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Abstract: Three-dimensional (3D) deconvolution is widely used in many computer vision applications.
However, most previous works have only focused on accelerating two-dimensional (2D)
deconvolutional neural networks (DCNNs) on Field-Programmable Gate Arrays (FPGAs), while the
acceleration of 3D DCNNs has not been well studied in depth as they have higher computational
complexity and sparsity than 2D DCNNs. In this paper, we focus on the acceleration of both 2D and 3D
sparse DCNNs on FPGAs by proposing efficient schemes for mapping 2D and 3D sparse DCNNs on
a uniform architecture. Firstly, a pruning method is used to prune unimportant network connections
and increase the sparsity of weights. After being pruned, the number of parameters of DCNNs is
reduced significantly without accuracy loss. Secondly, the remaining non-zero weights are encoded
in coordinate (COO) format, reducing the memory demands of parameters. Finally, to demonstrate
the effectiveness of our work, we implement our accelerator design on the Xilinx VC709 evaluation
platform for four real-life 2D and 3D DCNNs. After the first two steps, the storage required of
DCNNs is reduced up to 3.9×. Results show that the performance of our method on the accelerator
outperforms that of the our prior work by 2.5× to 3.6× in latency.

Keywords: DCNN; FPGA; pruning; sparsity; acceleration; 2D; 3D; uniform architecture

1. Introduction

Recently, deconvolution has become widely used in the fields of computer vision, such as semantic
segmentation [1], generative models [2], and high-resolution imaging [3]. Because 3D images exist in
most medical data used in clinical practice [4], three-dimensional (3D) deconvolution has proven to be
a better method than two-dimensional (2D) deconvolution in some applications.

Although the computational patterns of 2D and 3D deconvolutions are very similar, the
computational complexity and memory requirements of 3D deconvolution are much higher than
in 2D deconvolution, making it challenging to design efficient accelerators for them. In addition,
deconvolution must insert ‘zero’ into input images before implementing convolution operations,
leading to the sparsity of input images as well as the introduction of useless operations (i.e.,
multiplications with zeros).

Sparsity represents the fraction of zeros in deconvolutional neural networks (DCNNs), including
input activations and weights’ sparsity. Exploiting the sparsity is beneficial to reduce useless
computational operations. According to our study, the sparsity of the input activations of 3D
deconvolution layers is higher than that of 2D deconvolution layers. As shown in Figure 1, the sparsity
of deconvolutional layers in an example of 3D DCNNs (i.e., 3D Generative Adversarial Network [5]
(3D-GAN)) is clearly higher than for 2D DCNNs (i.e., DCGAN [2]). As for weights, the number of
weights can be reduced by 9× and 13× for in AlexNet and VGG-16 using pruning algorithm without
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accuracy degradation [6]. The high degree of sparsity in weights and activations will incur abundant
useless multiplication operations and contribute to the processing engine (PE) utilization and workload
imbalance [7].
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Figure 1. Sparsity of the input feature maps in deconvolutional layers.

Many studies [8–10] have primarily focused on accelerating convolutional neural networks
(CNNs) on Field-Programmable Gate Arrays (FPGAs), due to the beneficial high performance and
energy efficiency of FPGAs. However, to the best of our knowledge, not much attention has been given
to accelerate DCNNs, especially in 3D deconvolution. Given the similarities in the computational
patterns of 2D and 3D deconvolutions, our previous work [11] has focused on accelerating both of them
on FPGAs, using a uniform architecture. By exploiting the sparsity of input activation, our previous
work can significantly avoid the number of useless multiplication operations caused by inserting ’zero’,
thereby achieving high throughput and optimum energy efficiency.

