
electronics

Article

DrawerPipe: A Reconfigurable Pipeline for Network
Processing on FPGA-Based SmartNIC

Junnan Li, Zhigang Sun *, Jinli Yan, Xiangrui Yang, Yue Jiang and Wei Quan

Computer College, National University of Defense Technology, Changsha 410073, China;
lijunnan@nudt.edu.cn (J.L.); yan_jinli@126.com (J.Y.); yangxiangrui11@nudt.edu.cn (X.Y.);
joe.yue.jiang@gmail.com (Y.J.); w.quan@nudt.edu.cn (W.Q.)
* Correspondence: sunzhigang@nudt.edu.cn

Received: 10 December 2019; Accepted: 24 December 2019; Published: 31 December 2019 ����������
�������

Abstract: In the public cloud, FPGA-based SmartNICs are widely deployed to accelerate network
functions (NFs) for datacenter operators. We argue that with the trend of network as a service
(NaaS) in the cloud is also meaningful to accelerate tenant NFs to meet performance requirements.
However, in pursuit of high performance, existing work such as AccelNet is carefully designed to
accelerate specific NFs for datacenter providers, which sacrifices the flexibility of rapidly deploying
new NFs. For most tenants with limited hardware design ability, it is time-consuming to develop
NFs from scratch due to the lack of a rapidly reconfigurable framework. In this paper, we present a
reconfigurable network processing pipeline, i.e., DrawerPipe, which abstracts packet processing into
multiple “drawers” connected by the same interface. NF developers can easily share existing modules
with other NFs and simply load core application logic in the appropriate “drawer” to implement
new NFs. Furthermore, we propose a programmable module indexing mechanism, namely PMI,
which can connect “drawers” in any logical order, to perform distinct NFs for different tenants or
flows. Finally, we implemented several highly reusable modules for low-level packet processing,
and extended four example NFs (firewall, stateful firewall, load balancer, IDS) based on DrawerPipe.
Our evaluation shows that DrawerPipe can easily offload customized packet processing to FPGA
with high performance up to 100 Mpps and ultra-low latency (<10 µs). Moreover, DrawerPipe
enables modular development of NFs, which is suitable for rapid deployment of NFs. Compared
with individual NF development, DrawerPipe reduces the line of code (LoC) of the four NFs above
by 68%.

Keywords: network processing; FPGA; SmartNIC; reconfigurable pipeline; programmable
module indexing

1. Introduction

Modern public clouds provide computing, storage, and other types of services for multiple
customers (i.e., tenants) on a shared infrastructure. To ensure security and performance isolation,
each tenant is deployed in a virtualized network environment. Consequently, flexible network
functions (NFs) are required to be deployed in two respects. First, datacenter operators need to
implement NFs to enforce tenant isolation while guaranteeing Service Level Agreements (SLAs) [1,2].
Second, with the trend of network as a service (NaaS) in the cloud [3–5], tenants (especially enterprises)
have moved line-of-business applications to the cloud [4]. For instance, Walmart has focused on
migrating its thousands of internal business applications to Microsoft Azure to decrease operational
costs associated with legacy architecture [6]. Thus, tenants also need to deploy a variety of customized
NFs in their virtual networks.

Electronics 2020, 9, 59; doi:10.3390/electronics9010059 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://dx.doi.org/10.3390/electronics9010059
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/1/59?type=check_update&version=2

Electronics 2020, 9, 59 2 of 24

Currently, the mainstream approach adopted by major cloud providers, such as Microsoft and
Amazon [2,7], is running NFs on the commodity server, which is flexible and easy to scale out.
However, software NFs often fail to meet the performance requirements in terms of throughput
and latency [2,8,9]. Although some optimizations, such as bypassing kernel protocol stacks (e.g.,
DPDK [10]) and processing a vector of packets at a time (e.g., VPP [11]), can greatly increase the
throughput of packet processing, there are still large and fluctuating processing delays [8].

Since FPGAs have perfect programmability comparable to software, and high performance
efficient to hardware, FPGAs have been designed as Smart Network Interface Cards (SmartNICs)
and deployed at massive scale in datacenters, such as Microsoft and Tencent [8,12]. However,
the state-of-the-art SmartNIC framework, i.e., AccelNet [8], is carefully designed to accelerate
datacenter provider’s NFs for high performance, which sacrifices the flexibility of rapidly deploying
custom NFs. Thus, without rich hardware design experience, most tenants face two challenges in
deploying their NFs on the SmartNICs.

First, due to the lack of a rapidly reconfigurable and well-optimized framework, it is difficult
and time-consuming for tenants to write the complete and complicated processing logic for each NF,
including lots of similar functionalities, e.g., packet parsing and packet classification. Although recent
work such as ClickNP [2], ReClick [13] and EMU [14] present a new way of programming NFs in a
high-level language (e.g., C/C++/C#), it is still hard to design a perfect compiler addressing all data
hazards that results in performance reduction and resource increase [8,15]. Moreover, these methods
have limitations in describing NFs that need to keep per-flow state [8,16], a common requirement in the
world of network functions [17]. In addition, other work presents programmable architecture, such as
PISA [18], abstracts packet processing into multiple Match-Action Tables (MATs) [19], and maps
network processing described in P4 [20] into these MATs. Currently, PISA focuses on processing packet
in hardware, and it does not support software/hardware co-processing to implement complex NFs
such as intrusion detection systems (IDS) [21]. Consequently, most NFs are still manually written in
hardware description languages (HDL) in the datacenter [8].

Second, existing FPGAs, such as Xilinx Vertex-7 [22] and Intel Stratix-10 [23], have sufficient
resources to deploy multiple NFs at the same time. Thus, the network operator requires steering traffic
to pass through these NFs on the FPGA in a particular sequence (e.g., firewall+IDS+proxy) for each
tenant [24–26], which is commonly referred to as service chaining. However, there is limited work on
flexible and dynamic sequential service chaining on the same FPGA-based SmartNIC.

In this paper, we present a reconfigurable network processing pipeline, namely DrawerPipe,
for FPGA-based SmartNICs. DrawerPipe addresses the challenges of developing and deploying
multiple customized NFs on the same FPGA in two steps. First, DrawerPipe abstracts packet processing
into multiple “drawers” connected using the same interface. Tenants can easily extend NFs by
loading their core processing logics in the “drawer” while sharing existing modules and ensuring
data areolation with other NFs. The core processing logic can be manually written in HDL for high
performance, or generated by High-Level Synthesis (HLS) tools [27,28] for high flexibility. Moreover,
since most NFs carry out similar processing stages, DrawerPipe provides five highly reusable modules
(header parser, fields extractor, packet classifier, L2 switching, and transmitter) for basic packet
processing.

Second, we propose PMI, a programmable module indexing mechanism. Inspired by building
linked list in C/C++, PMI allows users to specify the next module one by one for each flow.
Consequently, PMI can construct various module chains, corresponding to service chains, for different
tenants (or flows) to perform distinct NFs. It is easy for an operator to dynamically add or delete a
module chain with PMI. In addition, we design a PMI compiler that can merge multiple NFs into
a unified network processing pipeline based on DrawerPipe, and automatically compile a service
chaining intent described by the simple script into module connections in this pipeline.

In summary, our main contributions are as follows:

Electronics 2020, 9, 59 3 of 24

• We present a reconfigurable network processing pipeline for SmartNIC, i.e., DrawerPipe,
which abstracts packet processing into multiple “drawers” with the same interface, and provides
high flexibility to add, remove, or replace modules in the “drawers” to implement custom NFs.

• We design a Programmable Module Indexing mechanism, i.e., PMI, and a PMI compiler,
which allow developers to specify the module execution order for each flow to perform
required NFs.

• We implement a DrawerPipe prototype with five reusable modules on an FPGA integrated
platform, and extend four example NFs (firewall, stateful firewall, load balancer, IDS). We then
evaluate the PMI by constructing multiple service chains.

Experiment results show that DrawerPipe can offload customized packet processing to FPGA
with high performance up to 100 Mpps and ultra-low latency (<10 µs). NFs deployed on DrawerPipe
can share the same functionalities, often significantly reducing development efforts. Compared to
developing the complete logic for each NF, DrawerPipe reduces the line of code (LoC) of above four
NFs by 68%. At the same time, our PMI compiler (written in Python) can quickly construct one module
chain for flows that follow the same service chain. In our test, PMI compiler builds 2–32 module chains
for 10K flows within 70 ms.

The rest of the paper is organized as follows: Section 2 introduces the requirements and approach
of our work. Section 3 proposes the design of DrawerPipe. Section 4 shows PMI and its optimizations.
Section 5 provides the experimentation and evaluation of DrawerPipe prototype, four extended NFs,
and an PMI compiler. Related works on NF development are discussed in Section 6. Finally, Section 7
draws the conclusions.

