
electronics

Article

Research on In-Vehicle Key Management System
under Upcoming Vehicle Network Architecture

Zhihong Wu 1,2, Jianning Zhao 1 , Yuan Zhu 1,2,*, Ke Lu 2 and Fenglue Shi 3

1 School of Automotive Studies, Tongji University, Shanghai 201804, China; zhihong.wu@tongji.edu.cn (Z.W.);
1510810@tongji.edu.cn (J.Z.)

2 Sino-German School for Postgraduate Studies, Tongji University, Shanghai 201804, China; luke@tongji.edu.cn
3 System Department, G-Pulse Technology Co., Ltd. Building 5, 787 Kangqiao Road, Shanghai 201315, China;

fenglue_shi@foxmail.com
* Correspondence: yuan.zhu@tongji.edu.cn

Received: 16 August 2019; Accepted: 9 September 2019; Published: 12 September 2019
����������
�������

Abstract: The intelligentization and connectedness of vehicles make vehicle cybersecurity an
important research topic. In-vehicle key management is a critical function in vehicle cybersecurity
countermeasures. After describing previous research on vehicle key management and the development
trend of vehicle network architecture, a key management scheme for in-vehicle multi-layer electronic
control units (ECUs) is proposed. The scheme is based on authenticated key exchange protocol 2
(AKEP2) and on-the-air (OTA) technology. Then, the key storage and trusted key usage based on
secure hardware are analyzed and studied. Moreover, the AES Counter with CBC-MAC (AES-CCM)
algorithm, which uses fewer keys, is introduced to in-vehicle secure communication. The simulation
analysis for the proposed OTA-based key update protocol verifies the protocol’s security. The validity
of the hardware-based trusted key usage environment and the feasibility of the AES-CCM algorithm
for the CAN FD bus are proven with corresponding experiments.

Keywords: in-vehicle key management; OTA-based key update; trusted key usage; AES-CCM

1. Introduction

Electrification, intelligentization, and connectedness are developing trends of modern vehicles.
Intelligentization can lead to changes in the vehicle’s electrical/electronic architecture, such as the
concepts of a central gateway and domain controller. Electrification and connectedness, especially
connectedness, will result in more attacks in the surfaces of vehicles, thus increasing the risk of the
vehicle being attacked. The object of these attacks is either the operation and control functions of the
vehicle [1,2], representing the most damaging attack, or information about privacy and intellectual
property in the vehicle [3,4]. Cryptography is an essential method to ensure cybersecurity, and the key
is the essence of cryptography [5]. Key management is extremely important for a vehicle [6]. For the
complex and developing vehicle electrical system, which consists of tens of electronic control units
(ECUs), studies on in-vehicle key management systems (KMS) are necessary.

The KMS has many functions, such as key generation, key distribution, key update, key storage,
and key destruction. In this paper, we mainly study the functions of storage, usage, update, and
destruction of vehicle keys. To the best of our knowledge, there is no complete and comprehensive
research on in-vehicle KMS. The previous research mainly focused on key generation and key
distribution for the in-vehicle CAN or CAN FD bus.

Electronics 2019, 8, 1026; doi:10.3390/electronics8091026 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-6345-717X
https://orcid.org/0000-0001-9166-4790
http://dx.doi.org/10.3390/electronics8091026
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/9/1026?type=check_update&version=3

Electronics 2019, 8, 1026 2 of 17

1.1. Related Research

In 2012, Lin et al. proposed a CAN frame authentication protocol based on an ID table and frame
counter [7]. The protocol uses a pair-wise symmetric key (PWSK) to generate a message authentication
code (MAC) to realize message authentication and message integrity. PWSK is distributed via a
pre-shared method; however, key update, key storage, and key destruction were not discussed.
Another CAN frame authentication scheme called a timed efficient stream loss-tolerant authentication
(TESLA)-like protocol was suggested in 2013 [8]. The main principle of this scheme is to use the TESLA
protocol for timed loss-tolerant authentication. However, other researchers showed that the TESLA-like
protocol cannot provide real-time processing of a CAN frame [9]. In 2015, Mundhenk et al. presented
a lightweight authentication and authority protocol for in-vehicle networks [10]. The protocol has
two steps, firstly using the elliptic curve cryptography (ECC) algorithm to authenticate identification,
and then using the Kerberos algorithm to distribute keys or update keys for data stream encryption.
A more complete CAN bus security protocol was put forward by Woo et al. in 2015. The protocol uses
authenticated key exchange protocol 2 (AKEP2) and a key distribution center (KDC) to implement
key generation, key distribution, and key update [11]. Woo et al.’s protocol has a good real-time
performance. Fassak et al. proposed a session key establishment protocol between two ECUs based
on ECC, and the security of the protocol was validated by simulation software [12]. All of the above
studies focused on CAN bus and mainly used an MAC to protect the CAN frame.

However, the CAN bus has small bandwidth and every frame has a payload of at most 8 bytes.
Utilizing a secure CAN protocol, such as by adding a MAC in communication, will reduce the data
payload or heavily increase the CAN bus load rate. Based on their former work, Woo et al. put forward
a practical automotive security level (ASL) concept on a CAN FD bus according to different security
requirement levels in 2016 [13]. Their experiments proved that the scheme has little key derivation
delay and fast communication response on the CAN FD bus, and it can be used in the practical scene.

1.2. The Work in This Paper

Existing researches mainly focused on lightweight key distribution, key update, and the design
of a secure frame on the CAN and CAN FD bus; however, there was little discussion about remote
key update. However, the remote key update is a convenient and low-cost function in the KMS of
future vehicles. Furthermore, only Woo et al. provided a brief description on key storage in 2016 [13].
We believe that the security of the key usage environment is as important as key storage. Research
topics about in-vehicle KMS from other researchers and this paper are shown in Table 1.

Table 1. Main research topics from different researchers.

Researchers Key
Generation

Key
Distribution

Key Update (Local
Update, Remote

Update)
Key Storage

Key Destruction
and Certificate

Revocation

Lin et al. ×
* #* ×, × × ×

Groza et al. # # #, × × ×

Mundhenk et al. # # #, × × ×

Fassak et al. × # #, × × ×

Woo et al. [13] # # #, × # ×

This paper × × #, # # #
* # means included, ×means not included.

This paper provides two main novelties. The first is that a remote key update scheme for in-vehicle
multi-layer ECUs is proposed, and its security properties are analyzed and verified. To our best
knowledge, the remote key update scheme was not discussed in previous studies. The second is that
key storage, the key usage environment, and the AES-CCM algorithm which uses fewer keys are
discussed and experimentally verified, especially for the in-vehicle embedded environment.

Electronics 2019, 8, 1026 3 of 17

The structure of this paper is as follows: Section 2 shows the trend of vehicle network architecture.
Section 3 describes the extended AKEP2-based key update scheme and the proposed on-the-air
(OTA)-based key update and destruction scheme for multi-layer ECUs. Key storage and a trusted key
usage environment based on hardware are discussed in Section 4. The AES counter with CBC-MAC
(AES-CCM) algorithm is introduced for secure communication in multi-layer ECUs to lower the number
of stored keys in Section 5. Related experiments are shown and analyzed in Section 6. In Section 7,
conclusions and future work are explained.

The research methodology in this paper is based on the existing research and our best knowledge
of the vehicle KMS, where some worthy issues were found such as the remote key update, key storage,
and key usage. The proposed solutions and experiments are also presented. The main work in this
paper is summarized as follows:

1. The frame counter is a practical method to prevent replay attacks in in-vehicle networks [7].
The key distribution method based on AKEP2 has low overhead and good real-time performance
in vehicle environments [13]. Based on the research of the above two groups and OTA technology,
a key management scheme involving in-vehicle multi-layer ECUs is proposed and its security
properties are analyzed and verified.

2. Key storage and a trusted key usage environment are studied. The related experiment proves the
availability of tampering detection based on a trusted platform module (TPM).