This work is mainly extended from our previous work [11]. Compared with our previous
work, this work focuses on accelerating 2D and 3D sparse DCNNs on FPGA. On the basis of the
uniform architecture previously proposed in [11], we further exploit the sparsity of weights and reduce
the number of useless multiplication operations (that is, multiplications with zero-value weights).
By pruning the low-weight connections between synapse and neurons, the weights of DCNNs are
significantly compressed. Additional modules are then added into the architectures; these support
the computation of sparse input activations and weights. The main contributions of this work are
summarized as follows:

• A pruning algorithm [12] is creatively applied on DCNNs to remove low-weight connections and
the remaining non-zero weights are encoded in coordinate (COO) format, which can significantly
reduce the size of DCNNs.

• We propose an efficient mapping scheme of 2D and 3D sparse DCNNs on the uniform architecture,
which can efficiently improve the parallel computational ability and computational efficiency of
the accelerator.

• As a case study, we implement our design on an Xilinx VC709 board for four state-of-the-art 2D
and 3D DCNNs: DCGAN, GP-GAN [13], V-Net [4] and 3D-GAN. Experimental results show
that our implementation achieves an improvement of up to 3.6× in performance relative to our
prior work.

The rest of this paper is organized as follows. Section 2 discusses related work. We review the
study background in Section 3. The proposed architecture is illustrated in Section 4. The experimental
results are presented in Section 5. Section 6 summarizes this paper.
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2. Related Work

Due to the high-performance, reconfigurability and energy-efficient nature of FPGAs, many
FPGA-based accelerators [14–18] have been proposed that can implement CNNs; these have achieved
high throughput and improved energy efficiency. Several novel reconfiguration architectures were
proposed in [14] that improve the sum-of-products operations used in the convolutional kernels of
CNNs. In [15], a modified Caffe CNN framework is presented; this framework implements CNNs using
FPGAs, allowing transparent support to be given to individual FPGA implementation of CNN layers.
In 2016, CNN-MERP, a CNN processor incorporating an efficient memory hierarchy, was produced
by Han et al. [16]; this processor was shown to have significantly lower bandwidth requirements.
Bettoni et al. [17] proposed an FPGA implementation of CNNs in low-power embedded systems;
this study addressed portability and power efficiency. In [18], a Deep Convolutional Neural Network
SqueezeNet was accelerated on an Soc FPGA by exploiting low-power consumption capabilities.

However, to the best of our knowledge, there has been little research that focuses on accelerating
deconvolutions [7,19,20]. In [19,20], the researchers addressed the accelerations of the deconvolution
in generative adversarial networks (GANs). Yazdanbakhsh et al. [19] introduced a new architecture
to alleviate the sources of inefficiency associated with the acceleration of GANs using conventional
convolution accelerators by reorganizing the output computations. In [20], an end-to-end solution was
devised to generate an optimized synthesizable FPGA accelerator from a high-level GAN specification,
alleviating the challenges of inefficiency and resources underutilization faced by conventional
convolutional accelerators. Yan et al. [7] proposed a novel mapping method called input oriented
mapping (IOM, i.e., mapping each input computation task to each PE), which can efficiently overcome
the inefficiency of PE computation. All the above mentioned works, however, only consider 2D
DCNNs. Our previous work [11] proposed a uniform architecture to accelerate 2D and 3D DCNNs,
achieving higher performance and energy efficiency, however, did not address the problem of the
sparsity of weights.

3. Background

3.1. Pruning and Encoding

The pruning method used in this paper is proposed in [12]. The pruning method is used to
reduce the number of weights which have low contribution to results, and alleviates the memory
demands of the inference of DCNNs. As illustrated in Figure 2, the process of pruning consists of
three steps. Firstly, the connectivity between synapse and neurons is learned by network training.
Secondly, the low-weight connections are removed from the network. In this step, a threshold is
defined, and those weights whose absolute values are below the threshold are viewed as low-weight
connections and set to zero. Finally, the remaining sparse connections are retrained to learn the final
weights. Repeat the last two steps above, until the accuracy of the network does not decline.

Learn connectivity
Prune low-weight 

connections
Train weights

Figure 2. Three-step pruning pipeline.

