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Abstract: Electrocardiogram (ECG) signal evaluation is routinely used in clinics as a significant
diagnostic method for detecting arrhythmia. However, it is very labor intensive to externally evaluate
ECG signals, due to their small amplitude. Using automated detection and classification methods in
the clinic can assist doctors in making accurate and expeditious diagnoses of diseases. In this study,
we developed a classification method for arrhythmia based on the combination of a convolutional
neural network and long short-term memory, which was then used to diagnose eight ECG signals,
including a normal sinus rhythm. The ECG data of the experiment were derived from the MIT-BIH
arrhythmia database. The experimental method mainly consisted of two parts. The input data of the
model were two-dimensional grayscale images converted from one-dimensional signals, and detection
and classification of the input data was carried out using the combined model. The advantage of this
method is that it does not require performing feature extraction or noise filtering on the ECG signal.
The experimental results showed that the implemented method demonstrated high classification
performance in terms of accuracy, specificity, and sensitivity equal to 99.01%, 99.57%, and 97.67%,
respectively. Our proposed model can assist doctors in accurately detecting arrhythmia during
routine ECG screening.

Keywords: electrocardiogram; arrhythmia; automation; convolutional neural network; long
short-term memory

1. Introduction

Electrocardiography provides abundant health and pathology information about the heart and is
the main method of diagnosing heart disease [1]. Arrhythmia is an extremely common heart disease
and is mainly diagnosed by doctors. However, misdiagnosis and missed diagnosis often occur in
clinical practice due to differences in doctors’ experiences and the randomness of arrhythmia events.
At present, automatic detection and identification of arrhythmia events are urgently needed, as they
can help doctors detect arrhythmia events earlier.

Traditionally, the study of arrhythmia diagnosis has mainly focused on the noise filtering of
electrocardiogram (ECG) signals [2–4], signal segmentation [5–7], and manual feature extraction [8–11].
Osowski et al. [9] proposed a machine learning method that uses higher-order statistics (HOS)
and Hermite functions to extract features, and a support vector machine (SVM) to classify heart
diseases. De Chazal et al. [2] used morphological features and weighted linear discrete analysis (LDA)
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combined with a packaging feature selection function to screen for heart disease. It is well known
that the morphological approach is sensitive to ECG signal noise and has many limitations in the
classification performance robustness of the model [12]. Thanks to the development of deep learning
technology, many feature extraction processing tasks can be completed by convolutional computation.
This method is superior to the morphological approach and has low requirements for signal quality in
classification [13]. Kiranyaz et al. [14] introduced a one-dimensional convolutional neural network
(1-D CNN) to identify and classify ventricular ectopic beats and premature ventricular contractions,
and achieved good results. Yildirim et al. [15] proposed a deeper 1-D CNN classifier and was able to
classify even more categories of heart disease and improve the classification performance. Although
there are many references to ECG arrhythmia classification, there are still several limitations: (1) ECG
signal information is lost during feature extraction or noise filtering, (2) ECG arrhythmia type has
a limited number of classifications, and (3) the performance of the actual classification method is
relatively poor.

Based on the abovementioned problems, a model based on the input of two-dimensional grayscale
images is proposed in this paper, which combines a deep 2-D CNN with long short-term memory
(LSTM). Some ECG signal information may be missed due to problems such as noise filtering, but this
can be avoided by converting a one-dimensional ECG signal into a two-dimensional ECG image [16].
In most current studies, the data used are relatively limited. Many studies need to be very careful
when preprocessing the one-dimensional ECG signals because the one-dimensional ECG signals are
more sensitive and have a greater impact on the final accuracy. The conversion of one-dimensional
ECG signals into two-dimensional ECG images can get more data and the data is effectively available.
There is no need for very precise separation of individual beats when performing data conversion.
Even if some adjacent signals are separated, the convolution layer of the model can ignore these small
noise data. Using two-dimensional ECG images does not require noise filtering and manual feature
extraction. Because the convolution and pooling layers of the model automatically ignore the noise
data when acquiring the feature map, they avoid the problems of sensitivity to noise signals and
accuracy being affected. Some researchers [17] tend to use images instead of one-dimensional signals
as input data in other similar disease diagnosis studies. The use of two-dimensional ECG images for
detection and classification is more like a way for cardiologists to diagnose arrhythmic diseases because
the diseases are diagnosed and identified through the observation of the images. If one-dimensional
ECG signals are applied to instruments such as ECG monitors, problems such as sampling rate and
noise will inevitably occur, so two-dimensional ECG images can be further applied to ECG monitoring
robots that can assist cardiac experts in diagnosing arrhythmic diseases. In addition, it is difficult
to apply the data augmentation method used in previous studies due to the characteristics of the
one-dimensional ECG signal. The ECG signal is augmented to enlarge the training data, which can
effectively improve the classification accuracy. Therefore, in this study, we used different cropping
methods to augment the two-dimensional ECG image, so as to help the 2-D CNN model train a single
ECG image from different angles. The automatic extraction of ECG beats features using a 2-D CNN
can solve the problem of current hand-designed waveform features that are not sufficiently robust
to handle patient-to-patient differences in heart beats. In addition to the 2-D CNN model, there is
another LSTM deep learning model, which is a time recurrent neural network (RNN). The status
of each cell in the LSTM interacts with those of the others, and the time dynamics in the data are
presented through the internal feedback state, which can avoid the problem of long-term dependence.
The LSTM cells also have the capability of retaining and feeding back useful information of selectively
stored information [18]. The combination of 2-D CNN and LSTM model features greatly improves the
classification effect.