3. An alternative algorithm, i.e., an authenticated encryption algorithm called AES-CCM, is studied
for CAN FD bus communication. This algorithm can reduce the number of keys from two to one
while ensuring security. Measurement results of the execution time and bus load rate guarantee
the algorithm’s feasibility.

2. The Trend of Vehicle Network Architecture

For current vehicles in the market, their network architecture is a distributed network. Their main
communication pattern is a CAN bus, and other patterns include LIN, MOST, and FlexRay. All of
these vehicles have a low-performance gateway. The main function of the gateway is communication
protocol transactions, for example, transforming FlexRay format data to CAN data, or transforming
CAN data to LIN data. The general communication network architecture is shown in Figure 1.

Electronics 2019, 8, 1026 3 of 17

The structure of this paper is as follows: Section 2 shows the trend of vehicle network
architecture. Section 3 describes the extended AKEP2-based key update scheme and the proposed
on-the-air (OTA)-based key update and destruction scheme for multi-layer ECUs. Key storage and a
trusted key usage environment based on hardware are discussed in Section 4. The AES counter with
CBC-MAC (AES-CCM) algorithm is introduced for secure communication in multi-layer ECUs to
lower the number of stored keys in Section 5. Related experiments are shown and analyzed in Section
6. In Section 7, conclusions and future work are explained.

The research methodology in this paper is based on the existing research and our best knowledge
of the vehicle KMS, where some worthy issues were found such as the remote key update, key
storage, and key usage. The proposed solutions and experiments are also presented. The main work
in this paper is summarized as follows:
1. The frame counter is a practical method to prevent replay attacks in in-vehicle networks [7]. The

key distribution method based on AKEP2 has low overhead and good real-time performance in
vehicle environments [13]. Based on the research of the above two groups and OTA technology,
a key management scheme involving in-vehicle multi-layer ECUs is proposed and its security
properties are analyzed and verified.

2. Key storage and a trusted key usage environment are studied. The related experiment proves
the availability of tampering detection based on a trusted platform module (TPM).

3. An alternative algorithm, i.e., an authenticated encryption algorithm called AES-CCM, is
studied for CAN FD bus communication. This algorithm can reduce the number of keys from
two to one while ensuring security. Measurement results of the execution time and bus load rate
guarantee the algorithm’s feasibility.

2. The Trend of Vehicle Network Architecture

For current vehicles in the market, their network architecture is a distributed network. Their
main communication pattern is a CAN bus, and other patterns include LIN, MOST, and FlexRay. All
of these vehicles have a low-performance gateway. The main function of the gateway is
communication protocol transactions, for example, transforming FlexRay format data to CAN data,
or transforming CAN data to LIN data. The general communication network architecture is shown
in Figure 1.

Figure 1. CAN bus serving as a backbone in most current vehicles.

The scheme proposed by Woo et al. in 2016 considered using CAN FD communication between
the gateway and domain controllers. Its responding network architecture is illustrated in Figure 2.
Its characteristic is a central gateway, and the domain controllers serve as a backbone.

Figure 1. CAN bus serving as a backbone in most current vehicles.

The scheme proposed by Woo et al. in 2016 considered using CAN FD communication between
the gateway and domain controllers. Its responding network architecture is illustrated in Figure 2.
Its characteristic is a central gateway, and the domain controllers serve as a backbone.

Electronics 2019, 8, 1026 4 of 17
Electronics 2019, 8, 1026 4 of 17

Figure 2. CAN FD and Ethernet serving as a backbone in vehicles.

Another very promising trend of vehicle networks is to use Ethernet as the backbone. Ethernet
is the communication mode among the central gateway and all domain controllers as presented in
Figure 3. Ethernet allows for flexible networking, such as star topology or bus topology.

Figure 3. Ethernet serving as a backbone in vehicles.

Based on the discussion of vehicle network architecture above, it can be considered that the main
communication methods of the in-vehicle network in the future will be as follows:

Case 1. CAN FD as the backbone network communication protocol, and CAN FD as the in-
domain network communication protocol.

Case 2. CAN FD as the backbone network communication protocol, and CAN as the in-domain
network communication protocol.

Case 3. Ethernet as the backbone network communication protocol, and CAN FD as the in-
domain network communication protocol.

Case 4. Ethernet as the backbone network communication protocol, and CAN as the in-domain
network communication protocol.

In the above four cases, it is assumed that the backbone network consists of a central gateway
and domain controllers, and the domain here refers to the powertrain domain or chassis domain,
which has higher security requirements.

In this paper, we describe our research for case 1. For case 3 and case 4, if the Ethernet network
uses a bus topology, the Ethernet frame on the Ethernet bus can use the same arbitration protocol as
the CAN FD frame. If the Ethernet network uses a star topology, which is the most likely, then our
scheme for case 1 is still applicable. The reason is that our scheme is based on the research results of
Woo et al. in 2016, which has a KDC that can be used for both bus topology and star topology. In
short, our scheme for case 1 is also applicable for case 3 and case 4. If CAN is the communication
protocol within the domain, then we use AKEP2 to derive keys and update keys for the in-domain
network in the same way as Woo et al. in 2016; furthermore, for the encryption communication secure

Figure 2. CAN FD and Ethernet serving as a backbone in vehicles.

Another very promising trend of vehicle networks is to use Ethernet as the backbone. Ethernet
is the communication mode among the central gateway and all domain controllers as presented in
Figure 3. Ethernet allows for flexible networking, such as star topology or bus topology.

Electronics 2019, 8, 1026 4 of 17

Figure 2. CAN FD and Ethernet serving as a backbone in vehicles.

Another very promising trend of vehicle networks is to use Ethernet as the backbone. Ethernet
is the communication mode among the central gateway and all domain controllers as presented in
Figure 3. Ethernet allows for flexible networking, such as star topology or bus topology.

Figure 3. Ethernet serving as a backbone in vehicles.

Based on the discussion of vehicle network architecture above, it can be considered that the main
communication methods of the in-vehicle network in the future will be as follows:

Case 1. CAN FD as the backbone network communication protocol, and CAN FD as the in-
domain network communication protocol.

Case 2. CAN FD as the backbone network communication protocol, and CAN as the in-domain
network communication protocol.

Case 3. Ethernet as the backbone network communication protocol, and CAN FD as the in-
domain network communication protocol.

Case 4. Ethernet as the backbone network communication protocol, and CAN as the in-domain
network communication protocol.

In the above four cases, it is assumed that the backbone network consists of a central gateway
and domain controllers, and the domain here refers to the powertrain domain or chassis domain,
which has higher security requirements.

In this paper, we describe our research for case 1. For case 3 and case 4, if the Ethernet network
uses a bus topology, the Ethernet frame on the Ethernet bus can use the same arbitration protocol as
the CAN FD frame. If the Ethernet network uses a star topology, which is the most likely, then our
scheme for case 1 is still applicable. The reason is that our scheme is based on the research results of
Woo et al. in 2016, which has a KDC that can be used for both bus topology and star topology. In
short, our scheme for case 1 is also applicable for case 3 and case 4. If CAN is the communication
protocol within the domain, then we use AKEP2 to derive keys and update keys for the in-domain
network in the same way as Woo et al. in 2016; furthermore, for the encryption communication secure

Figure 3. Ethernet serving as a backbone in vehicles.

Based on the discussion of vehicle network architecture above, it can be considered that the main
communication methods of the in-vehicle network in the future will be as follows:

Case 1. CAN FD as the backbone network communication protocol, and CAN FD as the in-domain
network communication protocol.

Case 2. CAN FD as the backbone network communication protocol, and CAN as the in-domain
network communication protocol.

Case 3. Ethernet as the backbone network communication protocol, and CAN FD as the in-domain
network communication protocol.

Case 4. Ethernet as the backbone network communication protocol, and CAN as the in-domain
network communication protocol.