The sparse structure after pruned is stored in COO format. For a sparse matrix with n non-zero
weights, using COO format to store the matrix requires 3n numbers. As shown in Figure 3, to represent
a 3× 3 matrix M, three one-dimensional arrays with the same length are necessary. One of the arrays
stores non-zero weight values, one array stores the row indexes of non-zero weights, and the other
array stores the column indexes of non-zero weights. Applying the above method can gain compressed
weights. Although many other sparse matrix storage formats can be used to store sparse matrices,
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including compressed sparse row (CSR), compressed sparse column (CSC) and modified sparse row
(MSR), the addresses of data stored in COO format can be located more quickly compared with other
formats according to the indexes of data. By encoding sparse weights in COO format, the number of
weights is significantly reduced.
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Figure 3. Coordinate (COO) format illustration.

After pruning low-weight connections, the number of parameters of DCGAN and 3D-GAN is
reduced to 29% and 26% of their original sizes, respectively. The detailed ratios of non-zero weights in
each layer are shown in Table 1.

Table 1. Non-zero weight ratios of DCGAN and 3D-GAN after pruned.

DCGAN 3D-GAN

Layer Weights Non-Zero Ratio Weights Non-Zero Ratio

deconv1 4.5 M 28% 2.0 M 25%
deconv2 1.1 M 33% 0.5 M 29%
deconv3 288.0 K 35% 128.0 K 23%
deconv4 3.4 K 38% 1.0 K 30%

Total 5.9 M 29% (1.7 M) 2.6 M 26% (0.7 M)

3.2. Deconvolution

Deconvolution is the up-sampling process of increasing the size of feature maps, and the reverse
process of convolution, as shown in Figure 4. The size of output feature maps of deconvolution is larger
than that of input feature maps, normally twice the size of input feature maps. Deconvolution consists
of two consecutive stages, including the size extension of input feature maps and the following
convolution operations. The size extension requires the insertion of ‘zero’ between input activations of
original input feature maps. Figure 5 shows the process of 2D and 3D deconvolutions.
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Figure 4. A real-life 2D DCNN model for image generation.
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Figure 5. Illustration of the process of deconvolutions: (a) 2D deconvolutions; (b) 3D deconvolutions.

As Figure 5a illustrates, for 2D deconvolution, the original input map is inserted with ‘zero’
shown in white between the original input activations colored in gray. A K× K kernel then performs
convolutions with the inserted feature map to generate an R′ × C′ output map. Observed from
Figure 5b, the process of 3D deconvolution is similar to that of 2D deconvolution. The original image
is first inserted with ‘zero’ between the rows and columns of the 2D data tiles, which is identical to
2D deconvolution. In addition, it is also necessary to insert ‘zero’ planes (i.e., the M1 plane) between
every two 2D planes (i.e., the M2 plane) and a K× K× K kernel then performs convolutions with the
inserted feature map to generate an R′ × C′ × Z′ output map.

4. The Proposed Architecture

4.1. Architecture Overview

Figure 6 presents an overview of our proposed uniform architecture for accelerating both 2D and
3D sparse DCNNs. The accelerator mainly consists of a memory controller, three types of on-chip
buffers, a kernel computation engine, a position converter and the adder trees. Due to a limited
amount of on-chip memory of FPGAs, input images, compressed parameters and final results are
stored in the off-chip memory (i.e., the dual date rate (DDR) memory). The memory controller is
used to fetch the input feature maps and compressed weights from the DDR to the on-chip buffers,
and storing the results into the DDR when they are available. One output feature map involves Nc

(i.e., input channels) input feature maps. However, due to the limited on-chip memory, it is difficult
to cache all the input data needed for one feature map on chip. Hence, we use a blocking method to
resolve this issue. Input feature maps and compressed weights are divided into some tiling blocks.
We adopt three separate on-chip buffers to store tiled input feature maps, output feature maps and
compressed weights.
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Figure 6. An overview of our proposed architecture.
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The computation engine is a significant component of our accelerator, which consists of a Tm

group of PEs. In each group, the PEs are organized as a 3D mesh architecture, which contains Tn × Tz

2D PE planes. In this work, we regard the PE plane as a PE array with Tr × Tc PEs. All PEs have direct
connections to the input buffers and weight buffers. Those PEs which process the input activations
belonging to the same input feature maps share the same weights.

