∣∣T∗e − Ten(k+1)
∣∣∣+ Q

∣∣∣ψ∗s − ∣∣∣ψsn(k+1)
∣∣∣∣∣∣

Vopt = Vargming(n)
, (5)

where, Vopt is the optimal voltage vector, and Q is the weighted factor, which is the absolute value of
the ratio of the rated torque to the rated flux, as shown in Equation (6).

Q =

∣∣∣∣∣∣TN

ψN

∣∣∣∣∣∣. (6)

However, the weighted factor (Q) obtained from Equation (6) cannot be used directly. It needs
to be adjusted according to the operation condition. The optimal vector obtained in the kth control
period can only be applied in the (k + 1)th control period. Therefore, the cost function can be further
improved, as follows:  g(n) =

∣∣∣T∗e − Ten(k+2)
∣∣∣+ Q

∣∣∣ψ∗s − ∣∣∣ψsn(k+2)
∣∣∣∣∣∣

Vopt = Vargming(n)
. (7)

The predictive values of the torque and flux in the (k + 2)th control period in Equation (7) are
obtained based on the predictive value of the (k + 1)th period, which could be obtained by Equation (4)
and the output voltage vector of the kth period. According to the above principle, the MPTC block
diagram is shown in Figure 4.
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3.3. Model Predictive Flux Control

The weighted factor will be eliminated in the model predictive flux control (MPFC) [17] if the
control object is changed from the torque to the flux. The algorithm is simplified because only the
prediction of the stator flux is needed. The implementation of MPFC is as follows.

The reference value (TE*), which is the output of the PI controller in the outer loop, is used as
the input of the MTPA algorithm. The outputs of the MTPA algorithm are the d-axis and q-axis
components of the reference flux of ψd* and ψq*, respectively. The d-axis and q-axis flux components,
ψdn(k + 2) andψqn(k + 2), respectively, with respect to the different voltage vectors, are deduced by
substituting all of the voltage vectors in the finite control set into Equations (3) and (4), and then the
cost function can be established as follows: g(n) =

∣∣∣ψ∗s −ψsn(k+2)
∣∣∣ = ∣∣∣ψ∗d −ψdn(k+2)

∣∣∣+ ∣∣∣ψ∗q −ψqn(k+2)
∣∣∣

Vopt = Vargmin g(n)
. (8)

The control objective of the MPFC is the stator flux, and the weighted factor is eliminated.
Although the flux ripple is reduced, the torque ripple is increased. So, the cost function needs to be
redesigned in order to improve the torque control performance.

4. Improved Model Predictive Torque Control

The torque control performances of both MPTC and MPFC are limited, because the cost function
contains a flux component. However, the current will be unstable if the flux component is abandoned. So,
a modified predictive control algorithm is presented in order to improve the torque control performance.

4.1. Improved Cost Function

For IPMSM, the torque can be regarded as the sum of the excitation torque and reluctance torque,
and then Equation (2) can be rewritten as follows:

Te = TE + TR, (9)

where, TE = 3pψfiq/2 is the excitation torque generated by the permanent magnet, which is proportional
to the q-axis current; TR = 3p(Ld-Lq)idiq/2 is the reluctance torque generated by the magnetic reluctance,
and is proportional to the product of d-axis and q-axis currents.
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The d–q axis currents id and iq can be restricted by controlling TE and TR, respectively. Accordingly,
the modified cost function can be constructed as follows:{

g(n) =
∣∣∣T∗E − TEn(k+2)

∣∣∣+ ∣∣∣T∗R − TRn(k+2)
∣∣∣

Vopt = Vargming(n)
. (10)

It can be seen from Equation (10) that the units of both the excitation torque and reluctance torque
are the same, so the weighted factor is unnecessary. Moreover, the torque control performance is
directly influenced by the cost function, and the torque control performance can be improved.

For example, a motor with Ld = 0.200 mH, Lq = 0.555 mH, and ψf = 0.07574 Wb is analyzed.
The data of TE and TR are shown in Figure 5. The simulation results of the stator current under a 10%
rated load condition are shown in Figure 6.
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Figure 6. Current waveform under light load condition.