In the above four cases, it is assumed that the backbone network consists of a central gateway and
domain controllers, and the domain here refers to the powertrain domain or chassis domain, which
has higher security requirements.

In this paper, we describe our research for case 1. For case 3 and case 4, if the Ethernet network
uses a bus topology, the Ethernet frame on the Ethernet bus can use the same arbitration protocol as the
CAN FD frame. If the Ethernet network uses a star topology, which is the most likely, then our scheme
for case 1 is still applicable. The reason is that our scheme is based on the research results of Woo et al.
in 2016, which has a KDC that can be used for both bus topology and star topology. In short, our
scheme for case 1 is also applicable for case 3 and case 4. If CAN is the communication protocol within

Electronics 2019, 8, 1026 5 of 17

the domain, then we use AKEP2 to derive keys and update keys for the in-domain network in the same
way as Woo et al. in 2016; furthermore, for the encryption communication secure frames which include
counter and truncated, a MAC value can be used as proposed by Lin and Sangiovanni-Vincentelli
in 2012.

3. Extended AKEP2-Based Key Update Scheme and Proposed OTA-Based Key Update and
Destruction Scheme for Multi-Layer ECUs

In this paper, the typical in-vehicle ECUs are classified as follows: gateway ECU (GECU), domain
ECU (DECU), and function ECU (FECU). The related notations and nouns used in the ECUs are
described in Table 2. A function ECU is an ECU that connects an actuator or a sensor. In this
classification, the telematics unit is integrated in the GECU.

Table 2. Notations used in key update for multi-layer electronic control units (ECUs).

Notation or Noun Description

KDF Key derivation function. It is a keyed one-way function used for key derivation.
CRL Certification revocation list

Long-term key
A pair-wise symmetric key which cannot be updated when the vehicle is running.
However, it can be updated by on-the-air (OTA) technology if needed. It can be

used for key derivation and identity authentication.

Session key A group symmetric key used in the AES-CCM or AES algorithm. It can be updated
periodically according to the architecture proposed by Woo et al. in 2016.

We extend the application span of the AKEP2-based self-management scheme proposed by
Woo et al. from DECU to FECU and additionally propose an OTA-based key update and destruction
mechanism to realize all functions of the KMS, namely, key generation, key distribution, key storage,
key update, and key destruction. When designing a specific solution, the two principles below
are followed.

(1) For each vehicle, the vehicle manufacturer should manage as few keys as possible. Through
this principle, the total number of keys which are managed by the manufacturers is reduced.

(2) For different vehicles of the same product series, their keys should be different. Through this
principle, security incidents in which a key leak for one vehicle leads to a large number of key leaks for
several are avoided.

3.1. Extended AKEP2-Based Key Update for Multi-Layer ECUs

Woo et al. proposed a security architecture to realize key generation, key distribution, and key
update based on long-term keys, the AKEP2 algorithm, and a KDC in 2016 [13]. Its application span
can be extended, and, in this paper, it is named the in-vehicle key self-management scheme. Keys
stored in the ECUs of each layer are shown and explained in Table 3.

In the in-vehicle key self-management scheme, the session key is derived by the KDF, which
requires the input of a nonce and long-term key. The session key is distributed and updated by
the AKEP2 algorithm and a KDC. For GECU, the long-term key can be stored by the TPM storage
mechanism. For DECU or FECU, the long-term key is stored in a hardware security module (HSM).
For long-term key update and revocation, we can use an OTA-based management scheme.

Electronics 2019, 8, 1026 6 of 17

Table 3. Keys and functions included in the ECUs of each layer.

ECU Layer Keys Included and Explanation

GECU

1. Long-term key. One GECU long-term key and some DECU long-term keys are
included. Every vehicle has a unique GECU long-term key;

2. Vehicle manufacturer public key. One vehicle manufacturer public key is included;
3. Session key. One session key to DECUs;

4. KDF;
5. Vehicle’s own certificate;

6. CRL, the list consists of invalid certificates of vehicles, suppliers, and telematic
service providers (TSP).

DECU

1. Long-term key. One GECU long-term key, one DECU long-term key, and some
FECU long-term keys are included. Every DECU has a unique DECU long-term key;
2. DECU supplier public key. One supplier public key is included. Different DECUs

have different DECU supplier public keys;
3. Session key. One session key for GECU and DECUs, and one session key for FECUs

are included;
4. KDF.

FECU

1. Long-term key. One DECU long-term key and one FECU long-term key are included;
2. Session key. One session key for DECU and FECUs;

3. FECU supplier public key. One supplier public key is included;
4. KDF.

3.2. Proposed OTA-Based Key Update, Key Destruction, and Certificate Revacation

The key management system mainly implements two functions via OTA technology. One is
long-term key update or destruction. The other is the certificate revocation, which is implemented by
updating the CRL. Figure 4 shows the related entities and the message stream.

Electronics 2019, 8, 1026 6 of 17

2. DECU supplier public key. One supplier public key is included. Different DECUs
have different DECU supplier public keys;

3. Session key. One session key for GECU and DECUs, and one session key for FECUs
are included;

4. KDF.

FECU

1. Long-term key. One DECU long-term key and one FECU long-term key are
included;

2. Session key. One session key for DECU and FECUs;
3. FECU supplier public key. One supplier public key is included;

4. KDF.

In the in-vehicle key self-management scheme, the session key is derived by the KDF, which
requires the input of a nonce and long-term key. The session key is distributed and updated by the
AKEP2 algorithm and a KDC. For GECU, the long-term key can be stored by the TPM storage
mechanism. For DECU or FECU, the long-term key is stored in a hardware security module (HSM).
For long-term key update and revocation, we can use an OTA-based management scheme.

3.2. Proposed OTA-Based Key Update, Key Destruction, and Certificate Revacation

The key management system mainly implements two functions via OTA technology. One is
long-term key update or destruction. The other is the certificate revocation, which is implemented by
updating the CRL. Figure 4 shows the related entities and the message stream.

Figure 4. On-the-air (OTA)-based key update and certification revocation.

A procedure to update an FECU long-term key for the n-th time based on OTA technology is
proposed and described below.

Figure 5 is the simulation stream of the proposed long-term key update. Role-M, role-G, role-D,
and role-F stand for manufacture, GECU, DECU, and destination FECU, respectively. Steps 1–6 show
the nonce transmission, while steps 7–12 show the update process of the FECU’s n-th long-term key.
Notations and nouns used in Figure 5 are explained in Table 4.

Figure 4. On-the-air (OTA)-based key update and certification revocation.

A procedure to update an FECU long-term key for the n-th time based on OTA technology is
proposed and described below.

Figure 5 is the simulation stream of the proposed long-term key update. Role-M, role-G, role-D,
and role-F stand for manufacture, GECU, DECU, and destination FECU, respectively. Steps 1–6 show
the nonce transmission, while steps 7–12 show the update process of the FECU’s n-th long-term key.
Notations and nouns used in Figure 5 are explained in Table 4.

Electronics 2019, 8, 1026 7 of 17
Electronics 2019, 8, 1026 7 of 17

Figure 5. Simulation of the proposed OTA-based key update protocol.

Table 4. Notation or functions used for proposed OTA-based key update mechanism.

Notation or
Noun

Description

Manu,
k_manu

Manufacturer (Manu) and its public key

Sup, k_sup Supplier (Sup) and its public key

kij
the (n − 1)-th shared long-term symmetric key between entity i and entity j by

default. In this paper, m, g, d, and f represent manufacture, GECU, DECU, and
FECU, respectively.

{p}_k Encrypt plaintext p by key k, which is either a symmetric or an asymmetric key.
n n-th update.

x x means the cipher of FECU’s n-th long-term key kmf_n which is encrypted by (n
− 1)-th long-term key kmf_(n − 1), i.e., x = {kmf_n}_kmf_(n − 1).