Different from our prior work [11], a position converter is added into the architecture. The position
converter computes the coordinates of results yield by the computation engine according the indexes of
input activations and weights. The architecture of the position converter module includes three register
files, as well as an adder and a multiplier. The three register files are used to buffer input activations
indexes and weights indexes, as well as to buffer sliding window stride S. The adder trees handle the
additions of the results with the same positions but different input channels. Tm × Tc × Tz × log2Tn

adders are integrated in the adder trees to support a higher degree of parallelism.
The architecture of the PE is presented in the right part of Figure 6. It consists of two register

files (i.e., Ra and Rw) to buffer the input activations and weights. In addition, three Overlap
First-In-First-Outs (FIFOs) (i.e., FIFO-Vs, FIFO-Hs and FIFO-Ds) are designed to deliver the overlap
of the results data from the adjacent PEs. The position converter can gain the position of results and
control the data transfer between PEs. The products yielded by the multipliers are conditionally added
with the data from the Overlap FIFOs. Once the current results are determined to be overlap by
the position converter, they will be sent to the Overlap FIFOs of adjacent PEs, waiting to be added.
Otherwise, they will be sent to the local Result FIFOs. The results in the local FIFO of the current PE
will be sent to the left PE once they have stored all the local results.

4.2. Support for Sparse Weights

Several modifications to the architecture have been made to support the computation of sparse
weights. Initially, sparse weights are compressed through software implementation. We store the
compressed weights into weight buffers, including data and the corresponding indexes. The data
relating to activations and weights (the orange lines in Figure 6) are sent to the computation engine,
while their indexes (the red lines) are delivered to the position converter, which then computes the
coordinates of the results.

In the position converter, the index of the input activation is multiplied by stride S; the
multiplication result is then added to the weight index. When a group of adjacent input activations
are fed into the computation engine, only the coordinate of the first input activation needs to be
calculated. Once the coordinate of the first result is produced, other coordinates can easily be
established. The coordinates of adjacent PE results just need to add stride S. The formulas are
illustrated in detail in lines 9–11 of Algorithm 1 (Section 4.3). These architecture modifications will
bring an increase in control logic complexity; at the same time, the consumption of hardware resources
will not increase significantly.

4.3. 3D IOM Method

Previous studies [19,20] have adopted the output oriented mapping (OOM, i.e., mapping each
output computation task to each PE) for the computation of deconvolution layers. This method,
however, does not eliminate useless operations thereby resulting in low computational efficiency of
PEs. In [7], Yan et al. proposed a novel mapping method called IOM, which can efficiently overcome
the inefficiency of PE computation. Motivated by [7], we propose a 3D version of IOM for the mapping
of 3D deconvolution on the accelerator.

Figure 7 illustrates the 3D IOM method. I1∼I4 are adjacent activations of the input map, and they
are sent to four adjacent PEs of two PE arrays. In the PEs, each activation is multiplied by the K×K×K
kernel and generates a K× K× K result block. The results are added to the corresponding location
of the output maps. It is worth noting that some locations may overlap in the output maps and the
overlapped elements of the same locations should be added up to form the resulting output maps. The
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overlap results from the PEs which are responsible for processing I2∼I4 are sent to the PE which is
responsible for processing I1, and point-wise addition is performed. In each block, the length of the
overlapping part is K-S, where S is the stride.

Input map

I1 I2
I3

Output map

I4

Activation * kernel

S

K

S K

Overlap

PE PE

PE PE

PE Array

Tr

Tc

PE PE

PE PE

PE Array

Tr

Tc

Figure 7. Illustration of the 3D input oriented mapping (IOM) method.