2. Materials and Methods

In this study, the datasets and annotations used were from the MIT-BIH arrhythmia database.
The database included a total of 48 0.5 h long ECG signal records obtained from 47 subjects using two
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leads [19]. Each signal record was sampled at 360 Hz with a set of beat markers presented at the R peak.
These records were independently explained by multiple cardiologists. ECG signals were converted
into ECG images as input data through data processing. In this paper, lead II signals of data were
used in the experiments. Following the Association for the Advancement of Medical Instrumentation
standard, according to the annotations provided by the MIT-BIH arrhythmia database, we selected “N”
for normal sinus rhythm (NOR), “L” for left bundle branch block (LBBB), “R” for right bundle branch
block (RBBB), “A” for atrial premature beat (APB), “V” for premature ventricular contraction (PVC), “/”
for paced beat (PAB), “E” for ventricular escape beat (VEB), and “!” for ventricular flutter wave (VFW)
for classification. Other types of arrhythmia were excluded in this paper, such as nodal escape beat,
start of ventricular flutter, and other beats that cannot be classified. Those have been ignored by most
ECG arrhythmia studies because these beats have relatively little research significance. The overall
procedures are shown in Figure 1.

Electronics 2020, 9, x FOR PEER REVIEW 3 of 15 

 

data were used in the experiments. Following the Association for the Advancement of Medical 
Instrumentation standard, according to the annotations provided by the MIT-BIH arrhythmia 
database, we selected “N” for normal sinus rhythm (NOR), “L” for left bundle branch block (LBBB), 
“R” for right bundle branch block (RBBB), “A” for atrial premature beat (APB), “V” for premature 
ventricular contraction (PVC), “/” for paced beat (PAB), “E” for ventricular escape beat (VEB), and 
“!” for ventricular flutter wave (VFW) for classification. Other types of arrhythmia were excluded in 
this paper, such as nodal escape beat, start of ventricular flutter, and other beats that cannot be 
classified. Those have been ignored by most ECG arrhythmia studies because these beats have 
relatively little research significance. The overall procedures are shown in Figure 1. 

 
Figure 1. Overall procedures processed in ECG arrhythmia classification. 

2.1. Data Preprocessing 

In this study, the input data of the model were two-dimensional images. Most previous works 
have used one-dimensional ECG signals as the input data for the models, which then requires noise 
filtering and feature extraction of the data during the data preprocessing stage. Because of the time 
series characteristics of one-dimensional signals, some ECG signal information may be lost during 
the noise filtering and feature extraction process, which affects the integrity of the data and may also 
affect the accuracy of the final classification results. Therefore, in this paper, in the data preprocessing 
stage, we converted one-dimensional ECG signals into two-dimensional ECG images as classification 
data, which can ensure the integrity of the original ECG data to the greatest extent. We converted 
each ECG signal into a separate 192 × 128 grayscale image. From the ECG signals obtained from the 
database, the peak value of the R wave was used as a criterion for dividing each ECG beat according 
to the existing R wave peak markers in the database in order to locate each ECG signal. Then, 92 data 
points before and after the R wave peaks of the two ECG signals before and after were deleted, and 
then a single ECG image was cropped. This was accomplished using Equation (1): 

T(Rpeak(n)-92) T(n) T(Rpeak(n)+92).≤ ≤  (1) 

Finally, a total of 107,620 ECG image data points were obtained after conversion, and the 
categories were labeled respectively. From the transformation results, it can be seen that the amount 
of data was significantly improved through transformation, which also provided more data for 
subsequent model learning and training. Table 1 describes the information recorded by all ECG 
signals. 
  