2. Requirements and Approach

DrawerPipe targets designing a fast reconfigurable network processing pipeline for FPGA-based
SmartNICs, which allows developers to develop and deploy multiple NFs easily on the FPGA while
sharing the same functionalities. By analyzing the processing features of various commonly deployed
NFs [24,25,29], we identify three key requirements for such a reconfigurable pipeline.

R1: DrawerPipe supports sharing same functionalities between NFs to prevent redundant development
while ensuring the data areolation. For example, we have implemented a firewall (FW) for filtering
packets from malicious hosts, and an IDS [21] to alert a system administrator after detecting intrusion,
as outlined in Figure 1. To prevent redundant development, FW and IDS should share similar
functionalities, e.g., header parsing and packet classification. When multiple NFs use the same module
in FPGA, we should ensure the data areolation between NFs and return processed data to the right NF.
For example, as shown in Figure 1c, FW gets a matched ruleID (i.e., rule a) from packet classifier, while
IDS obtains another matched ruleID (i.e., rule b) even for the same flow.

Regex
Classifier

Packet
Classifier

Header
Parser

Packet
Switching

Packet
Classifier

Packet
Switching

Header
Parser

Regex
Classifier

(a) Firewall

(c) Merge firewall and IDS sharing the same functionality

(b) Intrusion detection system (IDS)

Header
Parser

belong FW

belong IDS

Packet
Classifier

Match
rule b

Match
rule a

Figure 1. Simple processing pipelines for firewall and IDS. The IDS shares similar functionalities with
a firewall while keeping data isolation.

R2: DrawerPipe supports FPGA/CPU co-design while using minimal FPGF-CPU communication times
without affecting correctness. FPGA is no panacea, and some tasks are not suitable for FPGA [2]. Thus,
DrawerPipe should support FPGA/CPU co-processing for complex NFs. Although previous work,

Electronics 2020, 9, 59 4 of 24

such as ClickNP [2], has joint CPU/FPGA processing, it does not consider FPGA/CPU communication
overhead as it only targets one type of NF at a time. For example, in Figure 2a, there are two NFs,
i.e., IDS and an L4 load balancer (L4LB) [30] used to balance server access requests sent by external
hosts. Both of them may direct packets to CPU for further processing, resulting in four FPGA-CPU
communication times. The latency of PCIe-based FPGA-CPU communication ranges from 0.9 µs
to 1.7 µs each time as measured in recent work [31]. Thus, DrawerPipe should reduce FPGF-CPU
communication times while ensuring NF correctness, as shown in Figure 2b.

Header
Parser

(a) There are four FPGA-CPU communication
times when deploying IDS and L4LB

CPU

FPGA

(b) Reducing FPGA-CPU communication
times without affecting correctness

miss

CPU

FPGA

Search
Dst. IP

Packet
Classify

Packet
Switch

Header
Parser

Search
Dst. IP

Packet
Switch

Dispatch
Dst. IP

Regex
Classify

hit

Packet
Classify

Dispatch
Dst. IP

Regex
Classify

Figure 2. It is necessary for several FPGA-CPU communication times when deploying multiple NFs.
Therefore, we should reduce FPAG-CPU communication times without affecting correctness.

R3: DrawerPipe supports users to customize the order in which modules are executed. We found that
network traffic usually traverses a sequence of NFs these days, i.e., service chain. For example,
as outlined in Figure 3, while packets belonging to tenant 2 perform L4LB for balancing accessing
responses, packets belonging to tenant 3 enter the FW first for filtering malicious packets. Moreover,
one NF can be decomposed into multiple software or hardware modules for reusing. Thus, DrawerPipe
needs to build one module execution sequence (called module chain in this paper) for each service
chain. Although it is easy to customize the execution order of software modules by adjusting the order
in which functions are called [32,33], the hardware pipeline cannot dynamically modify the connection
relationship between modules without resynthesizing.

P S

P S

P

S

Executing sequence

CPU

FPGA

Module component

CPU

FPGA P

Map

1) Packet belong to tenant 1:

2) Packet belong to tenant 2:

S

L4LB FW

L4LB

L4LB

FW

L4LB
FW

Decompose

Physical pipeline

3) Packet belong to tenant 3:

Figure 3. The NF developer specifies the module execution sequence for each type of packets. We need
to decompose NFs and map them to one physical pipeline according to module execution sequence.

Our primary approach is to design a modular and reconfigurable network processing pipeline
for FPGA-based SmartNICs, which allows developers to extend new NFs by inserting customized
modules and specify the module execution sequence to perform required NFs. As shown in Figure 4,
DrawerPipe consists of three components designed to meet all requirements:

Electronics 2020, 9, 59 5 of 24

DrawerPipe
(CPU part)

CPU

FPGA

Recv/Send API

configuration

Module chains

Network
operator

Module graph

Configuration API

PCIE chanel

PMI compiler

configure

DrawerPipe
shell

DrawerPipe (FPGA part)

R
ecv p

kt

Sen
d

 p
kt

compile

PMI

conf

M6M4M2 …

M3M5 …M1 M7

Hardware module

Software module Software drawer

Hardware drawer Data flow

control flow

recycle

Figure 4. NF developers write scripts to describe module chains, which are compiled into a module
graph for constructing and configuring the packet processing pipeline based on DrawerPipe.

• Modular and reconfigurable pipeline: According to the characteristics of packet processing
existed in commonly deployed NFs, DrawerPipe abstract packet processing into multiple
“drawers” with the same interface, and provides several highly reusable modules for low-level
packet processing. DrawerPipe allows NFs sharing similar functionalities while ensuring data
areolation using two methods. First, to ensure matching isolation, every rule table is divided into
multiple logic tables for NFs, and each NF can only visit its own table. Second, to ensure action
isolation, DrawerPipe attached metadata before each packet to carry intermediate processing
result generated by modules. (R1).

• DrawerPipe shell is the platform-related logic around DrawerPipe. DrawerPipe shell provides
a set of target-agnostic APIs for receiving/sending packets, memory management, FPGA-CPU
communication. Thus, developers can focus on the core application logic and write a modular
code that is easily reusable (R1). In addition, we find that NF may perform three kinds of
actions on packets including reading, writing, or dropping, and two independent NFs (without
reading or writing the same fields) can be executed in any order. Thus, DrawerPipe merges the
FPGA-CPU communication of independent NFs, and writes the intermediate processing result in
the metadata. (R2).

• Programmable module indexing mechanism: Motivated by the idea of building linked list in
C/C++, PMI allows users to configure the next module to process packets one by one. Thus,
users can specify the module chain traversed by packets to obtain any required service chain for
multiple tenants (R3). To reduce FPGA-CPU communication times, PMI steers packets through
as many hardware modules as possible before passing through software ones (R2). Furthermore,
we use PMI to distinguish flows or tenants that need to look up different logic rule tables for data
areolation between NFs (R1).

3. Design of DrawerPipe and DrawerPipe Shell

In this section, we propose the DrawerPipe model which abstracts packet processing into
multiple “drawers” with the same interface and provides five highly reusable modules for basic

Electronics 2020, 9, 59 6 of 24

packet processing. Then, we present the design of DrawerPipe shell which hinds the low-level packet
processing details.

3.1. DrawerPipe Model

We analyze the processing features of commonly deployed NFs [24,25,29], and find that most
NFs require essential and similar processing steps. For example, most NFs parse packet headers and
then classify packets based on these headers, and finally switch packets according to the destination
MAC addresses. NFs can be considered as adding customized logic to these basic processing steps.
For instance, we can implement an L4LB by plugging a software module allocating a server for each
flow, and a hardware module searching an allocated server for each packet.

Leveraging this property, we present DrawerPipe that abstracts packet processing into five
general stages, i.e., header parsing, field extraction, packet classification, user-defined action, and
egress management. Each stage consists of multiple “drawers” connected by the same interface,
as shown in Figure 5. Users can easily extend new NFs by inserting, removing, or replacing
core application logic in the “drawers” without understanding the design details of other modules.
Moreover, DrawerPipe provides five highly reusable modules (basic modules), i.e., header Parser (P),
field Extractor (E), packet Classifier (C), L2 Switching (S), and Transmitter (T), for essential packet
processing. Thus, modules can exchange intermediate processing results using a 256-bit metadata
which includes five-tuple, MAC addresses and intermediate results (self-defined fields). In detail,
if two modules have different definition of self-defined fields, we just need to modify the output
metadata format of one module.

Header Parsing Field Extraction Packet Classification Egress Managing User-Defined ActionDrawerPipe consists
of five stages:

basic
module

inserted
module

L4 Parser
(ARP/IPv4/
TCP/UDP)

Packet Buffer (provided by DrawerPipe shell)

Extractor
(MAC addr &

5-tuple)

5-tuple based
PktClassifier

(ACL)
L2 Switching

Routing

Transmitter
(output by

port)… …

Packet

Packet

Packet

Metadata

drawer

… … … ……

pktID dispatch pktID recycle

Figure 5. Extending L3 routing function by adding a Routing module (black) in the
five-stage DrawerPipe.