In 3D deconvolution, the output feature map size is given by Equation (1). Note that
IH , IW , ID, OH , OW , OD represent the height, width and depth of the input maps and output maps.
However, at the edge of the output feature map, there is additional data padded. Thus, the padded
data are removed from the final output feature map. The final result is equal to traditional convolution
with ‘zero’ inserted into the original input map. The 3D deconvolution algorithm is illustrated in
Algorithm 1, where OFM[m][od][ow][oh], IFM[n][id][iw][ih] and W[m][n][kd][kw][kh] represent the
elements of output feature maps, input feature maps and weights, respectively:

OH = (IH − 1)× S + K,
OW = (IW − 1)× S + K,
OD = (ID − 1)× S + K.

(1)

Algorithm 1 Pseudo code for 3D deconvolution.

1: for (m = 0; m < M; m ++)
2: for (n = 0; n < N; n ++)
3: for (ih = 0; ih < IH ; ih ++)
4: for (iw = 0; iw < IW ; iw ++)
5: for (id = 0; id < ID; id ++)
6: fo r(kd = 0; kd < K; kd ++)
7: for (kh = 0; kh < K; kh ++)
8: for (kw = 0; kw < K; kw ++)
9: od = S× id + kd;

10: oh = S× ih + kh;
11: ow = S× iw + kw;
12: OFM[m][od][ow][oh] += IFM[n][id][iw][ih] ×W[m][n][kd][kw][kh];

We divide the dataflow in the PE arrays into three steps:
Loading activations and weights: Input blocks and weight blocks are firstly fetched into the input

and weight buffers, and Tn × Tr × Tc × Tz activations and Tm weights are fed into the computation
engine. Each PE in the 3D PE mesh load a input activation from input buffers, and PEs which process
the input activations of the same input feature map share the same weight from weight buffers.
Input activations are multiplied by all the compressed non-zero weights of the corresponding kernels.
After that, the arithmetic operations of the current weights and input activations are completed in
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PEs, the next Tm weights of current convolutional kernels are then fed into the computation engine.
In addition, when the the arithmetic operations of the current input activations and convolutional
kernels are finished, the next group Tn × Tr × Tc × Tz activations are fed into the computation engine.

Computing: After input activations and weights are fed into the PEs, they are immediately sent
to the multiplier to yield products in each PE. The results are then sent to the FIFOs. If the results
overlap, they are sent to Overlap FIFOs, else they are sent to Result FIFOs. When the PEs process the
overlapped part of the result blocks, the PEs load the overlapped elements from their Overlap FIFOs,
and perform multiplication and additions. For 3D deconvolution, each input activation produces a
K× K× K result block. In result blocks, except for those results yielded by PEs, the remaining part of
result blocks are regarded as zero. When the computation process in the direction of input channels
(i.e., Tn) is completed, the position converter computes the positions of results yield by the computation
engine according to the index of input activations and weights; then, Tn results with the same locations
are accumulated by the adder trees.

Writing Back: When all the activations of input blocks are completed and the overlap is
accumulated, the final results (i.e., the output feature map) is transferred to output buffers. The results
are accumulated until the input channels are completed, and the final outputs of output feature maps
are then transferred to the external memory.

To explain this concept in more detail, we illustrate the dataflow of applying the 3D IOM method
on the architecture in Figure 8. For the sake of simplicity, Figure 8 only shows the dataflow in a
PE array, and the dataflow in other PE arrays is analogous. Table 2 lists the definitions used in the
explanation of the dataflow.
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Figure 8. Dataflow of the computation engine.

Table 2. Definition of the parameters.