Figure 1. Overall procedures processed in ECG arrhythmia classification.

2.1. Data Preprocessing

In this study, the input data of the model were two-dimensional images. Most previous works
have used one-dimensional ECG signals as the input data for the models, which then requires noise
filtering and feature extraction of the data during the data preprocessing stage. Because of the time
series characteristics of one-dimensional signals, some ECG signal information may be lost during the
noise filtering and feature extraction process, which affects the integrity of the data and may also affect
the accuracy of the final classification results. Therefore, in this paper, in the data preprocessing stage,
we converted one-dimensional ECG signals into two-dimensional ECG images as classification data,
which can ensure the integrity of the original ECG data to the greatest extent. We converted each ECG
signal into a separate 192 × 128 grayscale image. From the ECG signals obtained from the database,
the peak value of the R wave was used as a criterion for dividing each ECG beat according to the
existing R wave peak markers in the database in order to locate each ECG signal. Then, 92 data points
before and after the R wave peaks of the two ECG signals before and after were deleted, and then a
single ECG image was cropped. This was accomplished using Equation (1):

T(Rpeak(n) − 92) ≤ T(n) ≤ T(Rpeak(n) + 92). (1)

Finally, a total of 107,620 ECG image data points were obtained after conversion, and the categories
were labeled respectively. From the transformation results, it can be seen that the amount of data was
significantly improved through transformation, which also provided more data for subsequent model
learning and training. Table 1 describes the information recorded by all ECG signals.
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Table 1. A summary table of ECG signal description from the MIT-BIH arrhythmia database.

Type Records Beats

NOR 100,101,103,106,108,112,113,114,115,117,119,121,122,123,
203,205,219,230,234 75,016

PVC 105,116,200,201,202,208,210,213,215,221,228,233 7130
PAB 102,104,107,217 7024
APB 209,220,222,223,232 2544
LBBB 109,111,207,213 8072
RBBB 118,124,212,231 7256
VEB 207 106
VFW 207 472

Total 107,620

2.2. Data Augmentation

Because the database mostly contains the number of normal rhythm types, there is an imbalance
in the amount of data obtained for each disease type. Due to the problem of unbalanced data volume
in each category of data, data augmentation can increase the amount of data in a class with a small
volume of data and effectively reduce the occurrence of overfitting problems [20]. Image enhancement
can increase the amount of data. Most previous ECG arrhythmia studies were not able to manually
add augmentation data to the training set due to the possibility of ECG signals being lost. The reason
is that feedforward neural network (FFNN) [21] and SVM [22] classifiers assume that every ECG
signal possess the same classification worth. In most studies with a large amount of data, the ECG
signal segmentation method is used to divide a one-dimensional ECG signal into multiple ECG signal
segments to expand the amount of data. However, since the input data of the model in this study were
ECG images, the method of image enhancement would not modify the data, but it would increase the
amount of data. This method draws on the idea of image processing and performs data enhancement
on the converted two-dimensional ECG image. On the basis of the converted original ECG image,
processing is performed in a certain manner, which increases the number of data samples, and at the
same time, leaves the label value of the data unchanged. It can maximize the original qualities of
the data while optimizing the data imbalance in the research. In this study, nine different clipping
methods were used to increase the beat of the other seven ECG arrhythmia types, except the NOR class.
Image cropping was performed on a specified area of the target image. The cropping method of the
left top image is one example. The reference coordinates of the left top image were (0, 0). According to
the cropping rule of 96 sizes, (0, 96), (96, 0), and (96, 96) coordinate points were used as the four vertex
coordinates of the left top image. This method was used for image cropping and obtained a 96 × 96 left
top image of the target image. The other eight images were cropped similarly. Among the other eight
images, the reference coordinates of the center top image were (64, 0), the reference coordinates of the
right top image were (96, 0), the reference coordinates of the left center image were (0, 16), and the
reference coordinates of the center image were (64, 16), the reference coordinates of the right center
image were (96, 16), the reference coordinates of the left bottom image were (0, 32), the reference
coordinates of the center bottom image were (64, 32), and the reference coordinates of the right bottom
image were (96, 32). By using this cropping method, all the augmentation images could be obtained.
Finally, the entire enhanced image was adjusted to a size of 192 × 128 to ensure the uniformity of all
sample data. This greatly increased the amount of data for a relatively small number of arrhythmia
categories. The added image also retained the information contained in the original ECG image,
which is of equal reference value. The data augmentation method was produced inside the model,
which reduced the time spent between images in memory, thereby enhancing the learning speed
of the model. The experimental data used in subsequent experiments in this paper were divided
into 60%, 20%, and 20% of the training, validation, and test sets, respectively. All experimental data
were randomly shuffled. According to different proportions, the disrupted experimental data were
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randomly divided into different sets. There are 107,620 two-dimensional ECG image data in this paper.
Among them, 64,572 data were divided into the training set. A total of 581,148 two-dimensional ECG
image data were used for model training after data enhancement. The original PAB image and the
nine cropped grayscale images are shown in Figure 2.
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2.3. CNN-LSTM Model