It can be concluded from Figures 3, 5 and 6 that the MTPA curve approximately coincides with the
reference line of id = 0 when the motor is operated in conditions of no load and a light load. The torque
is mainly composed of the excitation torque, which results in the fluctuation of the d-axis current. So,
the cost function needs to be reconstructed in order to improve the torque performance in conditions
of no load and a light load. The new cost function is as follows:

g(n) =


∣∣∣ψ∗d −ψdn(k+2)

∣∣∣+ ∣∣∣ψ∗q −ψqn(k+2)
∣∣∣ ∣∣∣T∗e∣∣∣ < TX∣∣∣T∗E − TEn(k+2)

∣∣∣+ ∣∣∣T∗R − TRn(k+2)
∣∣∣ ∣∣∣T∗e∣∣∣ > TX

Vopt = Vargming(n)

, (11)

where, TX is the threshold value of the torque for switching the two cost functions in Equation (11),
which is related to the motor’s parameters.

The cost function will be switched frequently when TX is close to the reference torque (Te*),
so a hysteresis comparator with a reasonable width is adopted for eliminating unnecessary switches.
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The proposed method combines the advantages of the traditional MPTC and MPFC. The weighted
factor is eliminated, and the torque control performance is improved under a heavy load condition.

4.2. Finite Control Set

The number of virtual voltage vectors is increased to 40 by using the discrete voltage vector
synthesis method, as shown in Figure 2. However, with the increase in virtual voltage vectors,
the optimization process is more complicated. So, the three virtual voltage vectors nearest to the
reference vector are preselected as the new finite control set. Then, the voltage vector that minimizes
the value of the cost function can be obtained, and the switching signals can be generated by the PWM
modulator, according to the selected voltage vector [18]. For example, when the optimal voltage vector
is V120, the switching signals are as shown in Figure 7.
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Compared with the traditional control algorithm, the calculation process is simplified and the
performance of the system is improved. The control diagram of the proposed algorithm is illustrated
in Figure 8.
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It is worth mentioning that the mathematical model and parameters of the motor system are often
nonlinear, time-varying, and strongly coupled. The basis of the rigorous optimization method is the
parameter precision of the object model. Therefore, the rigorous optimization method often leads to a
decrease in the control performance, or even results in control failure.

The model predictive torque control proposed in this paper belongs to the category of model
predictive control. Model predictive control generally includes the following three parts: predictive
model, rolling optimization, and feedback correction. The predictive model indicates the relationship
between the inputs and outputs of the control system. Then, the cost function could be established so
as to evaluate the impact of each possible control behavior on a certain control performance in the
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current control period. The control-behavior minimizing the cost function will be applied to the system
in the next control period. Although the control performance may be affected by the accuracy of the
predictive model, the rolling optimization could restrain the errors caused by the model mismatch,
time-varying, and disturbance, and guarantee a good performance of the control system.

5. Simulation and Experimental Results

5.1. Simulation Analysis

The traditional and the proposed methods are simulated by MATLAB/Simulink, respectively.
The sampling frequency of the single vector algorithm is 20 kHz, and the sampling frequency of the
discrete voltage vector algorithm is 10 kHz. TX is 40 N·m. The parameters of the motor are shown in
Table 1.

Table 1. Parameters of an interior permanent magnet synchronous motor (IPMSM).

Parameter Value

Rated voltage (Udc) V 320
Number of pole-pairs (p) - 4

Stator resistance (Rs) Ω 0.0114
d-axis inductance (Ld) mH 0.200
q-axis inductance (Lq) mH 0.555

Permanent magnet flux linkage (ψf) Wb 0.07574
Rated speed (nN) r/min 3000
Rated torque (TN) N·m 64

Maximum torque (Tmax) N·m 180

The standard deviation is adopted for evaluating the control performance of different algorithms,
which is defined as follows [15]: 

σx =

√
1

n−1

n∑
i=1

(x(i) − x)2

x = 1
n

n∑
i=1

x(i)

. (12)

The rotator speed (nr), electromagnetic torque (Te), stator flux amplitude (|ψs|), and stator current
(ia) of the traditional and the proposed algorithms are shown in Figure 9. The motor is accelerated
from a static state to the rated speed. Figure 9a shows the results of the algorithm of the improved
cost function of Equation (11) with a single vector modulation. Figure 9b shows the results of the
algorithm of MPFC with discrete voltage vector modulation. Figure 9c shows the results of the
proposed algorithm.