Parameter Description

I(ih, iw) element of input feature maps
W(kh, kw) element of kernels

Initially, a pruned kernel is encoded in COO format. Weights are singly fed into the PE array
in sequence and are shared by all PEs of the array, assuming that the size of the PE array is 4× 4.
In cycle 1, the first non-zero encoded weight W(0, 0) and the input activations I(0, 0)∼I(3, 3) are fed
to the PE array; the activations are then multiplied by the weight and the 4× 4 computation results are
arranged in the output feature map according to their coordinates. The results coordinates are then
computed by the position converter, as illustrated in lines 9–11 of Algorithm 1. There will be some
results that have the same coordinates, leading to overlap. These computation results are overlapped
in the vertical and sent to FIFO-Vs.
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In cycle 2, the second non-zero weight W(0, 2) is loaded into the PE array, which is also shared by
all PEs. The weight W(0, 2) is multiplied by the activations I(0, 0)∼I(3, 3); the computation results
are then arranged in the output feature map according to their coordinates (generated by the position
converter). These results have the same coordinates as the results generated in cycle 1; they are then
added to the overlap loaded from FIFO-Vs (i.e., the computation results of cycle 1). These results are
overlapped in the horizontal direction and sent to FIFO-Hs.

In cycle 3, the next non-zero weight W(1, 1) is loaded into the PE array and is shared by all PEs.
The weight W(1, 1) is multiplied by the activations I(0, 0)∼I(3, 3) and the computation results are
arranged in the output feature map according to their coordinates. These computation results are not
overlapped and are sent to Result FIFOs.

In cycle 4, the final non-zero weight W(2, 2) is loaded into the PE array and is multiplied by
the activations I(0, 0)∼I(3, 3). These results have the same coordinates as the results generated in
cycle 2; they are then added to the overlap loaded from FIFO-Hs (i.e., the added results of cycle 2).
Then, the added results of cycle 4 are sent to Result FIFOs. Finally, the computation process of these
input activations is completed, the next group of 4× 4 activations is fed into the PE array.

4.4. Support for the Acceleration of 2D and 3D DCNNs

Our architecture is able to support the acceleration of both 2D and 3D sparse DCNNs. For 3D
sparse DCNNs, Tz PE arrays are used for the computations of an input feature map. In this way, Tn× Tz

PE arrays can accelerate the computation of Tn input feature maps simultaneously. For 2D sparse
DCNNs, we map the computations of an input feature map onto a PE array. Since the input feature
maps are two-dimensional, we can use Tn × Tz PE arrays to compute Tn × Tz input feature maps in
the meantime, while maintaining the size of the PE arrays (i.e., Tr × Tc). In this case, the FIFO-D in
each PE is disabled since there is no dataflow between adjacent PE arrays. Note that the dataflow
in the PE arrays are identical when mapping 2D and 3D sparse DCNNs on the computation engine.
Since little control logic is required for supporting both 2D and 3D sparse DCNNs in each PE, we omit
the architecture details in Figure 6.

5. Experimental Results

5.1. Experiment Setup

As a case study, we evaluate our design using the same four DCNN models with our prior work:
DCGAN, GP-GAN, 3D-GAN and V-Net. All the deconvolutional layers of the selected DCNNs have
uniform 3× 3 and 3× 3× 3 filters.

We quantitatively compare our FPGA implementation of 2D and 3D sparse DCNNs with our
prior work. We also use Xilinx VC709 to evaluate our accelerator. The VC709 platform contains a
Virtex-7 690t FPGA and two 4 GB DDR3 DRAMs.

Table 3 illustrates the configuration of the parameters of our benchmarks. We use the same
configuration of parameters with our prior work. Note that we use the same bit width 16-bit fixed
activations and weights for all the benchmarks in our experiment. To avoid the reconfiguration
overhead, we use an accelerator with fixed configurations for all the benchmarks. We use Tm × Tn ×
Tz × Tr × Tc = 2048 PEs in total.

Table 3. Configurations of the computation engine.