Deep learning [23–25] is a new technology that has become mainstream in the field of machine
learning and pattern recognition. In this study, a new method for automatically detecting eight different
types of ECG signal arrhythmias was developed. It uses a cross-learning model based on deep learning.
The overall structure of the model is implemented by combining CNN and LSTM. Among them,
CNN is suitable for processing spatial or locally related data, while LSTM is good at capturing the
characteristics of data related to time series.

Layers 1–9 of the model are convolutional layers coupled to the largest collection layer, and layer
10 is the LSTM layer. The end of the network uses a fully connected layer for predicting the output.
The spatial feature map can be well extracted by the convolutional layer. Subsequent LSTM layers help
the model capture the temporal dynamics that exist in these signatures [26]. In the combination of
CNN and LSTM, the output shape after the pooling layer of the model is (none, 16, 16, 256). We reshape
the dimensions of the model through the reshape method, and the input size of the LSTM layer after
reshaping is (256, 256). After analyzing the time characteristics of LSTM, the model finally sorts ECG
signals through a fully connected layer. The training stages of the model can be improved by setting
the optimizer and learning rate. So, we set and used a learning rate of 0.001 and the Adam optimizer
for optimization. Figure 3 shows the proposed network model. A detailed overview of the structure is
given in Table 2.
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Table 2. Detailed overview of the proposed CNN-LSTM model.

Layer Type Kernel Size Stride Kernel Input Size

1 Conv2D 3 × 3 1 64 192 × 128 × 1
2 Conv2D 3 × 3 1 64 192 × 128 × 64
3 Pool 2 × 2 2 - 192 × 128 × 64
4 Conv2D 3 × 3 1 128 64 × 64 × 64
5 Conv2D 3 × 3 1 128 64 × 64 × 128
6 Pool 2 × 2 2 - 64 × 64 × 128
7 Conv2D 3 × 3 1 256 32 × 32 × 128
8 Conv2D 3 × 3 1 256 32 × 32 × 256
9 Pool 2 × 2 2 - 32 × 32 × 256
10 LSTM - - - 256 × 256
11 Fully-connected - - 2048 65,536
12 Fully-connected - - 2048 2048
13 Out - - 8 2048

2.4. VGGNet Model

Many pretrained models, such as VGGNet [27], GoogleNet, and so forth, could provide us with
many solutions to the problem. In this study, we compared the proposed model with the well-known
VGGNet model and other ECG arrhythmia classification studies. The VGGNet model is a deep
convolutional neural network model composed of multiple convolution blocks. The model can extract
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ECG deep features well, through convolution and pooling layers. It generates feature maps from the
extracted features for learning and training. In the VGGNet model, we set and used a learning rate
of 0.001 and the Adam optimizer for optimization too. A detailed overview of the structure is given
in Table 3.

Table 3. Detailed overview of the VGGNet [27] model.

Layer Type Kernel Size Stride Kernel Input Size

1 Conv2D 3 × 3 1 64 192 × 128 × 3
2 Conv2D 3 × 3 1 64 192 × 128 × 64
3 Pool 2 × 2 2 - 192 × 128 × 64
4 Conv2D 3 × 3 1 128 64 × 64 × 64
5 Conv2D 3 × 3 1 128 64 × 64 × 128
6 Pool 2 × 2 2 - 64 × 64 × 128
7 Conv2D 3 × 3 1 256 32 × 32 × 128
8 Conv2D 3 × 3 1 256 32 × 32 × 256
9 Conv2D 3 × 3 1 256 32 × 32 × 256

10 Pool 2 × 2 2 - 32 × 32 × 256
11 Conv2D 3 × 3 1 512 16 × 16 × 256
12 Conv2D 3 × 3 1 512 16 × 16 × 512
13 Conv2D 3 × 3 1 512 16 × 16 × 512
14 Pool 2 × 2 2 - 8 × 8 × 512
15 Fully-connected - - 4096 8 × 8 × 512
16 Fully-connected - - 4096 4096
17 Out - - 8 4096