The header parsing stage is used to identify header types of packets and separate the packet
header from the payload. While the payload is cached in the packet buffer, the packet header with
an obtained header type is sent to the field extractor for further processing. Although the basic
header parser (i.e., L4 Parser) only supports some common network protocols such as ARP, IPv4, IPv6,
ICMP, TCP, and UDP, developers can easily extend custom protocols by adding new parsing modules
following the basic parser without understanding or modifying existing parsing modules.

Field extraction fetches appropriate fields from the packet header according to its header type,
such as extracting source and destination MAC addresses for ARP packets. The basic field extractor
fetches source and destination IP addresses, IP protocol, source, and destination ports (if any) to
construct a five-tuple, with source and destination MAC addresses for L2 learning and switching.
As most NFs parse similar network protocols, they can share the same packet parser and only need to
insert user-specific field extractors following the basic extractor for fetching required fields.

The function of packet classification is to classify or filter packets based on extracted fields,
e.g., five-tuple. DrawerPipe provides a basic packet classifier based on the BitVector (BV) algorithm [34]
which has predictable search latency and is suitable to be implemented in FPGAs. To trade-off
hardware resource consumption and search latency, developers can replace the BV algorithm with
other packet classification algorithms [35], such as decision tree (e.g., Hicuts [36], HyperCuts [37]),
decomposition [38], tuple space searching (TSS) [39], or hash-based exact matching.

User-defined action is used to implement custom functionality, such as load balance. The basic
module in the user-defined action stage is L2 switching, which obtains an egress port by searching
the L2 forwarding table (i.e., mappings of a destination MAC address to egress port). Therefore,

Electronics 2020, 9, 59 7 of 24

modification of a destination MAC address should be placed before the L2 switching, and the
processing related with egress port can only be set after the L2 switching. For example, IP forwarding
should be placed before the L2 switching, and measurements for counting packets sending to each
egress port can only be set after the L2 switching.

The egress managing stage is used to implement packet scheduling, and drop or forward packets
according to the processing actions generated during the packet classification (as ACL) or user-specific
processing. DrawerPipe provides a transmitter to realize the latter functionality. NF developers
can add scheduling algorithms by plugging custom modules before the transmitter. For example,
we can apply Token Bucket Filtering [40] for traffic shaping, or Weighted Fair Queuing (WFQ) [41] for
packet scheduling.

In detail, we take the extending L3 routing function to a basic five-stage DrawerPipe as an example.
As shown in Figure 5, we add an IP forwarding module (Routing) before the L2 switching. The routing
module reads a destination IP address from the metadata and performs the longest prefix match to get
the next hop. Then, it uses the destination MAC address of the next hop to replace the original one,
and decreases the TTL in the IP header. Finally, these modified fields will be written back to the packet
in the transmitter.

To support hardware/software co-processing, users can insert either a hardware or software
module in the DrawerPipe. Hardware modules can utilize massive parallelism provided by FPGAs to
implement the part of packet processing that requires high performance. Software modules run as
processes with high flexibility and can execute complicated logic. We extend a new NF in DrawerPipe
in two steps. First, we decompose the processing logic of the NF into software and hardware parts. In
each part, we share the same functionalities with existing NFs, and load customized modules in the
“drawers”. Furthermore, we design a DrawerPipe shell (described in Section 3.2) to exchange packets
with attached metadata between the FPGA and CPUs. As a result, software and hardware modules can
share the intermediate results by reading and modifying the metadata. Second, we use PMI (described
in Section 4) to link these software and hardware modules for co-processing. In addition, we leverage
PMI to specify module chains traversed by packets to obtain required service chains.

3.2. DrawerPipe Shell

DrawerPipe shell is the platform-related processing logic around DrawerPipe and provides the
execution environment for packet processing logic loaded in the “drawers”. It defines an API that
allows hardware or software modules specified by users to access common functionality through a
set of target-agnostic abstractions. Consequently, the DrawerPipe shell should meet the following
requirements. First, it should provide a uniform interface that is portable across many different
hardware platforms. Second, it should also provide an efficient medium to transport data across
hardware and software modules. Finally, it should provide auxiliary functionalities to support
receiving/sending packets from/to physical ports, buffering packets, CRC checking and calculation,
attaching a receiving timestamp, and so on.

Note that developers can create a variety of potential NFs, ranging from simple ones such as
firewall, to complex ones such as IDS, which needs software/hardware co-processing. To support these
different use-cases, DrawerPipe shell provides hardware and software APIs. As shown in Figure 4,
the hardware API includes four main functions, i.e., receiving packets from ingress ports, sending
packets to egress ports, configuring registers or SRAM (tables) in hardware modules, and exchanging
packets with software. The software API provides two main functions for receiving (or sending)
packets from (to) hardware, and configuring hardware registers or RAM-based tables. Moreover,
the functions of DrawerPipe shell are fixed, which can be implemented using IP cores provided by
existing FPGA providers without frequent updates. Thus, modules in DrawerPipe do not need to
modify their interface and logic when porting to other platforms.

Below, we divide the DrawerPipe shell into three major components, i.e., transceiver management,
memory management, and FPGA-CPU communication.

Electronics 2020, 9, 59 8 of 24

Transceiver Management. DrawerPipe shell provides a transceiver management unit that enables
DrawerPipe to use the media access control (MAC) and physical (PHY) layers specific to a target
platform. The transceiver management unit uses vendor-specific protocols to receive and send packets,
and provides DrawerPipe with data in a standard format. Developers do not need to understand
the design details of PHY and MAC layer logic, such as gmii-rgmii conversion and CRC checking
and calculation. As a result, modules in DrawerPipe are target-agnostic and portable across many
FPGA platforms.

Memory Management. When packets arrive at DrawerPipe, they will be stored in the packet
buffer after packet parsing, as outlined in Figure 5. The packet buffer can be designed in two ways.
A straightforward approach is to use FIFO queues, i.e., one queue for each ingress port, and outputs
packets in the order in which they are received. However, simple FIFO queues are not sufficient for
more advanced packet processing functionalities, such as packet scheduling, which require reordering
packets as they are processed.

DrawerPipe shell also provides an optional memory buffer based on SRAM. The SRAM-based
memory management realizes two functions: dispatch and recycle. The dispatching function allocates
a free packet block which can buffer a maximum transmission unit (MTU), and returns a unique packet
identifier (packetID) when it receives a packet. Upon the completion of taking the packet out of the
packet buffer, the recycling function frees the corresponding packet block, and recycles the packetID.

FPGA-CPU Communication. DrawerPipe integrates an FPGA-CPU communication channel
between the hardware and software. We have designed two FPGA-CPU communication channels:
one is built on top of the PCI express (PCIe) protocol [31], which is the de-facto protocol for internal
communication within network devices. For example, in our previous FPGA-integrated network
processing platform, such as iRouter [42], NetMagic-Pro [43], and OpenBox-S28 [44,45], we use
PCIe-based channel to connect Intel FPGA (Stratix V) and Intel CPU (i7-4700eq). Another is built
on top of the Advanced eXtensible Interface (AXI) [46] bus. For example, in our experiment, we use
AXI-based channel to deliver message between FPGA and CPU. Based on FPGA-CPU communication
channel, we provide two kinds of APIs for CPU: recv/send API and configuration API, as shown in
Figure 4. The recv/send API used to exchange packets and metadata with the FPGA is the foundation
for supporting FPGA-CPU co-processing. The configuration API provides functions of reading and
configuring registers or SRAM-based tables in hardware modules.

4. Design of PMI

In this section, we present the strawman design of PMI and resource optimization in PMI
implementation. We also design a PMI compiler to simplify the configuration of PMI table in
each module.

4.1. Strawman Design of PMI

Most NFs deployed in DrawerPipe are composed of multiple modules, and these NFs can
share modules with similar functionalities. To perform specific NFs, we need to assign a module
execution sequence for flows that follow the same service chain. Inspired by linked list in C language,
PMI constructs an ordered module chain by configuring the next module to process packets for
each module.

The module in DrawerPipe has a unique module identifier (mid), and PMI uses next mid (nmid)
to indicate the next module following the current module. The function of nmid is similar to the GOTO
command in OpenFlow [47] for skipping unrelated matching tables. Users can specify the nmid to
bypass some modules that do not need to process the current packet.

PMI uses the combination of mid and nmid to construct module chains. The processing flow
can be expressed as: (1) the initial module (i.e., L4 parser) receives a packet, and obtains the next
module by searching mappings of flow identifier (i.e., flowID such as five-tuple) to nmid. Moreover,
the obtained nmid will be filled in metadata; (2) following module compares its local mid (lmid) with

Electronics 2020, 9, 59 9 of 24

the nmid carried by the metadata. If lmid is equal to nmid, the current module needs to process this
packet and update the nmid; otherwise, the packet can bypass the current module; (3) repeating step
(2) until the packet enters the last module of DrawerPipe (i.e., transmitter); (4) transmitter forwards
the packet to egress ports when the nmid is 0 (means no succeeding module), or sends the packet back
to L4 parser for performing step (1) to (4) in a new loop.