Benchmarks Tm Tn Tz Tr Tc

2D DCNNs 2 64 1 4 4
3D DCNNs 2 16 4 4 4
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5.2. Performance Analysis

Initially, we apply a pruning algorithm on the four neural network models, retrain these
model without accuracy degradation, and gain sparse weights. As Figure 9 shows, after pruning
low-importance connections between synapse and neurons in neural networks without accuracy
degradation, the overall sparsity of weights can be up to 70%, and be significantly compressed in the
size of parameters. By compressing the weights, the number of arithmetic operations and time of
inference can also be reduced significantly.

DCGAN GP-GAN 3D-GAN V-Net
0%

20%

40%

60%

80%
Sp
ar
si
ty

Benchmarks

Figure 9. Overall sparsity of weights.

Table 4 reports the resource utilization of our accelerator. The Digital Signal Processors (DSPs) and
Look-up Tables (LUTs) dominate the resource consumption, and are mainly utilized for implementing
multipliers and adders, respectively. Compared to our prior work, the utilization of LUTs and
Flip-Flops (FFs) is increased slightly, due to the use of the position converter component.

Table 4. Resource utilization of Xilinx VC709.

Resource DSP48Es Block RAMs FFs LUTs

Available 3600 1470 866,500 433,200
Utilization 2304 712 602,749 304,247

Percentage (%) 64.00 48.44 69.56 70.24

Figure 10 presents PE utilization about the accelerator. Note that the PE utilization is defined as the
ratio of the computation time occupied in total time. For all benchmarks, our accelerator can achieve
up over 80% of PE utilization. It demonstrates the effectiveness of our mapping and the uniform
architecture for 2D and 3D deconvolutions. Note that the fourth layers of DCGAN and GP-GAN
are bottlenecked by the memory access, which results in a reduction of PE utilization. Because the
hardware architecture is similar to our prior work, PE utilization is quite close to it.
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Figure 10. Processing elements (PE) utilization.

For the benchmarks in our experiment, we compare the running time of this work with that of
our prior work as shown in Figure 11. The performance of our method on the accelerator outperforms
that of the our prior work by 2.5× to 3.6×. Due to the significant sparsity of weights, our method can
avoid useless arithmetic operations and then reduce the running time.
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tim
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m
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Figure 11. Performance comparison with our prior work [11].

A comparison of our work and a previous work of 2D DCNNs is illustrated in Table 5. Because the
experimental results of other works are unavailable, they are not included in the comparison. It can be
seen that our work outperforms [7] in terms of throughput. However, the comparison is a bit unfair
due to the different platforms and models.

Table 5. Comparisons with previous works for 2D DCNNs.

Works [7] Ours

Platform ASIC 28nm VX690t
Frequency (MHz) 200 200

Data precision 16-bit fixed 16-bit fixed
Model SR DCGAN

Throughput (GOPS) 72.8 1578

5.3. Sensitive to Weights Sparsity

To explore the effects of weights sparsity on the performance, we examine two representative
models (i.e., DCGAN and 3D-GAN) to measure the performance. In the two models, we manually
set the sparsity of weights from 0 (i.e., fully dense) to 80%, ignoring the accuracy of neural networks
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models. Figure 12 shows that, like the growth of weights sparsity, the improvement of performance is
roughly linear.
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Figure 12. Performance as a function of the sparsity of weights.

However, when the sparsity of weights is zero, the performance of this work is slightly lower than
our prior work because it suffers from the cost of position transformation. From Figure 12, we can see
that our method can support sparse and dense weights, and gain better performance with the increase
of weights sparsity.

6. Conclusions

In this paper, we proposed a 2D and 3D deconvolution accelerator based on a uniform architecture
on FPGA to support the acceleration of DCNNs with sparse weights. We employed an efficient
mapping scheme of 2D and 3D deconvolutions on this architecture. By exploring the sparsity of
weights, and applying data transference between adjacent PEs, our design is capable of accelerating
both 2D and 3D DCNNs with sparse weights efficiently. Experimental results show that our design can
achieve a great acceleration of 2.5× to 3.6× compared with our prior work. As future work, we plan to
investigate the sparsity of feature maps of DCNNs.
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