2.5. Model Architecture and Details

An earlier part of the proposed model is a 2-D CNN structure, which is a combination of three
convolution blocks with a step size of 1. There are two 2-D CNN layers and one maximum pooling
layer consisting of each convolution block; it is activated using the exponential linear units (ELU)
activation function. The batch normalization layer is used to batch normalize the activation output
of the layer. In all convolution operations, by multiplying the superposition matrix, the convolution
kernel is continuously extracted for each convolution feature. After two-dimensional convolution,
the feature map of this layer uses a maximum pooled filter for feature extraction, and the step size
of the filter is two. The feature map is propagated to the two-dimensional maximum pooling layer,
and the maximum value of the specified area in the feature map is extracted and labeled to extract a
new feature map. This continuously deepens the model network. The size of the feature map of each
layer is gradually reduced to speed up the learning rate of the model structure.

Then, the feature map is passed to the LSTM layer in the latter part of the model to extract time
information. The extracted features are sorted into sequential components after convolution and
merging, and their time series prediction is performed by the LSTM circular chain structure. LSTM is
different from the traditional RNN because it has a different structure to a single neural network.
It consists of multiple cell states and gated modules. LSTM repeatedly combines these units to ensure
that all information is cyclically learned throughout the network while remaining unchanged and
persistent. The modules of this structure interact to resolve the disappearance of the gradient and avoid
long-term dependence problems. After the LSTM layer, it is fed to the fully connected layer of the
softmax layer with eight output neurons by a feature vector with representation and time-dependent
features. Finally, arrhythmia prediction is performed by the outputs of the eight categories fed to the
fully connected layer.

2.5.1. Activation Function

Activation functions are necessary to improve the approximation ability between each layer of the
network to enhance the expressiveness of neural networks. Referring to other current related research,
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nonlinear activation functions, including leakage rectified linear units (LReLU), ELU, and rectified
linear units (ReLU), are widely used in CNN models. Most researchers use ReLU as the activation
function of the model, but after analyzing the experimental results, when the input function gradient is
too large, the neuron will lose the activation function after the network parameters are updated [28].
The ELU activation function was used in the experiments in this study, as it demonstrated better
classification of ECG arrhythmia. ELU is shown in Equation (2):

ELU(x) =
{

x, x ≥ 0
α(ex

− 1), x < 0
. (2)

2.5.2. Batch Normalization

In deep learning, with the deepening of the number of layers, the parameters of the layer in
question are slightly changed, and the proportion of the input parameters of the latter layer have a
more comprehensive impact. This phenomenon is called the internal covariate offset. To accelerate the
convergence of the model during training and avoid the gradient expansion of the model, we added
a batch normalization layer to the network model. In this way, normalizing the batch after each
feature change in the network structure ensures that the conversion of different batches is kept
within a certain range, thereby accelerating the convergence of the parameters [29]. Batch-normalized
locations are typically applied before the activation function and after the convolutional layer. In the
experiments in this study, the ELU function was placed before the batch normalization layer and
achieved significant results. Therefore, there was an ELU function before the batch normalization layer
in each convolution block. Behind each convolution block, there was a two-dimensional maximum
pooling layer. The specific formula for batch normalization was calculated as

µ =
1
m

∑m

i=1
xi, (3)

σ2 =
1
m

∑m

i=1
xi − µ, (4)

x(i) =
xi − µ
√
σ2 + ε

, (5)

where x(i) is the standardized output; µ and σ represent the mean and variance of the same batch,
respectively; and ε is a constant, with the value 0.001.

2.5.3. Dropout Regularization

Overfitting is a very important problem encountered during model training [30]. Therefore,
to avoid overfitting problems, dropout regularization was used here to avoid overfitting of the model
training. At the same time, we also conducted comparison experiments with models that did not use
dropout regularization. Dropout regularization probabilistically discards some of the nodes in the
same layer to reduce the dependencies between layers. The connection weight will be excluded when
the neuron exits, which greatly improves the generalization capacity of the model. A model without
dropout regularization adds all of the weights to the learning process during the training process,
so the dependency between each layer of the model is greatly increased, which causes overfitting
problems. In experiments using dropout regularization, it was placed before the last fully connected
layer of the model. The rate of dropout was 0.5.