As illustrated in Figure 6, we construct a module chain, i.e., parser (P)→ extractor (E)→ L4LB
(including a software module and a hardware module)→ switching (S)→ transmitter (T) for outbound
TCP packets, in two steps. First, we assign one mid for each module (e.g., the mid of parser is “1”).
Second, we specify nmid for outbound TCP in all traversed modules (e.g., the nmid for outbound TCP
packets in the extractor is “6”). As a result, packets belong to outbound TCP will traverse parser,
extractor, L4LB’s FPGA module, L4LB’s CPU module (for new flow), and transmitter before being
forwarded to the egress port.

CPU

FPGA

P E C S T

1 2mid: 3 4 5 6 7 8

nmid: 2

Pkt

6 7 8

129

L4LBFW

mid: 129

Figure 6. Performing L4LB by configuring nmid to direct outbound TCP packets passing through
required modules.

To connect software and hardware modules, we set the mid of software modules from 128, and the
leverage transmitter to separate the packets sent to software modules from the packets forwarded to
egress ports. Consequently, packets whose nmid is equal to or bigger than 128 are sent to software
modules, and packets whose nmid smaller than 128 are returned to hardware modules.

To implement the PMI mechanism, each DrawerPipe module consists of three parts: nmid
comparing logic, packet processing logic, and nmid lookup logic, as shown in Figure 7. The nmid
comparing logic is relatively simple, and determines whether to process packets by comparing its
lmid with the nmid conveyed in the metadata. Processing logic is realized by users to perform the
application-specific function. The nmid lookup logic maintains a PMI table consisting of two fields:
condition (representing flowID) and nmid. The nmid lookup logic examines packet’s flowID with
entries in PMI table to find the nmid.

Processing

logic

if (nmid == lmid)
 select = 1
else
 select = 0

if (nmid == lmid)
 select = 1
else
 select = 0

select

Metadata

nmid

Search
logic

A,B=a,b mid 3

Condition

B = b mid 4

A = a mid 5

nmid

nmid lookup

1

0 0

1

Metadata

PMI table

nmid
Comparing

Metadata

Metadata Metadata

Figure 7. Each DrawerPipe module contains three parts: nmid comparing, packet processing, and nmid
lookup logic.

Electronics 2020, 9, 59 10 of 24

4.2. Optimizations of PMI

As described above, the strawman design maintains a PMI table in each module, and PMI tables
are independent. In such a distributed model, packets should search multiple PMI tables to perform
required NFs. A nmid lookup example is given in Figure 8a, in L4LB’s FPGA module, the first packet
of f low3 matches the default entry and then updates its nmid to 129.

Although it is easy to implement a PMI table and write a reusable lookup logic based on a hash
algorithm, the disadvantages of the strawman PMI model are also obvious. First, as the number
of flows grows, maintaining a PMI table in each module consumes lots of memory resources and
introduces additional lookup delay due to hash conflict. Second, inserting a new module may need
to modify the PMI table (e.g., adding matching entries or changing matching fields) of all upstream
modules, which can be complicated. For instance, in Figure 8a, if there is no FW in the current pipeline
and we want to add an FW after the packet classifier to filter malicious flows, we need to find the
upstream modules (i.e., extractor, packet classifier) and configure their PMI tables to direct traffic to
the modules of FW.

To solve the problems above, we present two optimized PMI models, i.e., centralized PMI and
hybrid PMI models. While the centralized PMI model specifies the module execution sequence in
a centralized module, the hybrid PMI model compresses the same execution sequence as a path,
and assigns nmid by searching path-nmid mappings in each module.

P E C S T

1 2mid: 3 4 6 129 7 85

nmid: 2
pkt (flow3)

6 129 7 8

Processing
logic

nmid
comparing

nmid
lookup

flow2 7

Condition nmid

Default 129

(a) Strawman PMI model

flow1 6-7-8

nmid chain

flow2 6-7-8

Default 6-129-7-8

(b) Centralized PMI model

(c) Hybrid PMI model

L4LB (FPGA part)

midc dispatch

Path dispatch

midc lookup

DrawerPipe

L4LB (FPGA part)

P E C S T

1 2mid: 3 4 6 7 85

nmid: 2 7 8

D

Processing
logic

nmid
comparing

P E C S T

1 2mid: 3 4 6 7 85

nmid: 2 6 7 8

D

Processing
logic

nmid
lookup

Path I 7

Path nmid

Path II 129

L4LB (FPGA part)

flow1 Path I

Path

flow2 Path I

Default Path II

Path
lookup

Condition

Condition

129

129

nmid
comparing

pkt (flow3)

pkt (flow3)

DrawerPipe

DrawerPipe

flow1 7

6 129

129

Figure 8. The mechanism of three PMI models.

4.2.1. Centralized PMI Model

As shown in Figure 8b, compared with maintaining a PMI table in each module, centralized
PMI maintains only one mapping table in the mid-chain (midc) dispatcher (D) after the extractor.

Electronics 2020, 9, 59 11 of 24

The mapping table includes two components, i.e., condition and mid chain. The mid chain consists
of a list of modules that should be traversed by packets. Therefore, the received packet is sent to the
midc dispatcher, and obtains a mid chain by examining its flowID with entries in the midc dispatch
table. The following modules only need to check the mid chain, without maintaining a condition-nmid
mapping table like strawman PMI model.

The processing flow of modules after midc distributor can be described as: (1) comparing the
module’s lmid with the header of mid chain carried by metadata. If the lmid is equal to the head mid, this
module should process the current packet; otherwise, output the current packet without processing;
(2) updating the mid chain by popping out the head mid after processing.

Still, taking the first packet of f low3 in Figure 8b as an example, the packet matches the default
entry in the midc dispatcher and obtains a mid chain as 6→ 129→ 7→ 8. That is, the current packet
needs to pass through four modules (i.e., L4LB’s FPGA and L4LB’s CPU modules, switching and
transmitter) after the midc dispatcher. When mid chain reaches the end of the list, the packet can jump
out of the DrawerPipe and be forwarded or discarded according to the output port in the metadata.

The centralized PMI model does not maintain a PMI table in each module, which can save a lot of
storage resources and time used for performing PMI table lookups. However, it is hard for hardware
to maintain a long and variable mid chain in the midc dispatch table and metadata. Moreover, it causes
a waste of resources if we distribute a fixed space in midc table and metadata for the longest mid chain.

4.2.2. Hybrid PMI Model

The hybrid PMI model combines the advantages of both centralized and strawman models.
As outlined in Figure 8c, the hybrid PMI model has two different characteristics. First, we compress
the same module execution sequence into one path, which can save a lot of memory resources by
avoiding recording one module chain for each flow. For example, in Figure 8c, f low1 and f low2 have
the same module execution sequence, and we use path I to represent this sequence. As a result, a
path dispatcher in hybrid PMI model saves a mapping of condition to path identifier (pathID) instead
of a variable mid chain. Second, the hybrid PMI module maintains pathID-nmid mappings (namely
path table) in each module.

Taking Figure 8c as an example, the first packet of f low3 matches the default entry in the path
dispatcher and obtains path II, which means the packet should traverse modules represented by Path
II. The following modules only need to search the path table to obtain the nmid, such as the nmid of
path II in L4LB’s FPGA module being 129 (i.e., L4LB’s CPU module). Consequently, the current packet
will be sent to L4LB’s CPU module after the processing of L4LB’s FPGA module.

The processing flow of hybrid PMI model can be described as: (1) DrawerPipe receives a packet,
and sends it to a parser and extractor for basic packet processing; (2) then, path dispatcher gets this
packet and examines its flowID with condition−path mappings to find a pathID and an initial nmid.
The pathID and initial nmid will be filled in metadata; (3) succeeding modules compare their lmid
with the nmid. If they are equal, the current module needs to process this packet and update nmid by
searching the pathID−nmid mappings; otherwise, packet could bypass the current module; (4) if nmid
is 0, this packet has already been processed by all modules, and can jump out of the pipeline.

There are two advantages in the hybrid PMI model. First, we merge the same module chain into
a path, which is more memory-efficient than the centralized one. Second, as pathID is ordered from
zero, modules can directly use pathID as the index to search the path-nmid table without any hash
conflict. Consequently, we adopt the hybrid PMI model in DrawerPipe.

4.3. PMI Compiler Design

The intention of designing a PMI compiler is to transform service chaining intent into module
connections, i.e., the configuration of path dispatch and path tables. As NFs deployed in DrawerPipe
are composed of multiple modules, we can use module chains to represent service chaining intent.