. Notation “.” connects different contents.
nonce-1 New nonce
fhash() Hash function
inv(k_i) k_i represents entity i’s public key; inv(k_i) means i’s private key.

nonce_ok,
ok_F

Response message from FECU

ok_D Response message from DECU

Figure 5. Simulation of the proposed OTA-based key update protocol.

Table 4. Notation or functions used for proposed OTA-based key update mechanism.

Notation or Noun Description

Manu, k_manu Manufacturer (Manu) and its public key
Sup, k_sup Supplier (Sup) and its public key

kij
the (n − 1)-th shared long-term symmetric key between entity i and entity j by
default. In this paper, m, g, d, and f represent manufacture, GECU, DECU, and

FECU, respectively.
{p}_k Encrypt plaintext p by key k, which is either a symmetric or an asymmetric key.

n n-th update.

x x means the cipher of FECU’s n-th long-term key kmf_n which is encrypted by
(n − 1)-th long-term key kmf_(n − 1), i.e., x = {kmf_n}_kmf_(n − 1).

. Notation “.” connects different contents.
nonce-1 New nonce
fhash() Hash function
inv(k_i) k_i represents entity i’s public key; inv(k_i) means i’s private key.

nonce_ok, ok_F Response message from FECU
ok_D Response message from DECU

Table 5 explains the procedure of the FECU long-term key update for the n-th time. The security
analysis and simulation experiment of the procedure are presented in Section 6.1.

Electronics 2019, 8, 1026 8 of 17

Table 5. Explanation of OTA-based long-term key update procedure.

Step Entity Explanation

0 BEGIN
1 Manu Generates nonce-1, and sends {{nonce− 1}_kmf}_kmg to GECU via private channel.
2 GECU Decrypts received data and encrypts it, then sends {{nonce− 1}_kmf}_kgd to DECU.
3 DECU Decrypts received data and encrypts it, then sends {{nonce− 1}_kmf}_kdf to FECU.
4 FECU Sends {{nonce_ok}_nonce− 1}_kdf to DECU.
5 DECU Decrypts received data and encrypts it, then sends {{nonce_ok}_nonce− 1}_kgd to GECU.

6 GECU Decrypts received data and encrypts it, then sends {{nonce_ok}_nonce− 1}_kmg to Manu
via private channel.

Steps 1–6 realize nonce transfer

7 Manu and Sup
Manu generates x, then x is signed by Sup and Manu successively, and sends{

fhash(
{
fhash(x)

}
_inv(k_sup) .x}_inv(k_manu).

{
fhash(x)

}
_inv(k_sup).{x}_kmg to

GECU via private channel.
8 GECU Verifies the signature of Manu and sends

{
fhash(x)

}
_inv(k_sup).{x}_kgd to DECU.

9 DECU Verifies the signature of Sup and decrypts x to get the n-th key of FECU.Decrypts received
{x}_kgd and encrypts it, then sends

{
fhash(x)

}
_inv(k_sup).{x}_kdf to FECU.

10 FECU Verifies the signature of Sup and decrypts x to get the n-th key, then sends
{{ok _F .x .nonce− 1}_kmf .ok_F}_kdf to DECU.

11 DECU Verifies ok_F and sends {{ok _F .x .nonce− 1}_kmf.{ok _D .x}_kmd}_kgd to GECU.

12 GECU Decrypts received data and encrypts it, then sends
{{ok _F .x .nonce− 1}_kmf.{ok _D .x}_kmd}_kmg to Manu via private channel.

13 Manu Verifies ok_F and ok_D, updates the n-th value of FECU in the local database.
Steps 7–13 realize x transfer and FECU’s n-th long-term key update.

FINISH

The in-vehicle key can be destroyed by an OTA-based mechanism when a vehicle needs scrapping.
The procedure is the same as key update, except for the contents transmitted between the vehicle
manufacturer and the vehicle.

Certificate revocation can be achieved by updating the CRL. In the OTA-based key management
scheme, when the vehicle is scrapped, a vehicle certificate can be revoked by updating the CRL in the
manufacturer’s server. Similarly, if the vehicle manufacturer, supplier, or TSP claims that its certificate
is invalid, its certificate can be revoked by updating the CRL in a vehicle gateway.

4. Application of Hardware-Based Key Storage and Trusted Key Usage in Proposed KMS

In an embedded system such as vehicle ECUs, key storage mainly relies on hardware isolation or
encryption by a key encryption key (KEK). Usually, a hardware security module (HSM) is used to store
a session key and provide an isolated environment for secure operations [14]. Except for key storage
based on a KEK, TPM utilizes a trust anchor and integrity measurement function to construct a trusted
key usage environment on a host microcontroller. Table 6 shows the differences between them.

Table 6. Comparison for hardware security module (HSM) and trusted platform module (TPM).

Item HSM TPM

Economy cost Low Medium
Resource cost Low Medium

Integrated pattern Inside of microcontroller Outside of microcontroller
Security Medium High

Function diversity Medium High

current product
Infineon AURIX Series, NXP

MPC577x and Renesas
RH850/P1x-C

Infineon TPM SLx96xx, STM
ST33TPxF2E and NTC TPM

NPCT75x

Current usage in vehicles Domain controllers, functional
controllers

Few in typical ECUs, probably in
central gateway and head unit

Standards or specification EVITA HSM [14] TPM 2.0 Specification [15], TPM
2.0 Automotive Thin Profile [16]

Electronics 2019, 8, 1026 9 of 17

HSM is a simpler and low-cost method compared to TPM. The security of HSM depends on
the hardware security. The secure access mechanism and dedicated memory mapping of HSM and
other security strategies protect the data in the HSM. TPM is not integrated in a microcontroller, but is
connected to the host microcontroller via an Inter-Integrated Circuit (I2C) bus or other kinds of buses.

KEK is securely stored in the TPM. The ciphertext of the key is stored in a specific area in the host
microcontroller because the read-only memory (ROM) of the TPM is limited. However, the area where
the key ciphertext is stored is not as secure as the inside of the TPM. In order to prevent tampering
with the key ciphertext or unauthorizedly reading the decryption result using KEK, it is necessary
to construct a trusted key usage environment on the host microcontroller. The trusted environment
can be built by measuring the integrity of the host’s bootloader file and the operation system (OS) file
using TPM. Figure 6 shows the integrity measurement function of TPM.

Electronics 2019, 8, 1026 9 of 17

a trusted key usage environment on a host microcontroller. Table 6 shows the differences between
them.

Table 6. Comparison for hardware security module (HSM) and trusted platform module (TPM).

Item HSM TPM
Economy cost Low Medium
Resource cost Low Medium

Integrated pattern Inside of microcontroller Outside of microcontroller
Security Medium High
Function
diversity Medium High

current product Infineon AURIX Series, NXP
MPC577x and Renesas RH850/P1x-C

Infineon TPM SLx96xx, STM
ST33TPxF2E and NTC TPM

NPCT75x
Current usage in

vehicles
Domain controllers, functional

controllers
Few in typical ECUs, probably in

central gateway and head unit
Standards or
specification EVITA HSM [14]

TPM 2.0 Specification [15], TPM 2.0
Automotive Thin Profile [16]

HSM is a simpler and low-cost method compared to TPM. The security of HSM depends on the
hardware security. The secure access mechanism and dedicated memory mapping of HSM and other
security strategies protect the data in the HSM. TPM is not integrated in a microcontroller, but is
connected to the host microcontroller via an Inter-Integrated Circuit (I2C) bus or other kinds of buses.

KEK is securely stored in the TPM. The ciphertext of the key is stored in a specific area in the
host microcontroller because the read-only memory (ROM) of the TPM is limited. However, the area
where the key ciphertext is stored is not as secure as the inside of the TPM. In order to prevent
tampering with the key ciphertext or unauthorizedly reading the decryption result using KEK, it is
necessary to construct a trusted key usage environment on the host microcontroller. The trusted
environment can be built by measuring the integrity of the host’s bootloader file and the operation
system (OS) file using TPM. Figure 6 shows the integrity measurement function of TPM.