3. Results

The experimental data in this study came from the international standard ECG database MIT-BIH,
which has accurate and comprehensive expert annotation and is widely used in current ECG
research [19]. In the experiment, the experimental data were divided into 60%, 20%, and 20%
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for the training, validation, and test sets, respectively. Among them, 21,524 data were used for testing.
The number of epochs for training was 100. In each epoch, the batch size used for the dataset was
32, and it was extended over all input data. Two-dimensional ECG images were cropped to 96 × 96
ECG grayscale images as required. Finally, the enhanced image was adjusted to a size of 192 × 128.
All experiments were based on the deep learning framework Tensorflow. The working environment
for training the network consisted of two NVIDIA Geforce RTX 2080 Ti GPUs with 64 GB of RAM.
The entire training process took 16 h.

We compared two different experimental schemes and conducted experimental verification based
on the presence or absence of dropout regularization. In Experiment A, we did not use dropout
regularization, and the weights of the model during training were all involved in the learning process.
In Experiment B, we added dropout regularization with a dropout rate of 0.5. That way, 50% of the
information was discarded during training and 50% of the information was retained for learning.
The comparison of the results of the two experimental schemes is shown in Figure 4. From the
experimental results, we can see that the network after using dropout regularization always had a
very stable state, and the accuracy rate gradually increased under the stable state, finally reaching the
highest point. The network that did not use dropout regularization appeared to overfit, gradually
stabilized after about 60 epochs, and showed very high accuracy.
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The accuracy and loss curves for training and verification are shown in Figure 5. Both the training
and verification curves of the model increased in a stable state and stabilized at approximately 100
epochs. The classification evaluation of the model used the following evaluation metrics: accuracy
(Acc), specificity (Spec), and sensitivity (Sen). The model combining CNN and LSTM achieved 99.01%
accuracy, 97.67% sensitivity, and 99.57% specificity after experimental verification. The sensitivity
indicates the ratio of normal ECG data detected by the system to the overall normal data. Specificity
indicates the proportion of abnormal ECG data to total abnormal data. The accuracy rate represents
the proportion of the data that determines the overall correctness of the data. The three metrics (Acc,
Spec, and Sen) are defined as follows:

Acc =
TP + TN

TN + FP + TP + FN
× 100%, (6)

Spec =
TN

TN + FP
× 100%, (7)

Sen =
TP

TP + FN
× 100%, (8)
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where TP indicates that normal ECG data are classified into normal categories; TN means classifying
outlying data into exceptional categories (both TP and TN indicate accurate classification); FP indicates
that abnormal ECG data are classified into normal categories; and FN means classifying normal data
into exceptional categories (both FP and FN indicate a classification error). The three metrics can
reflect the overall classification ability of the system as a whole. The larger the value, the better the
classification effect. We also compared the evaluation indicators obtained from the two experiments
with and without the dropout regularization model. The comparison results of the two experimental
schemes are shown in Table 4. The model without dropout regularization showed high classification
results due to overfitting, and obtained 99.87% Acc, 99.78% Spec, and 98.95% Sen. They were all higher
than the experimental model using dropout regularization.
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Table 4. Average classification performances of the two experiments.

Experiment Scheme Acc Spec Sen

Experiment A Without Dropout 99.87% 99.78% 98.95%
Experiment B With Dropout 99.01% 99.57% 97.67%

Table 5 describes the confusion matrix for the training model classification results. It can be
seen that the model performed better on the classification of PAB, LBBB, and VEB types, and the
performance of the classification of APB types was average. This may have been caused by the small
morphological differences of the waveforms during the learning process.

Table 5. Confusion matrix of the proposed CNN-LSTM model.

Predicted NOR PAB APB PVC LBBB RBBB VEB VFW

NOR 14,940 1 10 50 0 1 2 0
PAB 2 1404 0 0 0 0 0 0
APB 78 0 420 6 3 2 0 0
PVC 5 0 0 1420 0 0 0 1
LBBB 8 0 1 2 1602 0 1 1
RBBB 20 2 1 4 2 1422 1 0
VEB 1 0 0 0 0 0 21 0
VFW 8 0 0 0 1 0 0 86