Electronics 2020, 9, 59 12 of 24

Module chains are described in a simple script consisting of two-tuple, i.e., (condition, {module
name}), as shown in Figure 9. The condition (i.e., flowID) consists of one or multiple matching fields,
such as five-tuple. Each condition corresponds to a list of modules (i.e., {module name}), which
represents the execution order of modules. In Figure 9, (f low1, {P, E, FW-1, FW-2, LB-F, LB-C, S, T})
means packets belonging to f low1 pass through parser, extractor, FW-1, FW-2, LB-F, LB-C, switching
and transmitter in order.

Merge

E S T

Module Chains

E C

(flow 1 & flow 2, {P,E,FW-1, FW-2, LB-F,LB-C,S,T})

S TE C

(flow 3 & flow 4, {P,E,LB-F,LB-C,S,T})

E C S T

(flow 5, {P,E,C,S,T})

Path Information

(flow 1, Path I)
(flow 2, Path I)
(flow 3, Path II)

Path dispatch Table

Path Table (P)

(Default, E)

Path Table (S)
(Default, T)

Path Table (FW-1)
(Default, FW-2)

Path Table (FW-2)
(Default, LB-C)

Gen

Module Graph

(Default, {P,E,S,T}) Path Table (E)
(Path I, C)
(Path II, C)
(Path III, C)
(Path IV, S)

Path Table (C)
(Path I, SFW-1)
(Path II, LB-F)
(Path III, S)

Path Table (LB-F)
(Default, LB-C)

Path Table (LB-C)
(Default, S)

Gen

P

P

P

P

S T
(flow 4, Path II)
(flow 5, Path III)
(Default, Path IV)

mid
1 2 3 4 5 6 7 8 9

E CP S T

Figure 9. PMI compiler uses module chains to generate the module graph, and uses module chains and
the module graph to generate the path information (configuration of path dispatch and path tables).

Based on the above abstraction of module chains, the PMI compiler transforms module chains
into configuration content of the path dispatch table and path table as follows. First, the PMI compiler
generates a module graph based on module chains, as outlined in Figure 9. Since DrawerPipe has
only one physical processing pipeline, we merge multiple module chains to this pipeline described
by module graph. Referring to Algorithm 1, we firstly initialize freeMid and moduleGraph. Then,
in pseudocode 3–13 lines, we traverse all module chains stored in moduleChainArray (reading from the
script), and dispatch a unique mid for each module without repetition. Meanwhile, we append these
modules to moduleGraph. Similarly, we dispatch each different module list a pathID in the pseudocode
12 line. Finally, in pseudocode 14–20 lines, we examine all possible downstream modules for each
module, and record them in the node array (described as moduleGraph[node]).

Second, the PMI compiler generates path information (configuration of path dispatch and path
tables) based on module chains and the module graph, as shown in Figure 9. We find that each module
chain corresponds to an entry in the path dispatch table, and each path corresponds to an entry in the
path table. Moreover, if there is only one nmid in path table, we can merge these entries into one default
entry. For instance, the default nmid of the parser is the extractor. Leveraging these observations, the
PMI compiler generates path information in two steps, described in Algorithm 2: (1) In pseudocode
1–4 lines, we record a condition to pathID mapping for each module chain in the path dispatch table
array (pathDTb[i]). (2) Then, in pseudocode 5–13 lines, we fill the pathID to nmid mapping for each
moduleGraph module and merge the same nmid to a default entry.

Algorithm 1 Generate module graph based on module chains

1: f reeMid← 1
2: moduleGraph← NULL
3: for i = 0 to LENGTH(moduleChainArray) do

Electronics 2020, 9, 59 13 of 24

4: node = moduleChainArray[i]. f irstNode
5: while node 6= NULL do
6: if node not in moduleGraph then
7: node.mid← f reeMid ++

8: APPEND(moduleGraph,node)
9: end if

10: node = node.nextNode
11: end while
12: ASSIGNPATHID(moduleChainArray[i])
13: end for
14: for i = 0 to LENGTH(moduleChainArray) do
15: node = moduleChainArray[i]. f irstNode
16: while node 6= NULL do
17: moduleGraph[node][i].nmid = node.nextNode.mid
18: node = node.nextNode
19: end while
20: end for

Algorithm 2 Generate path information based on module chains and module graph

1: for i = 0 to LENGTH(moduleChainArray) do
2: pathDTb[i].condition← moduleChainArray[i].

condition
3: pathDTb[i].pathID ← moduleChainArray[i].

pathID
4: end for
5: for node in moduleGraph do
6: if node has only one next node then
7: pathTb[node][de f ault]← node[0].nmid
8: else
9: for i = 0 to LENGTH(moduleChainArray) do

10: pathTb[node][moduleChainArray[i].pathID] =

moduleGraph[node][i].nmid
11: end for
12: end if
13: end for

5. Evaluation

Based on the DrawerPipe model, we implemented a basic five-stage pipeline on a Xilinx FPGA
integrated network processing platform that consists of a Zynq-7000 SoC chip [46], 4 GB DDR3 DRAM,
and four 1 Gbps ports. In more detail, the Zynq-7000 SoC chip we used integrates an FPGA chip
and two ARM Cortex-A9 processors .The FPGA chip has 53200 Slice LookUp Tables (Slice LUTs),
106,400 Slice registers, and 140 Block RAM tiles (i.e., 2520 Kb).

Below, we evaluate the DrawerPipe model and PMI mechanism from three aspects. First, we
have extended four example NFs based on DrawerPipe to demonstrate the flexibility of DrawerPipe
model. Second, we tested the performance and resource consumption of key modules in DrawerPipe.
Third, we implement and compare resource consumption of three PMI models, and construct multiple
module chains to evaluate the performance of our PMI compiler.

Electronics 2020, 9, 59 14 of 24

5.1. Applications

To evaluate the flexibility of DrawerPipe model, we have extended four example NFs based on the
DrawerPipe model. These NFs include five-tuple based firewall, stateful firewall, L4 load balancer, and
IDS. The hardware modules are written in Verilog, and the software modules are implemented using
C. Using these case studies, we demonstrate that the DrawerPipe model supports diverse applications
and enables modular development by allowing developers to focus on the core application logic.

Table 1 summarizes the LoC of four NFs developed in two methods, i.e., individual and reusing.
As mentioned in Section 2, individual development often requires developers to write complete packet
processing code for each NF. Therefore, we adopt the reusing method to simplify NF development
by reusing the same functionalities with other NFs and five basic modules provided by DrawerPipe.
As shown in Table 1, compared with individual NF development, the reusing method only requires
writing 12.4–54.1% code for application-specific logic based on the DrawerPipe framework. Moreover,
our experience also shows that DrawerPipe provides high flexibility of adding, removing, or replacing
modules to implement custom NFs.

Table 1. The LoC of four NFs developed in two methods: individual and reusing.

NF Name
LoC

Description
Individual Reusing

Firewall 2358 294 Filtering malicious packets based on five-tuple
Stateful Firewall 5095 2129 Filtering invalid packets according to flow’s status
L4 Load Balancer 4277 805 Balancing server accessing requests based on five-tuple

IDS 4023 1686 Inspecting traffic according to pre-configured rules
total 15753 4914 N/A

A1. Firewall. The function of the firewall is to filter the specific flow whose flowID matches the
pre-configured filtering rules. The rules of the firewall may have masks to filter one kind of packet.
For instance, if we want to drop TCP packets, we can set the filtering rule as (∗, ∗, 6, ∗, ∗) where IP
protocol is equal to “6” and other fields of 5-tuple can be any value.

As DrawerPipe provides the basic packet processing functionalities of parsing, filed extraction,
and packet classification, we can reuse these basic modules and add an action table to implement the
firewall. The action table maintains an action (drop or accept) for each rule in the packet classifier.
Consequently, if one packet hits a rule in packet classifier and gets the matched index, the firewall will
drop or accept this packet according to the action directed by the index.

A2. Stateful firewall (SFW). Some NFs process packets based on connections, not just packets,
such as stateful firewall and L4 load balancer. Our SFW maintains a list of IP addresses for internal hosts,
and only allows the TCP connection request whose source IP address belongs to this IP address list.
Consequently, SFW allows outbound TCP connections, but rejects inbound ones. However, the external
host is allowed to send packets to the internal host through the established TCP connection. Thus,
SFW needs to track the status of all active connections, including both client and server connection
statuses, such as requested or established, sequence and acknowledgement numbers, and window
size scaling factor.

We implement SFW by plugging two hardware modules between packet classifier and L2
switching. One module is used to examine the source IP address of packets with the internal IP address
list for filtering inbound TCP connections. The other module tracks TCP connections, and drops invalid
packets according to the connection status. SFW discards packets in three situations. First, the packet’s
sequence number exceeds the safe range of a received acknowledgement number (occurring in replay
attacks [48]). Second, packets do not belong to the current status, e.g., receiving an FIN packet in the
requested status which waits for an SYN-ACK packet). Third, packets match a closed or time-out
connection. Thus, we maintain a timer for each connection, and close the connection when its timer
expires (e.g., out timeout is set to 100 sec).