Figure 6. Integrity measurement based on trusted platform module (TPM) and construction of the
chain of trust.

5. Application of AES-CCM Algorithm in Proposed Multi-Layer ECU Communication

As mentioned above, Woo et al. used an encryption key and authentication key to calculate
ciphertext and MAC separately. Under the premise of ensuring the secrecy of keys, the same key can
be used for both the authentication and encryption operations. This is the concept of the
authentication encryption algorithm [17]. It has the advantage of reducing the number of keys used,
which makes sense in embedded systems with limited storage space. In the TLS1.3 specification,
authenticated encryption with associated data (AEAD) algorithms are adopted as the only stream
encryption algorithms. As one of the AEAD algorithms in TLS1.3, AES-CCM has a short operation

Figure 6. Integrity measurement based on trusted platform module (TPM) and construction of the
chain of trust.

5. Application of AES-CCM Algorithm in Proposed Multi-Layer ECU Communication

As mentioned above, Woo et al. used an encryption key and authentication key to calculate
ciphertext and MAC separately. Under the premise of ensuring the secrecy of keys, the same key can
be used for both the authentication and encryption operations. This is the concept of the authentication
encryption algorithm [17]. It has the advantage of reducing the number of keys used, which makes sense
in embedded systems with limited storage space. In the TLS1.3 specification, authenticated encryption
with associated data (AEAD) algorithms are adopted as the only stream encryption algorithms. As one
of the AEAD algorithms in TLS1.3, AES-CCM has a short operation time and is considered secure [18].
Furthermore, AES-CCM has a good reuse of the AES code and this also means a lower cost of future
AES-CCM hardware modules.

Figure 7 shows the steps for calculating the ciphertext and MAC values proposed by Woo et al.
and the steps of the AES-CCM that we studied. Table 7 shows the meaning of the notations in the
steps in Figure 7. The parameters and functions in Figure 7b are from or derived from the National
Institute of Standards and Technology (NIST) Special Publication 800-38C [19].

The steps in Figure 7a,b show two independent algorithms for realizing confidentiality and
authentication between two ECUs. With respect to the AES-CCM algorithm we studied, when j is
equal to 2, steps 5* and 6* are executed in the sender ECU. After the receiver ECU receives C∗||T∗ , steps
7*, 6*, and 8* are executed successively. In the case that j is equal to 2, the security requirements are
data confidentiality and entity authentication [13]. The difference between our study in Figure 7b and
the former study in Figure 7a is that we use one key as opposed to two keys to calculate the ciphers
and authentication value, which may mean less storage and easier management.

Electronics 2019, 8, 1026 10 of 17

Electronics 2019, 8, 1026 10 of 17

time and is considered secure [18]. Furthermore, AES-CCM has a good reuse of the AES code and
this also means a lower cost of future AES-CCM hardware modules.

Figure 7 shows the steps for calculating the ciphertext and MAC values proposed by Woo et al.
and the steps of the AES-CCM that we studied. Table 7 shows the meaning of the notations in the
steps in Figure 7. The parameters and functions in Figure 7b are from or derived from the National
Institute of Standards and Technology (NIST) Special Publication 800-38C [19].

M||
ij ij

C||
ij ij

EK SECUij

AKk i j SECUij

AKk i j SECUij

if(j==1): SECU (7) RECU (7)(9)

if(2 j 3) SECU (5)(6) RECU (6)(8)(9)
(5) C = E M CTR
(6) MAC = H C|| SECU || CTR
(7) MAC = H M|| SECU || CTR
(8) M =

MAC

MAC

⎯⎯⎯⎯→

≤ ≤ ⎯⎯⎯→

⊕k

：

 ()

 ()

 ()

 EKk SECUijD C CTR
MAC(9) if Accept M.

else return False
,

.
correct

⊕

==

()

P||T*
ij ij

C*||T*
ij ij

EN

AU

DE

if(j==1): SECU (6*) RECU (6*)(8*)

if(2 j 3) SECU (5*)(6*) RECU (7*)(6*)(8*)
(5*) C* AES-CCM (K,P,Ctr[x])
(6*) T* AES-CCM (K,N,A,P,Ctr[x])
(7*) P = AES-CCM (K,C*,Ctr[
(8

x])
*) if T

⎯⎯⎯→

≤ ≤ ⎯⎯⎯→

=
=

：

 Accept P.
else return False

,
.

* correct==

(a) (b)

Figure 7. Original steps by previous researcher (a) and steps using the AES-CCM algorithm (b).

Table 7. Notation used in steps in Figure 7.

Notation Description
ijECU ECU using identity “i” and belonging to the subnetwork with ASL grade “j” [13].

M Message; it is plaintext used in Woo et al.’s work [13].
EKk Encryption key of k-th session [13].
AKk Authentication key of k-th session [13].

SECUijCTR ijECU data frame counter. It can be managed and synchronized in ijSECU and

ijRECU by ACK bit [13].
K Key used in AES-CCM.
N Nonce, means random number.
A Associated data; in our experiment, it is fixed to 8 bytes.
P Plaintext; it has same meaning as M in step 8 in Figure 7a.

Ctr[x]
Array Ctr[] has m elements: m= p / 128   . In our experiment, Ctr[]’s x-th element is xCtr

and xCtr N x= + .
C* P’s corresponding cipher. We define that C* is equal to |P|(P MSB (S))⊕ [19].
T* P’s corresponding tag. We define that T* is equal to 0(T MSB (S))τ⊕ [19].
T*’ P’s corresponding tag calculated by receiver ECU.

ENAES-CCM Equivalent function of Steps 5–8 in generation–encryption process [19].
AUAES-CCM Equivalent function of Steps 1–4,8 in generation–encryption process [19].
DEAES-CCM Equivalent function of Steps 1–5 in decryption–verification process [19].

The steps in Figures 7a,b show two independent algorithms for realizing confidentiality and
authentication between two ECUs. With respect to the AES-CCM algorithm we studied, when j is
equal to 2, steps 5* and 6* are executed in the sender ECU. After the receiver ECU receives C* || T * ,
steps 7*, 6*, and 8* are executed successively. In the case that j is equal to 2, the security requirements
are data confidentiality and entity authentication [13]. The difference between our study in Figure 7b
and the former study in Figure 7a is that we use one key as opposed to two keys to calculate the
ciphers and authentication value, which may mean less storage and easier management.

Before the AES-CCM algorithm can be used on the CAN FD bus between two ECUs, a secure
communication time should be evaluated in the embedded system. Equation (1) is the one-way secure
communication time containing AES-CCM operations between two ECUs. It mainly contains the

Figure 7. Original steps by previous researcher (a) and steps using the AES-CCM algorithm (b).

Table 7. Notation used in steps in Figure 7.

Notation Description

ECUij ECU using identity “i” and belonging to the subnetwork with ASL grade “j” [13].
M Message; it is plaintext used in Woo et al.’s work [13].

EKk Encryption key of k-th session [13].
AKk Authentication key of k-th session [13].

CTRSECUij
ECUij data frame counter. It can be managed and synchronized in SECUij and

RECUij by ACK bit [13].
K Key used in AES-CCM.
N Nonce, means random number.
A Associated data; in our experiment, it is fixed to 8 bytes.
P Plaintext; it has same meaning as M in step 8 in Figure 7a.

Ctr[x] Array Ctr[] has m elements: m =
⌈∣∣∣p∣∣∣/128

⌉
. In our experiment, Ctr[]’s x-th element

is Ctrx and Ctrx = N + x.
C* P’s corresponding cipher. We define that C* is equal to (P ⊕MSB|P|(S)) [19].
T* P’s corresponding tag. We define that T* is equal to (T ⊕MSBτ(S 0)) [19].
T*’ P’s corresponding tag calculated by receiver ECU.