From Figure 9a, the speed of the motor is accelerated smoothly from 0 rpm to 3000 rpm (rated
speed). Then, the torque reference is stepped up from 0 to 64 N·m (rated load), and the motor reaches
the steady state rapidly. This indicates that the system has the ability of anti-disturbance. As can be
seen from Figure 9b,c, with the adoption of discrete voltage vector modulation, the stability of the
system remains. Moreover, the torque and flux ripples of both the proposed algorithm and MPFC
are restrained.

The performances of the proposed algorithm and MPFC under a rated load/different speed
conditions, both with discrete voltage vector modulation, are shown in Figures 10 and 11. For these two
methods, the standard deviations of the torque are 2.54 and 2.03 N·m at a 10% rated speed, calculated
according to Equation (12). While, the standard deviations of the torque are 2.56 and 2.31 N·m at the
rated speed, respectively. Thus, the torque ripple of the proposed algorithm is lower than the MPFC
under a rated load condition.
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5.2. Experimental Results

The proposed algorithm is implemented and evaluated on a 20-kW IPMSM driven by a two-level
inverter, and the digital control unit is based on a Texas Instruments (Dallas, TX, USA) TMS320F28335
digital signal processor (company, city, country), both illustrated in Figure 12. The parameters of the
motor are consistent with the simulation.
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Figure 13. Experimental waveforms when the speed is accelerated from 0 to 3000 rpm: (a) MPFC with
a discrete voltage vector; (b) improved method with a discrete voltage vector.

As can be seen from Figure 13, for both of the two algorithms, the speed of the motor is accelerated
smoothly from 0 to 3000 rpm (rated speed). The torque and flux ripples under a no-load condition are
almost the same.

Then, the torque reference is stepped from 0 to 64 N·m (rated load). The torque and stator flux
waveforms of the MPFC and proposed algorithm, both with a discrete voltage vector, are shown in
Figure 14.
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As can be seen, the motor reaches the steady state rapidly. It indicates that the system has the
ability of anti-disturbance. Moreover, the torque ripple of the proposed algorithm is lower than that
of MPFC.

The performance of the proposed method in the whole speed range is also verified. The speed
reference is set to 10% of the rated speed, and the torque and stator flux waveforms at a steady state in
conditions of no-load and a rated load are shown in Figures 15 and 16, respectively.
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with a discrete voltage vector; (b) proposed algorithm with a discrete voltage vector.

Under a low speed/rated load condition, the torque ripple of the proposed algorithm is lower
than MPFC. While, under a low speed/no-load condition, the torque rippled of the proposed algorithm
is the same as that of MPFC. The standard deviations of the above experimental results are calculated
according to Equation (12), and shown in Table 2. As can be seen, the torque ripple of the proposed
algorithm is lower than MPFC under heavy load conditions.
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Figure 16. Experimental waveforms under the condition of a 10% rated speed/light load: (a) MPFC
with a discrete voltage vector; (b) proposed algorithm with a discrete voltage vector.

Table 2. Comparison of standard deviation (STDEV) between two methods. MPFC—model predictive
flux control.

Speed STDEV Load MPFC Improved Method

10% Rated speed
σT (Nm) Light 1.508 1.502

Rated 3.358 3.016

σψ (Wb) Light 0.00148 0.00154
Rated 0.00218 0.00284

Rated speed
σT (Nm) Light 1.604 1.582

Rated 3.624 3.094

σψ (Wb) Light 0.00172 0.00178
Rated 0.00267 0.00353

6. Conclusion

An improved MPTC algorithm is presented for IPMSM. The cost function is redesigned according
to the load conditions. MPFC is adopted under light load conditions, so that there is no weighted
factor in the cost function. While, under heavy load conditions, the weighted factor is eliminated by
converting the torque and flux components to excitation torque and reluctance torque components,
respectively, and the torque ripple is reduced. The simulation and experimental results verify the
effectiveness of the proposed method.
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