Electronics 2020, 9, 59 15 of 24

A3. L4 load balancer (L4LB). Load balancer has been widely used in modern network, such as
loading traffic to different paths in a multi-path environment, sending accessing requests to distinct
servers to balance the workload in datacenter. Our L4LB is the latter, which balances the workload
by sending more requests to servers that have lower CPU usage while guaranteeing the same flow
processed by the same server based on 5-tuple.

L4LB also needs to track TCP status, e.g., assigning a destination server for each new connection,
replacing destination (or source) IP address for established connections, and deleting the mapping
of flowID to a destination server when the connection is closed. In our implementation, we insert
a mapping searching module after the SFW, and share the connection management function with
SFW. The mapping searching module is used to examine 5-tuple of packets with mappings to find the
destination server. In addition, we developed a software module to communicate with servers to obtain
their CPU usages, and to dispatch an appropriate server for each new connection to balance workload.

A4. Simplified IDS. Snort [21] is an open source intrusion detection system developed by the
C language. The processing flow of snort can be decomposed into four steps. First, Snort receives
packets from the network interface card (NIC) based on libpcap or DPDK [10]. Second, it parses
received packet and extracts five-tuple according to the header type. In particular, it extracts source
and destination IP addresses, IP protocol, ICMP type and code for ICMP packets. Third, it examines
these extracted fields with pre-configured rules, and executes the last step if they match. Finally,
it performs option fields lookups which consist of exact matching and regular expression matching.
If they match, it will generate alarm information according to the processing action.

Due to the limited performance and high processing delay of Snort software, it is difficult to
achieve line rate processing of 10 Gps. For this reason, we offload part of the processing of Snort to
FPGA for acceleration, including packet parsing and packet classification used for rule matching based
on 5-tuple, and left option matches on software. In our implementation, we added a hardware module
after the packet classifier to direct specific flows to software, and developed a software module to
perform option fields lookups to filter malicious packets. Finally, hardware and software modules
interact with packet and control information through the DrawerPipe shell.

5.2. Performance and Resource Utilization

In this experiment, we evaluate the performance and resource utilization of key modules in
DrawerPipe, including five basic modules and application-specific modules for implementing the four
NFs above. Since our platform does not provide multiple 10 Gbps interfaces, we test the performance
of these modules using simulation by Xilinx Vivado (the version is 2017.04) [27] and Intel Quartus
(the version is Quartus prime 16.0.2) [28], which have been common choices in previous hardware
tests [49,50]. We further investigate the performance of software modules contained in four NFs on
our platform.

Table 2 presents the key modules we have implemented in DrawerPipe. The listed modules
include five basic modules: (L4_Parser, Extractor, Packet Classifier, Switching, Transmitter), two kinds
of packet buffers (based on FIFO and SRAM), and six application-related modules (Firewall,
Stateful Firewall, L4LB_FPGA, L4LB_CPU, IDS_FPGA, IDS_CPU). We first test the Maximum clock
Frequency (FMax) of each module, and the lowest one is 232.88 MHz, as shown in Table 2. Thus, in the
following simulation experiment, we test the throughput and latency under the clock frequency of
200 MHz, which is a typical clock frequency of FPGAs [2]. For the top part of Table 2, the module
needs to touch every byte of a packet. We show the throughput in Gbps. The modules in the bottom
part of the table, however, process only the packet header (metadata). Therefore, it makes more sense
to measure the throughput using packet per second (pps). Although most modules can be completely
pipelined, i.e., it can input search key and output result of every clock, some modules cannot process
one metadata every clock, such as extractor processes with one metadata every two clocks, and can
only achieve 100 Mpps. The width of Metadata we adapt is 256 bits, which includes five tuple.

Electronics 2020, 9, 59 16 of 24

Table 2. Performance and resource consumption of key modules in DrawerPipe

Module HW/SW Configuration Performance Resource (%)

FMax
(MHz)

Throughput
at 200 MHz

Delay
(Cycles)

Slice
LUTs

Slice
Registers

Block
Memory

L4_Parser HW N/A 487.33 51.2 Gbps 6 2.32% 2.33% 2.86%
Switching HW 100 entries 313.87 51.2 Gbps 7 2.20% 1.68% 8.58%

Transmitter HW N/A 389.71 51.2 Gbps 5 1.34% 1.14% 8.58%
pktBuffer_FIFO HW 16 KB 438.02 51.2 Gbps 3 0.31% 0.68% 2.86%
pktBuffer_RAM HW 32 KB 460.62 51.2 Gbps 4 0.38% 0.72% 12.86%

Extractor HW N/A 421.41 100 Mpps 2 0.27% 0.63% 0%
Packet Classifier HW 100 entries 404.86 200 Mpps 17 4.52% 4.35% 31.43%

Firewall HW 100 entries 403.39 200 Mpps 7 0.37% 0.93% 1.79%
Stateful Firewall HW 1 K flows 232.88 100 Mpps 26 2.58% 2.84% 13.93%

L4LB_FPGA HW 1 K flows 314.86 100 Mpps 5 0.83% 0.80% 4.64%
IDS_FPGA HW 100 entries 399.36 200 Mpps 7 0.36% 0.93% 1.79%

We also show the processing latency of each module in Table 2. As we see, this latency is low: the
mean is 8 clocks (equal to 40 ns at 200 MHz), and the maximum is merely 26 clocks (Stateful firewall).
We note that the delay is not related to the throughput, as modules can leverage FPGA’s parallelism
to process multiple packets at the same time. For instance, a BV-based packet classifier incurs a long
delay (i.e., 17 clocks in our design) to find the matched rule with the highest priority. However, this
packet classifier can be completely pipelined, i.e., it can input search key and output matched rule
every clock.

We evaluate the three types of resource utilization for each module, including Slice LUTs,
Slice registers, Block memory, and summarize the result in the last three columns of Table 2.
The utilization is normalized to the capacity of the FPGA chip. We can see that most modules
use only a small amount of logic and register resources. This is reasonable as most operations on
packets are simple. Packet classifiers have moderate usage of logic and register resources because they
have bigger logic, such as shift operation for updating match rules. The block memory usage, however,
heavily relies on configurations of modules. For example, the block memory usage grows linearly
with the number of rules supported in the packet classifier. Overall, our FPGA chip has sufficient
capacity to support multiple simplified NFs by assembling above modules. Thus, a developer can
use the onboard DDR memory to get enough storage space at the expense of introducing additional
access delay.

Since servers in the datacenter are always virtualized to deploy multiple virtual machines,
we encountered a problem that FPGA (i.e., Xilinx Zynq-7000 SoC chip we use) has limited resources
to support tens of thousands of flows (or rules) when we implemented NFs. We find that there are
three methods to support more flows (or rules). First, we can use high-capability FPGAs such as Xilinx
Virtex UltraScale series and Intel Stratix 10 series, which have 20× memory resources than Xilinx
Zynq-7000 SoC chip. However, the maximum flows (or rules) that can be maintained by onboard
SRAM is less than the worst case even if we use the most advanced FPGA chip. Second, we can use
onboard DDR memory (DRAM) to get enough storage space at the expense of introducing additional
access delay. As the total number of supported flows or rules is limited only by the DRAM capacity,
it is sufficient to support O(1M) flows and O(100K) rules with 4 GB DDR memory. Third, similar to
processing of SDN, we can maintain part of the flows on FPGA’s SRAM and send packets that miss the
flow table to CUP for processing. This method uses DDR to storage flows (or rules), which has good
scalability. However, compared to SRAM-based strategy, two DRAM-based methods incur additional
access latency. To maintain a high performance, we can use SRAM as an L1 cache and use DRAM to
store the left flows (or rules). At the same time, we should adopt an efficient replacement strategy to
maintain a high SRAM hit rate to reduce the DRAM access times. In fact, considering scalability and
implementation complexity, we adopt the third approach, i.e., maintaining a part of flows on FPGA’s
SRAM and sending packets that miss the flow table to CUP for processing. In addition, we can also
use a high-capability FPGA to store more flows (or rules) in the next work.

Electronics 2020, 9, 59 17 of 24

We also evaluate the power of four NFs (i.e., firewall, stateful firewall, L4LB, IDS) integrated
project with a 40-rule packet classification. The result shows that the total power is 2.139 w, consisting
of 0.050 w for clocks, 0.089 w for signals, 0.0058 w for logics, 0.018 for BRAM; 0.0055 w for MMCM,
0.154 w for I/O, 1.544 w for PS7 and 0.172 w for Device static. Then, we test the schematic RTL of a
four-NF integrated project. The results show that there are six cells, 262 I/O ports, and 343 Nets in the
entire SoC project.