AES−CCMEN Equivalent function of Steps 5–8 in generation–encryption process [19].
AES−CCMAU Equivalent function of Steps 1–4,8 in generation–encryption process [19].
AES−CCMDE Equivalent function of Steps 1–5 in decryption–verification process [19].

Before the AES-CCM algorithm can be used on the CAN FD bus between two ECUs, a secure
communication time should be evaluated in the embedded system. Equation (1) is the one-way
secure communication time containing AES-CCM operations between two ECUs. It mainly contains
the encryption time, bus transmission time, and decryption time. The theoretical calculations and
experimental results are illustrated in Section 6.3.

τsec _com = τen + τbus + τde. (1)

6. Security Analysis and Experiment

6.1. Security Analysis on In-Vehicle KMS

The in-vehicle KMS in this paper consisted of two patterns: in-vehicle key self-management
and OTA-based key management. The former involved extending the key management mechanism
proposed by Woo et al. in 2016 to the CAN FD subnetwork within a certain domain. Thus, the security
was the same as the scheme by Woo et al. in 2016. The security of the OTA-based key management
was analyzed using two methods: provable security theory and simulation analysis based on the
Delov–Yao model [20,21]. This section details the analysis of the security of the FECU n-th long-term
key kmf_n in the OTA-based update procedure.

Electronics 2019, 8, 1026 11 of 17

6.1.1. Analysis Based on Provable Security Theory

The principle of the provable security theory is to attribute the security of the cryptosystem to the
security of the basic modules.

Confidentiality. Confidentiality is ensured because kmf_n is encrypted by kmf_(n − 1).
As kmf_(n − 1) is stored and used in the secure hardware module of manufactures and the FECU, in
our scheme, we assume it is secure.

Source authentication and integrity. The two properties are ensured because the ciphertext of
kmf_n is signed successively by the supplier and vehicle manufacturer. Moreover, the public keys or
certificates used for verifying signatures are secured by the HSM, TPM, and CRL of entities.

Prevention for replay attacks. In our scheme, nonce and identifier n are used to prevent
replay attacks.

6.1.2. Simulation Analysis According to Dolev–Yao Model

Dolev–Yao model analysis uses a formula to analyze the security property of a certain protocol,
especially one which that contains public key encryption. The Dolev–Yao model has two basic
assumptions: the cryptography is secure, and the intruder has full control over the network. SPAN is a
software that supports the security analysis of a protocol according to the Delov–Yao model [22].

Figure 8 shows a part of the code for the OTA-based protocol in HLPSL under the SPAN
software [23]. After the definitions of each entity and the sessions, the environment and security goals
are defined successively, as presented in Figure 8. The goal is the secrecy of Na and x, authentication
between manufacture and the FECU, and authentication between manufacture and the DECU. Under
the SPAN software, the simulation for authentication can analyze not only the identification of two
entities, but also the prevention ability for replay attacks.

1

Figure 8. Environment and goal definitions in HLPSL under SPAN software [22].

Figure 9. Simulation analysis result according to Dolev–Yao model.

Figure 8. Environment and goal definitions in HLPSL under SPAN software [22].

The ATSE tool integrated in SPAN was used to analyze the proposed protocol [24]. The simulation
analysis result is shown in Figure 9. The proposed OTA-based protocol is safe, and the goal shown in
Figure 8 was realized as specified.

Electronics 2019, 8, 1026 12 of 17

1

Figure 8. Environment and goal definitions in HLPSL under SPAN software [22].

Figure 9. Simulation analysis result according to Dolev–Yao model. Figure 9. Simulation analysis result according to Dolev–Yao model.

6.2. Tamper Detection Experiment Based on TPM

In this paper, Raspberry Pi 3 was used to simulate a vehicle gateway which has a Linux OS and
connects the Infineon TPM SLB9645 expansion board via an I2C bus. The TPM was programmed to
perform the integrity check of a critical file after the Linux OS boots. The original file and the tampered
file were tested separately, and the result is shown in Figure 10.Electronics 2019, 8, 1026 13 of 17

(a)

(b)

(c)

Figure 10. Experiment device for TPM module (a) and integrity measurement results (b,c).

The results show that the OS can effectively perform file integrity detection based on the TPM.
Based on the same principle and the trust chain extension, a trusted environment for key usage can
be built by performing integrity verification on codes of bootloader files and OS files.

6.3. Security Analysis and Experiment for AES-CCM Algorithm on CAN FD Bus

The security of the AES-CCM algorithm was analyzed [18]. Although there are still some
criticisms of the algorithm, it was adopted as the recommended standard of NIST [19]. Thus, we
considered it to be secure in this paper.

The execution time of the AES-CCM algorithm in an AURIX TC297 microcontroller, the
execution time of secure communication, and the bus load rate were measured. In the experiment,
the compiler was a TriCore Eclipse IDE v4.3r3, and more devices are shown in Figure 11.

Figure 11. Experiment devices.

The set-up of the experiment is shown in Table 8. For a more accurate result, we did the
measurement 10,000 times to get an average execution time of the algorithm and secure

Figure 10. Experiment device for TPM module (a) and integrity measurement results (b,c).

Electronics 2019, 8, 1026 13 of 17

The results show that the OS can effectively perform file integrity detection based on the TPM.
Based on the same principle and the trust chain extension, a trusted environment for key usage can be
built by performing integrity verification on codes of bootloader files and OS files.

6.3. Security Analysis and Experiment for AES-CCM Algorithm on CAN FD Bus

The security of the AES-CCM algorithm was analyzed [18]. Although there are still some criticisms
of the algorithm, it was adopted as the recommended standard of NIST [19]. Thus, we considered it to
be secure in this paper.

The execution time of the AES-CCM algorithm in an AURIX TC297 microcontroller, the execution
time of secure communication, and the bus load rate were measured. In the experiment, the compiler
was a TriCore Eclipse IDE v4.3r3, and more devices are shown in Figure 11.

Electronics 2019, 8, 1026 13 of 17

(a)

(b)

(c)

Figure 10. Experiment device for TPM module (a) and integrity measurement results (b,c).

The results show that the OS can effectively perform file integrity detection based on the TPM.
Based on the same principle and the trust chain extension, a trusted environment for key usage can
be built by performing integrity verification on codes of bootloader files and OS files.

6.3. Security Analysis and Experiment for AES-CCM Algorithm on CAN FD Bus

The security of the AES-CCM algorithm was analyzed [18]. Although there are still some
criticisms of the algorithm, it was adopted as the recommended standard of NIST [19]. Thus, we
considered it to be secure in this paper.

The execution time of the AES-CCM algorithm in an AURIX TC297 microcontroller, the
execution time of secure communication, and the bus load rate were measured. In the experiment,
the compiler was a TriCore Eclipse IDE v4.3r3, and more devices are shown in Figure 11.

Figure 11. Experiment devices.

The set-up of the experiment is shown in Table 8. For a more accurate result, we did the
measurement 10,000 times to get an average execution time of the algorithm and secure

Figure 11. Experiment devices.

The set-up of the experiment is shown in Table 8. For a more accurate result, we did the
measurement 10,000 times to get an average execution time of the algorithm and secure communication.
The length of the AES-CCM output was chosen for two reasons. Firstly, 8 bytes was chosen because it
can be compatible with a CAN frame which is already defined by manufacturers. Another reason is
that the CAN FD frame supports some values of the length in the ISO specification. That is to say, the
Data Length Code (DLC) values 8, 10, 12, 13, 14, and 15 stand for 8 bytes, 16 bytes, 24 bytes, 32 bytes,
48 bytes, and 64 bytes, respectively. The results are shown in Figure 12a.

Table 8. Evaluation set-up of AES-CCM on a CAN FD bus. CPU—central processing unit.