Comparing the experiments with the same dataset, the results of 98.67% accuracy, 96.93%
sensitivity, and 99.52% specificity were obtained by using the VGGNet model. The accuracy and loss
curves of the VGGNet model for training and verification are shown in Figure 6. It can be seen from
Figure 6 that the training accuracy and loss rate of the VGGNet model tend to stabilize after 20 epochs.
The entire training process of VGGNet model took 27 h. Although the parameters of the internal
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convolution layer are reduced in the VGGNet model, the actual internal parameter space is relatively
large. Among them, most of the parameters come from the first fully connected layer, which consumes
more computing resources. Therefore, it always takes longer training VGGNet models. Table 6
describes the confusion matrix for the VGGNet training model classification results. It can be seen
that the performance of CNN-LSTM model in predicting PVC and RBBB types is better than VGGNet
model by observing and comparing Tables 5 and 6. In the CNN-LSTM model, 2.1% of the subdivided
categories were incorrectly classified into other categories, while in the VGGNet model, 3.5% of the
subdivided categories were incorrectly classified into other categories. It can be seen that both the
models performed better in the classification of PAB, LBBB, and VEB types. The comparison results of
the two models are shown in Table 7. The two models differed in their numbers of convolutional and
pooling layers and whether or not the LSTM layer was used. It can be seen from the results (Table 5)
that the proposed model performed better than VGGNet.
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Table 6. Confusion matrix of the VGGNet model.

Predicted NOR PAB APB PVC LBBB RBBB VEB VFW

NOR 14,932 10 5 41 8 5 3 0
PAB 1 1402 1 1 0 0 0 0
APB 68 0 407 30 0 3 0 1
PVC 29 2 6 1387 0 0 0 2
LBBB 9 0 1 2 1603 0 0 0
RBBB 30 10 0 10 1 1401 0 0
VEB 1 0 0 0 0 0 21 0
VFW 6 0 0 2 0 0 0 87

Table 7. Comparison of the proposed model with VGGNet.

Model Dataset Method Acc Sen Spec

Proposed Model This study’s dataset CNN-LSTM 99.01% 97.67% 99.57%
VGGNet [27] This study’s dataset CNN 98.67% 96.93% 99.52%

4. Discussion

With the continuous development of machine learning in recent years, the MIT-BIH arrhythmia
database has been used by an increasing number of researchers in ECG research. Table 8 summarizes
the study of the automatic detection of ECG arrhythmias. Compared with other related studies,
the method of combining 2-D CNN and LSTM proposed in this paper was highly accurate. In most
machine learning methods, there are often adaptability problems. Through experimental verification,
we were able to provide a deeper comparison of the use of dropout regularization in the model.
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Without dropout regularization, the training of a model is prone to overfitting, which seriously
affects a model’s classification ability. After using a 50% forgetting probability after the final batch
normalization of the fully connected layer, good classification performance was obtained, which also
greatly improved the generalization effect of the model. Most classification work requires noise removal
and manual extraction of ECG signals, which inevitably leads to partial beat loss of ECG data. At the
same time, most studies have limited data volume because of the different ECG signal segmentation
methods. In this study, after converting one-dimensional ECG signals into two-dimensional ECG image
data, we were able to avoid losing part of the data due to preprocessing problems. Moreover, data
augmentation methods can also lead to an increase in the amount of data in relatively small categories.
That further balances the different types of data and improves the classification performance of the
model. It can be seen from Table 8 that the number of arrhythmia classifications obtained in each study
differed, and the amount of data used varied. Osowski et al. [9] preprocessed the data by the HOS
cumulant and Hermite coefficient of the QRS complex in ECG signals and combined the method of
minimum mean square error with SVM, which obtained 98.71% accuracy. Martis et al. [31] also used
HOS to preprocess the signals. They used 34,989 ECG signal data points and a least-squares SVM
to classify the five arrhythmia types. The highest average was obtained, and the accuracy rate was
93.48%. Plawiak et al. [32] augmented the characteristics of ECG signals by spectral power density.
He used ECG signal data to compare different machine learning models and finally used the support
vector machine model to obtain the best classification of 17 arrhythmia diseases with 98.85% accuracy.
Guerra et al. [33] also used SVM for classification, but they did not use a single specific SVM, instead,
multiple SVMs, to achieve automatic classification. Their classification accuracy reached 94.50%.
Summarizing the related research mentioned above, the research methods used are all traditional
machine learning methods. In data processing, ECG signals need to be filtered and feature extracted
by means such as HOS. At the same time, the use of models is also a form of traditional classification
for machine learning.

Table 8. Correlational studies of ECG arrhythmia.