Furthermore, we evaluate the performance of software modules in two NFs (i.e., L4LB and IDS)
on our platform. As mentioned above, the function of L4LB_CPU module is to dispatch a relatively
idle server for each new connection, and IDS_CPU module is used to inspect packet payload with
pre-configured rules. In the performance test of the L4LB_CPU module, we set the number of servers
available for selection to 10, and configure the maximum number of flows to 1 K. That is, we support a
load balance of 1 K active flows for 10 servers. We configure IDS_CPU module with almost 2 K option
rules commonly used in the Snort.

In this experiment, we connect our platform with an IXIA emulator [51] which can generate
packets with different size. The packets sent by IXIA pass through L4LB_CPU or IDS_CPU module
and then return to IXIA. Consequently, we subtract the timestamps of sending and receiving packets
to get processing delay, and calculate the throughput by counting the number of packets received per
second. To better illustrate the performance of L4LB_CPU module, we also test the performance of L2
forwarding packets by FPGA (FPGA_FWD) and L2 forwarding packets by CPU (CPU_FWD), and use
them as a reference. Moreover, in the scheme of L4LB_CPU_w_Basic_FPGA, the function of allocating
server for new flows is implemented on CPU while the basic processing such as header parsing is
implemented on FPGA.

Figure 10a shows the throughput with different packet sizes. With all sizes, FPGA L2 forwarding
can almost achieve line rates, i.e., 764 Mbps with 64 B packets and 981 Mbps with 1500 B packets.
This is reasonable as two packets have to maintain an Interframe Gap (IFG), and sending smaller
packets wastes more bandwidth. CPU straight forwarding, however, achieves only a maximum of
565 Mbps, and the throughput decreases as packets become smaller. This is because, with a smaller size,
the number of packets needing to be processed increases. While L4LB_CPU_w_Basic_FPGA module
can achieve 37 Mbps with 64 B packets and 499 Mbps with 1500 B packets, IDS_CPU_w_Basic_FPGA
can only achieve 26 Mbps and 113 Mbps when packet sizes are 64 B and 1500 B, respectively. The reason
is that the packet processing of L4LB_CPU module is relatively simple, but IDS_CPU module needs
to perform much more complicated logic such as regular expression matching. In addition, since
IDS_CPU module inspects every byte of a packet, its throughput does not increase significantly as the
packet size increases. Fortunately, since the number of packets that need to be sent to the CPU is small,
such as L4LB only needing to send the first packet of each flow to CPU, using two low-power ARM
cores is enough to handle these exception packets.

Figure 10b shows the latency with different packet sizes. Again, FPGA L2 forwarding yields
low latency smaller than 10 µs, but CPU L2 forwarding incurs a larger latency up to 60 µs. For the
same reason, the latency of L4LB_CPU_w_Basic_FPGA is a little more than CPU L2 forwarding,
but the latency of IDS_CPU_w_Basic_FPGA is large and increases significantly as the packet size
increases. We note that the difference between FPGA and CPU L2 forwarding delay is mainly
caused by DMA, and the difference between CPU L2 forwarding and L4LB_CPU_w_Basic_FPGA or
IDS_CPU_w_Basic_FPGA delay is the overhead for implementing application-related processing.

Electronics 2020, 9, 59 18 of 24

Packet Size (Byte)
 64 128 256 512 1024 1500

T
h
ro

u
g

h
p
u

t
(M

b
p
s
)

0

200

400

600

800

1000

FPGA_FWD

CPU_FWD_w_Basic_FPGA

L4LB_CPU_w_Basic_FPGA

IDS_CPU_w_Basic_FPGA

(a) Throughput of each scheme with
different packet sizes

Packet Size (Byte)

 64 128 256 512 1024 1500

D
e

la
y
 (

u
s
)

0

20

40

60

80

100

120

140

160

(b) Delay of each scheme with
different packet sizes

FPGA_FWD

CPU_FWD_w_Basic_FPGA

L4LB_CPU_w_Basic_FPGA

IDS_CPU_w_Basic_FPGA

Figure 10. Throughput and latency evaluation at different packet sizes in each scheme.

5.3. PMI Evaluation

In this subsection, we compare the resource consumption of three PMI models and evaluate the
performance of our PMI compiler based on hybrid PMI model.

In this experiment, we implement three PMI model, i.e., strawman, centralized, and hybrid.
The PMI tables in all models are implemented using Cuckoo Hashing (with two hash buckets) and
contains 2K entries that match against flow 5-tuples. We fix the number of total flows to 1K and
construct four kinds of module chains outlined in Figure 9. Table 3 shows three kinds of resource
utilization in each PMI model. We can see that all schemes use only a small amount of logic and
register resources and have a moderate usage of block memory to maintain PMI tables and buffer
packet/metadata. The resource utilization of nmid lookup in each scheme is almost equal. However,
strawman needs to maintain a nmid lookup in each module except the parser and the transmitter,
which consume more resources than the centralized and hybrid models. Moreover, as mentioned
above, the centralized model needs to maintain a module chain for each flow, which also uses more
block memory resources than the hybrid one. Therefore, the total block memory used by strawman is
centralized PMI models are 4.15× and 1.20×more than the hybrid one.

Table 3. The resource utilization of three PMI models, i.e., strawman, centralized and hybrid, when
constructing four module chains (outlined in Figure 9) for 1K flows.

PMI Model
Main Modules Resource (%)

Module Name Num Slice LUTs Slice Registers Block Memory

Strawman
nmid comparing 7 0.36% 0.01% 0.68%

nmid lookup 7 0.78% 0.006% 6.43%
total 7.96% 0.11% 45.23%

Centralized
nmid dispatcher 1 1.32% 0.02% 9.64%
nmid comparing 7 0.43% 0.006% 3.21%

total 4.31% 0.06% 13.12%

Hybrid

path dispatcher 1 1.20% 0.01% 7.86%
nmid comparing 7 0.35% 0.006% 0.46%

nmid lookup 7 0.20% 0.01% 0%
total 5.07% 0.08% 10.90%

Electronics 2020, 9, 59 19 of 24

In addition, we evaluate the performance of a PMI compiler on a machine with Intel core i7-8550U
CPUs (1.80 GHz, 8 cores in total), 16 GB of RAM. Figure 11 shows the compiling latency of generating
2–32 module chains combining the four NFs above with the different number of flows. We can see
that the compiling latency grows linearly as the number of flows increase. However, the difference
between constructing 2–32 module chains for the same number of flows is very small. For instance,
the compiling latency of mapping 100 flows to 2 and 32 module chains are 0.681 ms and 0.695 ms,
respectively. This is because most of the time is spent reading module chains described in the script
and generating the corresponding module graph, and the time consumed by generating configuration
rules for path dispatch and path tables is small.

Number of flows

2 8 32 100 1K 10K

C
o
m

p
ili

n
g
 L

a
te

n
c
y
 (

m
s
)

10-2

10-1

100

101

102

0.046
0.090

0.252

0.695

6.089

69.09mapping to 2 module chains

mapping to 4 module chains

mapping to 8 module chains

mapping to 16 module chains

mapping to 32 module chains

Figure 11. Compiling delay with different number of flows in each scheme. We list the maximum
compiling delay in each number of flows.

6. Related Work

Software NFs have perfect flexibility and can implement many complicated packet processing.
Recently, many software systems have been designed to implement various types of NFs [25,29,33,52].
However, software NFs have two fundamental limitations: limited capacity and highly variable
latency. However, most software systems exploit the multi-core parallelism in CPUs to achieve close to
10 Gbps throughput per machine, and scale out to use more machines when higher capacity is needed.
While software NFs can scale out to provide more capacity, doing so adds considerable costs in both
capital expenditure and operating expense [2,8]. Some other optimizations, such as bypassing kernel
protocol stacks (e.g., DPDK [10]) and processing a vector of packets at a time (e.g., VPP [11]), can
greatly increase the throughput of packet processing, but there are still large and fluctuating processing
delays [8].

To accelerate software packet processing, recent work has proposed using GPUs [53], NPs [54],
or FPGAs [2,55–57]. GPU leverages batch operations to improve throughput, but it has a high delay.
For example, the forwarding latency reported in [53] is about 200 us. NP is specialized to handle
network traffic, resulting in portability difficulties. In contrast, FPGAs are more power-efficient and
have a lower delay than GPUs [58,59], and have better reconfigurability than specialized NFs [2].
Therefore, FPGA has be popularly used to accelerate network processing, such as scheduling [60],
software-defined network (SDN) [14,44,55,61,62], NFs [2,8,56], and network applications [63–66].

Recent work presents the idea of developing NFs on FPGA-based SmartNICs to accelerate
specific NFs while maintaining high flexibility [2,8,67]. However, the state-of-the-art SmartNIC
framework, i.e., AccelNet [8], is carefully designed to accelerate specific NFs for datacenter operators,
which require professional hardware design ability. Thus, without rich experience and expertise,
it is still challenging for most tenants to rapidly deploy their NFs on the SmartNICs. Moreover,

Electronics 2020, 9, 59 20 of 24

there is limited work on orchestrating the performing order of NFs (i.e., service chaining), on the same
FPGA/CPU co-processing platform.