Item Note

CPU frequency 100 MHz
Length of key 128 bits

Arbitration baudrate 500 kb/s
Data baudrate 5 Mb/s

Length of cipher for plaintext 4, 8, 16, 24, 40, or 56 bytes
Length of tag 4 or 8 bytes

Length of AES-CCM output 8, 16, 24, 32, 48, or 64 bytes
AES-CCM code source tls.mbed.org

Electronics 2019, 8, 1026 14 of 17

Electronics 2019, 8, 1026 14 of 17

communication. The length of the AES-CCM output was chosen for two reasons. Firstly, 8 bytes was
chosen because it can be compatible with a CAN frame which is already defined by manufacturers.
Another reason is that the CAN FD frame supports some values of the length in the ISO specification.
That is to say, the Data Length Code (DLC) values 8, 10, 12, 13, 14, and 15 stand for 8 bytes, 16 bytes,
24 bytes, 32 bytes, 48 bytes, and 64 bytes, respectively. The results are shown in Figure 12a.

Table 8. Evaluation set-up of AES-CCM on a CAN FD bus. CPU—central processing unit.

Item Note
CPU frequency 100 MHz
Length of key 128 bits

Arbitration baudrate 500 kb/s
Data baudrate 5 Mb/s

Length of cipher for plaintext 4, 8, 16, 24, 40, or 56 bytes
Length of tag 4 or 8 bytes

Length of AES-CCM output 8, 16, 24, 32, 48, or 64 bytes
AES-CCM code source tls.mbed.org

(a)

66 65 66
87

108
129

65 65 65
86

107
128

203 218
235

290

361

430

0

100

200

300

400

500

4, 4 8, 8 16, 8 24, 8 40, 8 56, 8

Encryption time Decryption time Secure communication time

O
pe

ra
tio

n
Ti

m
e/

 (μ
s)

Different groups according to the lengths of cipher and tag/ (Bytes, Bytes)

Electronics 2019, 8, 1026 15 of 17

(b)

Figure 12. Execution time of algorithm and secure communication (a) and bus load rate on the CAN
FD (b).

With Equation (1) and the encryption and decryption time in Figure 12a, the secure
communication time can be calculated. Taking 56 bytes and 8 bytes as examples, according to the
CAN FD specification, if stuffing bits are not included, there are about 27 bits translated at the
arbitration baud rate and 543 bits translated at the data baud rate. It is easy to get the following:

sec_ 129 (27 2 543 0.2) 128 419.6com s s s sτ μ μ μ μ= + × + × + = . (2)

The result is 97.6% of a measurement time of 430 μs. The difference rate of 2.4% is mainly because
the stuffing bits in the transmitted CAN FD frame are not included in Equation (2). After the
comparison of theoretical values and experimental values, the experimental results are reasonable.

The result shows that, as the plaintext increases from 4 bytes to 56 bytes, the encryption time is
from 66 μs to 129 μs. The decryption costs almost the same time, while the secure communication
time is from 203 μs to 430 μs. The execution time of the AES-CCM algorithm is acceptable for in-
vehicle embedded systems. Moreover, the time can be further reduced by an AES-CCM hardware
module, which is a more efficient method to realize the algorithm. From the ratio of the secure
communication time to the ordinary communication time, the time consumption of the secure
communication can be compared. The ratio r varies between 2.26 and 2.82 according to Equation (3)
and values in Figure 12a.

sec_

sec_

com

com en de

r
τ

τ τ τ
=

− − .
(3)

When the frequency was set to 100 messages per second, the largest bus load rate was no more
than 1.2%. The values are acceptable considering that the total bus load rate usually reaches 50%.
Moreover, the increment values of ROM and random access memory (RAM) based on codes from
tls.mbed.org are 27,686 bytes and 8688 bytes, which occupy only 0.33% of the total ROM and 0.31%
of the total RAM.

7. Conclusions

This paper summarizes previous research on in-vehicle KMS and studies an OTA-based key
update protocol, key storage, and trusted key usage environment, along with application of the AES-
CCM algorithm in in-vehicle communication.

Considering the developing and layered in-vehicle network architecture, a key update scheme
based on AKEP2 and OTA technology was proposed for the first time. SPAN software is an efficient

0.59% 0.64% 0.70%
0.84%

1.02%

1.20%

4, 4 8, 8 16, 8 24, 8 40, 8 56, 8
0.00%

0.30%

0.60%

0.90%

1.20%

1.50%

Bu
sl

oa
d

ra
te

Different groups according to the lengths of cipher and tag/ (Bytes, Bytes)

Figure 12. Execution time of algorithm and secure communication (a) and bus load rate on the CAN
FD (b).

With Equation (1) and the encryption and decryption time in Figure 12a, the secure communication
time can be calculated. Taking 56 bytes and 8 bytes as examples, according to the CAN FD specification,
if stuffing bits are not included, there are about 27 bits translated at the arbitration baud rate and
543 bits translated at the data baud rate. It is easy to get the following:

τsec _com = 129µs + (27× 2 + 543× 0.2)µs + 128µs = 419.6µs. (2)

The result is 97.6% of a measurement time of 430 µs. The difference rate of 2.4% is mainly
because the stuffing bits in the transmitted CAN FD frame are not included in Equation (2). After the
comparison of theoretical values and experimental values, the experimental results are reasonable.

The result shows that, as the plaintext increases from 4 bytes to 56 bytes, the encryption time is
from 66 µs to 129 µs. The decryption costs almost the same time, while the secure communication time
is from 203 µs to 430 µs. The execution time of the AES-CCM algorithm is acceptable for in-vehicle

Electronics 2019, 8, 1026 15 of 17

embedded systems. Moreover, the time can be further reduced by an AES-CCM hardware module,
which is a more efficient method to realize the algorithm. From the ratio of the secure communication
time to the ordinary communication time, the time consumption of the secure communication can be
compared. The ratio r varies between 2.26 and 2.82 according to Equation (3) and values in Figure 12a.

r =
τsec _com

τsec _com − τen − τde
. (3)

When the frequency was set to 100 messages per second, the largest bus load rate was no more
than 1.2%. The values are acceptable considering that the total bus load rate usually reaches 50%.
Moreover, the increment values of ROM and random access memory (RAM) based on codes from
tls.mbed.org are 27,686 bytes and 8688 bytes, which occupy only 0.33% of the total ROM and 0.31% of
the total RAM.

7. Conclusions

This paper summarizes previous research on in-vehicle KMS and studies an OTA-based key
update protocol, key storage, and trusted key usage environment, along with application of the
AES-CCM algorithm in in-vehicle communication.

Considering the developing and layered in-vehicle network architecture, a key update scheme
based on AKEP2 and OTA technology was proposed for the first time. SPAN software is an efficient tool
to find potential attacks on cryptographic protocols. Simulation analysis in SPAN verified the security
properties of the proposed OTA-based protocol. The properties verified were key confidentiality,
authentication, and resistance to replay attacks. Key storage and a trusted key usage environment
based on the secure hardware were discussed. Experiments on a microcontroller with TPM SLB9645
showed that the OS can recognize the behavior of tampering with a certain file by verifying the integrity
of critical files or configurations, thus constructing a trusted key usage environment. AES-CCM can
decrease the number of used keys. The experiment between two AURIX TC297 microcontrollers
showed that the time consumption and bus load consumption of the CAN FD frame with AES-CCM
are acceptable for the in-vehicle environment.

Our research can provide a reference for in-vehicle secure communication protocols and lifecycle
key management for vehicle manufacturers. Future research will include lightweight secure protocols
and a performance evaluation of in-vehicle Ethernet communication, as well as the implementation
and optimization of trusted environment and key management based on TPM.

Author Contributions: Methodology, J.Z. and Z.W.; software, K.L. and F.L.; validation, J.Z. and K.L.;
writing—original draft preparation, J.Z.; writing—review and editing, Y.Z.; supervision, Z.W. and Y.Z.