Author Features Set Classes ECG Beats Classifier Accuracy

Machine Learning Methods

Osowski et al. (2008) [9]
Higher-order statistics (HOS)

cumulant and Hermite
coefficient of QRS complex

13 12,785 Support Vector Machine 98.71%

Martis et al. (2013) [31] Bispectrum and principal
component analysis (PCA) 5 34,989 Least-Squares Support

Vector Machine 93.48%

Plawiak et al. (2018) [32]
The spectral power density and

genetic optimization of
parameters

17 1000 Support Vector Machine 98.85%

Guerra et al. (2019) [33] HOS and local binary patterns
(LBPs) 4 49,691 Combination of Multiple

Support Vector Machines 94.50%

Deep Learning Methods

Kiranyaz et al. (2016) [14] End-to-end 5 83,648 CNN 99.00%

Jun et al. (2018) [16] End-to-end 8 106,501 CNN 99.05%

Shu Lih Oh et al. (2018) [18] End-to-end 5 16,499 CNN + LSTM 98.10%

Acharya et al. (2017) [34] End-to-end 5 109,449 CNN 94.03%

Yildirim et al. (2018) [35] End-to-end 5 7326 Wavelet + Bi-LSTM 99.25%

This Study End-to-end 8 107,620 CNN + LSTM 99.01%

In recent years, deep learning has also developed rapidly. Compared with machine learning,
the results of deep learning are more significant. Deep learning models such as CNN and LSTM are
used in the study of ECG arrhythmia classification by more and more researchers. Acharya et al. [34]
constructed a nine-layer 1-D CNN model to automatically identify five different categories of heartbeats
in ECG signals. The input data of the model were one-dimensional ECG signals. They filtered
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the high-frequency noise of the signals and then detected and classified the noisy and non-noisy
ECG signals through the model, which greatly improved the generalization ability of the model.
The accuracy of the model for classifying original ECG signals was 94.03%. However, the ECG signals
used for classification had a high degree of imbalance, and the classification accuracy of the data also
decreased after noise filtering. Shu et al. [18] proposed a diagnostic model that combines 1-D CNN and
LSTM. Input data of the model were also one-dimensional ECG signals. In the data processing stage,
the ECG data were segmented into many ECG data segments of different lengths by positioning the
waveforms, and then all ECG data segments were standardized to a uniform length. The model was
able to classify ECG signals of different lengths into five categories and achieved an accuracy of 98.10%.
Jun et al. [16] proposed a 2-D CNN model. Input data of the model were two-dimensional ECG data.
The model used multiple convolution processing units to extract ECG deep features, and classified the
extracted features. The proposed model achieved an accuracy of 99.05%. Although a single 2-D CNN
model can learn the spatial characteristics of ECG data very well, the learning efficiency of the model
is not high enough, and the convergence speed of model training accuracy is low. An LSTM layer
is added after the 2-D CNN to learn the time series related features of the components decomposed
into a convolutional feature sequence. That way, the temporal characteristics of the data can be better
analyzed and further classified. Such training can improve the efficiency of the model, and at the same
time, get a higher classification accuracy. Yildirim et al. [35] proposed a bidirectional LSTM (Bi-LSTM)
model with wavelet sequences to analyze and classify ECG signal sequences in time series. Bi-LSTM
adds more available information, including historical and new data, through a two-way network
propagation, which can make the information of the data more fully used. In addition, the ECG data
needed to be segmented at different scales to obtain 7326 ECG data segments, which were then used as
data for the model. In the end, the proposed model achieved an accuracy of 99.25%.

According to the summary of the abovementioned machine learning and deep learning methods,
the CNN-LSTM model proposed here demonstrated higher classification accuracy than other related
studies and also showed better advantages in data processing. The quality of the data used often has a
great impact on the final results of the model, so using ECG images for classification is also a novel
idea. Therefore, the proposed model can be applied in clinics to help cardiologists objectively diagnose
ECG heartbeat signals, or it can be used in new smart monitor applications.

5. Conclusions

Detection and identification of arrhythmias is an integral part of the early diagnosis of
cardiovascular disease. This paper presented an effective arrhythmia classification method that
combines 2-D CNN and LSTM and uses ECG images as the input data for the model. One-dimensional
signals obtained from the MIT-BIH arrhythmia database were converted into 192 × 128 grayscale
images. A total of 107,620 ECG images were obtained by processing the data acquired from the database.
As a result, the accuracy of this method was 99.01%, the specificity was 99.57%, and the sensitivity was
97.67%. The classification results of ECG arrhythmia showed that the method of arrhythmia detection
using a combination of ECG image data and CNN-LSTM can be useful for helping doctors better
diagnose cardiovascular disease and can considerably reduce the workloads of doctors. In the future,
this auxiliary diagnostic method could be used in connection with medical robots or medical monitors
for diagnostic treatment.
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