Funding: This research was supported by the National Key R&D Program of China (grant number 2017YFE0101400)
and the Shanghai Automotive Industry Science and Technology Development Foundation (grant number 1703).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AKEP2 Authenticated Key Exchange Protocol 2
OTA On-The-Air
AES-CCM AES Counter with CBC-MAC
TPM Trusted Platform Module
KMS Key Management System
MAC Message Authentication Code
TESLA Timed Efficient Stream Loss-Tolerant Authentication
ECC Elliptic Curve Cryptography
KDC Key Distribution Center
TSP Telematic Service Provider
KEK Key Encryption Key

Electronics 2019, 8, 1026 16 of 17

References

1. Miller, C.; Valasek, C. Adventures in Automotive Networks and Control Units; DEF CON 21 Hacking Conf.:
Las Vegas, NV, USA, 2013.

2. Miller, C.; Valasek, C. Remote Exploitation of an Unaltered Passenger Vehicle; Black Hat USA: Las Vegas, NV,
USA, 2015.

3. Kang, J.; Yu, R.; Huang, X.; Jonsson, M.; Bogucka, H.; Gjessing, S.; Zhang, Y. Location privacy attacks and
defenses in cloud-Enabled internet of vehicles. IEEE Wirel. Commun. 2016, 23, 52–59. [CrossRef]

4. Wan, Z.; Zhu, W.T.; Wang, G. PRAC: Efficient privacy protection for vehicle-to-Grid communications in the
smart grid. Comput. Secur. 2016, 62, 246–256. [CrossRef]

5. Hamida, E.B.; Noura, H.; Znaidi, W. Security of Cooperative Intelligent Transport Systems: Standards,
Threats Analysis and Cryptographic Countermeasures. Electronics 2015, 4, 380–423. [CrossRef]

6. Hu, Q.; Luo, F. Review of Secure Communication Approaches for In-vehicle Network. Int. J. Automot.
Technol. 2018, 19, 879–894. [CrossRef]

7. Lin, C.W.; Sangiovanni_Vincentelli, A. Cyber-Security for the Controller Area Network (CAN) communication
protocol. In Proceedings of the IEEE International Conference on Cyber Security, Alexandria, VA, USA,
14–16 December 2012; pp. 344–350.

8. Groza, B.; Murvay, S. Efficient protocols for secure broadcast in controller area networks. IEEE Trans. Ind.
Inform. 2013, 9, 2034–2042. [CrossRef]

9. Woo, S.; Jo, H.J.; Lee, D.H. A practical wireless attack on the connected car and security protocol for in-Vehicle
CAN. IEEE Trans. Intell. Transp. Syst. 2015, 16, 993–1006. [CrossRef]

10. Mundhenk, P.; Steinhorst, S.; Lukasiewycz, M.; Fahmy, S.A.; Chakraborty, B. Lightweight Authentication for
Secure Automotive Networks. In Proceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition, Grenoble, France, 9–13 March 2015; pp. 285–288.

11. Bellare, M.; Rogaway, P. Entity authentication and key distribution. In Proceedings of the 13th Annual
International Cryptology Conference, Santa Barbara, CA, USA, 22–26 August 1993; pp. 232–249.

12. Fassak, S.; Idrissi, Y.E.H.E.; Zahid, N.; Jedra, M. A secure protocol for session keys establishment between
ECUs in the CAN bus. In Proceedings of the International Conference on Wireless Networks and Mobile
Communications (WINCOM), Rabat, Morocco, 1–4 November 2017; pp. 37–42.

13. Woo, S.; Jo, H.J.; Kim, I.S.; Lee, D.H. A practical security architecture for in-Vehicle CAN-FD. IEEE Trans.
Intell. Transp. Syst. 2016, 17, 2248–2261. [CrossRef]

14. Ludovic, A.; Khayari, E.K.; Olaf, H.; Yves, R.; Hendrik, S.; Hervé, S.; Benjamin, W.; Marko, W. Secure
automotive on-Board electronics network architecture. In Proceedings of the FISITA 2010 World Automotive
Congress, Budapest, Hungary, 30 May–4 June 2010; Available online: https://evita-project.org/Publications/
AEHR10.pdf (accessed on 16 August 2019).

15. Trusted Platform Module Library Specification, Family “2.0”. Available online: https://
trustedcomputinggroup.org/resource/tpm-library-specification/ (accessed on 16 August 2019).

16. TCG TPM 2.0 Automotive Thin Profile for TPM Family 2.0; Level 0. Available online: https:
//trustedcomputinggroup.org/resource/tcg-tpm-2-0-library-profile-for-automotive-thin/ (accessed on 16
August 2019).

17. Rogaway, P. Authenticated-encryption with associated-data. In Proceedings of the 9th ACM Conference on
Computer and Communications Security, Washington, DC, USA, 18–22 November 2002; pp. 98–107.

18. Jonsson, J. On the security of CTR + CBC-MAC. In Proceedings of the SAC 2002: Selected Areas in
Cryptography, St. John’s, NL, Canada, 15–16 August 2002; pp. 76–93.

19. Dworkin, M. NIST Special Publication 800-38C Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality; National Institute of Standards and Technology: Gaithersburg,
MD, USA, 2004.

20. Bellare, M. Practice-Oriented provable-Security. In Proceedings of the First International Workshop on
Information Security, ISW’97 Tatsunokuchi, Ishikawa, Japan, 17–19 September 1997; pp. 221–231.

21. Delov, D.; YAO, A.C. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 9, 198–208.
[CrossRef]

22. Available online: http://people.irisa.fr/Thomas.Genet/span/ (accessed on 27 August 2019).

http://dx.doi.org/10.1109/MWC.2016.7721742
http://dx.doi.org/10.1016/j.cose.2016.07.004
http://dx.doi.org/10.3390/electronics4030380
http://dx.doi.org/10.1007/s12239-018-0085-1
http://dx.doi.org/10.1109/TII.2013.2239301
http://dx.doi.org/10.1109/TITS.2014.2351612
http://dx.doi.org/10.1109/TITS.2016.2519464
https://evita-project.org/Publications/AEHR10.pdf
https://evita-project.org/Publications/AEHR10.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tcg-tpm-2-0-library-profile-for-automotive-thin/
https://trustedcomputinggroup.org/resource/tcg-tpm-2-0-library-profile-for-automotive-thin/
http://dx.doi.org/10.1109/TIT.1983.1056650
http://people.irisa.fr/Thomas.Genet/span/

Electronics 2019, 8, 1026 17 of 17

23. Oheimb, D.V. The High-Level Protocol Specification Language HLPSL Developed in the eu Project Avispa.
Available online: www.davoh.de/cs/talks/AVISPA-HLPSL.pdf (accessed on 27 August 2019).

24. Turuani, M. The CL-Atse Protocol Analyser. In RTA 2006: Term Rewriting and Applications; Springer:
Heidelberg, German, 2006; pp. 277–286.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

www.davoh.de/cs/talks/AVISPA-HLPSL.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Research
	The Work in This Paper

	The Trend of Vehicle Network Architecture
	Extended AKEP2-Based Key Update Scheme and Proposed OTA-Based Key Update and Destruction Scheme for Multi-Layer ECUs
	Extended AKEP2-Based Key Update for Multi-Layer ECUs
	Proposed OTA-Based Key Update, Key Destruction, and Certificate Revacation

	Application of Hardware-Based Key Storage and Trusted Key Usage in Proposed KMS
	Application of AES-CCM Algorithm in Proposed Multi-Layer ECU Communication
	Security Analysis and Experiment
	Security Analysis on In-Vehicle KMS
	Analysis Based on Provable Security Theory
	Simulation Analysis According to Dolev–Yao Model

	Tamper Detection Experiment Based on TPM
	Security Analysis and Experiment for AES-CCM Algorithm on CAN FD Bus

	Conclusions
	References