There is also some related work presented to reduce the difficulty of developing NFs with
FPGAs [2,14,15]. The core idea of these methods is describing NF in high-level languages (e.g.,
C/C++), and then compiling it to hardware code using High-Level Synthesis (HLS) tools (e.g., Xilinx
Vivado HLS [27] or Altera OpenCL SDK [28]). Existing HLS tools, however, are still difficult to
address data hazards, resulting in low processing performance and high resource consumption [8,15].
Moreover, the current work of developing NFs using high-level languages, e.g., ClickNP [2], EMU [14],
focuses on accelerating individual NF, and lacks the way of deploying multiple NFs on one FPGA
where NFs should share same functionalities while ensuring the data areolation. In addition,
other work presents programmable architecture, such as PISA [18], abstracts packet processing into
multiple Match-Action Tables (MATs) [19], and mapping network processing described in P4 [20]
into these MATs. Currently, PISA focuses on processing packet in hardware, and it does not support
software/hardware co-processing. In DrawerPipe, software module is equivalent to the hardware
module, and both can be designed for data-plane processing. For example, limited by FPGA resources,
we only offload part of the processing of Snort to FPGA for acceleration, including packet parsing,
packet classification used, and left option matches on software. Therefore, a packet may be processed
by hardware and software modules.

DrawerPipe is compatible with two methods using high-level programmable language,
i.e., modules generated by HLS tools or MATs can be loaded in the “Drawer” to construct NFs
with handwritten modules. Currently, although most NFs are still manually written in hardware
description languages (HDL) in the datacenter [8], we may use high performance modules generated
by HLS tools with the optimization of compilers in the future.

7. Conclusions and Future Work

In this paper, we present DrawerPipe, a modular and reconfigurable network processing
pipeline for FPGA-based SmartNICs. DrawerPipe abstracts packet processing into multiple “drawers”
connected using the same interface, and allows users to extend NFs by loading their core processing
logic in the “drawers” while reusing the existing modules. As most NFs carry out similar
processing stages, DrawerPipe also provides five highly reusable modules for basic packet processing.
Furthermore, DrawerPipe adopts a programmable module indexing mechanism, namely PMI,
to connect software and hardware modules for FPGA/CPU co-processing and to construct various
module chains to perform required NFs for different flows. Although we need to redefine Metadata
when change supported protocols (e.g., replacing IPv4 with IPv6), it is easy to extend the width of
Metadata. In DrawerPipe, we only need to redefine the width of Metadata and modify the logic
of extracting fields from Metadata for each module, without redesigning the core application logic.
Moreover, we have designed an IPv6-based DrawerPipe, and implemented a switch supporting
IPv6-based Segment Routing (SRv6) [68], which can be used to construct multiple overlay networks
for different services. Our practice shows that DrawerPipe is flexible as it can rapidly reconfigure
FPGA to construct specific NFs and achieves high performance using well-designed modules.

However, there are also some avenues that suggest improvements in scalability. For example,
current SBV-based packet classification and SRAM-based packet buffer consume a lot of on-chip
memory resource. Our future work will focus on reducing the resource consumption by optimizing or
redesigning packet classification algorithm, such as employing the TSS [39] algorithm to replace the
SBV algorithm. We will also extend the API of DrawerPipe shell for developers to use the onboard
DDR memory to buffer packets or rules with an efficient replacement strategy.

Electronics 2020, 9, 59 21 of 24

Author Contributions: Conceptualization, J.L. and Z.S.; Methodology, J.L. and Z.S.; Hardware and software, J.L.
and J.Y.; Validation, J.L., J.Y., X.Y., and Y.J.; Investigation, X.Y. and W.Q.; Writing—original draft preparation, J.L.;
writing—review and editing, Y.J. and Z.S.; funding acquisition, Z.S. and W.Q. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported in part by grants from the National Natural Science Foundation of China
(No. 61802417 and No. 61702538), and the Scientific Research Program of the National University of Defense
Technology (No. ZK18-03-40 and No. ZK17-03-53).

Acknowledgments: The authors would like to thank the anonymous reviewers for their valuable feedback.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Firestone, D. VFP: A Virtual Switch Platform for Host SDN in the Public Cloud. In Proceedings of the 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), Boston, MA, USA,
27–29 March 2017; pp. 315–328.

2. Li, B.; Tan, K.; Luo, L.L.; Peng, Y.; Luo, R.; Xu, N.; Xiong, Y.; Cheng, P.; Chen, E. Clicknp: Highly flexible
and high performance network processing with reconfigurable hardware. In Proceedings of the 2016 ACM
SIGCOMM Conference, Florianopolis, Brazil, 22–26 August 2016; pp. 1–14.

3. Costa, P.; Migliavacca, M.; Pietzuch, P.; Wolf, A.L. NaaS: Network-as-a-Service in the Cloud. In Proceedings
of the part of the 2nd USENIX Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services, San Jose, CA, USA, 24 April 2012.

4. Benson, T.; Akella, A.; Shaikh, A.; Sahu, S. CloudNaaS: A cloud networking platform for enterprise
applications. In Proceedings of the 2nd ACM Symposium on Cloud Computing, Cascais, Portugal,
26–28 October 2011; p. 8.

5. Varadharajan, V.; Tupakula, U. Security as a service model for cloud environment. IEEE Trans. Netw.
Serv. Manag. 2014, 11, 60–75. [CrossRef]

6. A New Walmart ’Cloud Factory’ Will Accelerate Digital Innovation, Boost Business Efficiency 2018.
Available online: https://news.microsoft.com/transform/new-walmart-cloud-factory-innovation-business-
efficiency/ (accessed on 5 November 2018).

7. Da Silva, L.B.; Almeida, D.; Nacif, J.A.M.; Sánchez-Osorio, I.; Hernández-Martínez, C.A.; Ferreira, R.
Exploring the dynamics of large-scale gene regulatory networks using hardware acceleration on a
heterogeneous CPU-FPGA platform. In Proceedings of the 2017 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), Cancun, Mexico, 4–6 December 2017; pp. 1–7.

8. Firestone, D.; Putnam, A.; Mundkur, S.; Chiou, D.; Dabagh, A.; Andrewartha, M.; Angepat, H.; Bhanu, V.;
Caulfield, A.; Chung, E.; et al. Azure accelerated networking: SmartNICs in the public cloud. In Proceedings
of the 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18), Rention,
WA, USA, 9–11 April 2018; pp. 51–66.

9. Gandhi, R.; Liu, H.H.; Hu, Y.C.; Lu, G.; Padhye, J.; Yuan, L.; Zhang, M. Duet: Cloud scale load balancing
with hardware and software. In Proceedings of the ACM SIGCOMM Symposium, Chicago, IL, USA, 17–22
August 2014; Volume 44, pp. 27–38.

10. Data Plane Development Kit 2019. Available online: https://www.dpdk.org (accessed on 10 December
2019).

11. Barach, D.; Linguaglossa, L.; Marion, D.; Pfister, P.; Pontarelli, S.; Rossi, D. High-speed software data plane
via vectorized packet processing. IEEE Commun. Mag. 2018, 56, 97–103. [CrossRef]

12. Towards Converged SmartNIC Architecture for Bare Metal and Public Clouds at Tencent Scale. In
Proceedings of the Asia-Pacific Workshop on Networking (APNet). Beijing, China, 2–3 August 2018.

13. Unnikrishnan, D.; Lu, J.; Gao, L.; Tessier, R. Reclick-a modular dataplane design framework for fpga-based
network virtualization. In Proceedings of the 2011 ACM/IEEE Seventh Symposium on Architectures for
Networking and Communications Systems, Brooklyn, NY, USA, 3–4 October 2011; pp. 145–155.

14. Sultana, N.; Galea, S.; Greaves, D.; Wójcik, M.; Shipton, J.; Clegg, R.; Mai, L.; Bressana, P.; Soulé, R.;
Mortier, R.; et al. Emu: Rapid prototyping of networking services. In Proceedings of the 2017 USENIX
Annual Technical Conference (USENIX ATC 17), Santa Clara, CA, USA, 12–14 July 2017; pp. 459–471.

http://dx.doi.org/10.1109/TNSM.2014.041614.120394
https://news.microsoft.com/transform/new-walmart-cloud-factory-innovation-business-efficiency/
https://news.microsoft.com/transform/new-walmart-cloud-factory-innovation-business-efficiency/
https://www.dpdk.org
http://dx.doi.org/10.1109/MCOM.2018.1800069

Electronics 2020, 9, 59 22 of 24

15. Rinta-Aho, T.; Karlstedt, M.; Desai, M.P. The click2netfpga toolchain. In Proceedings of the part of the 2012
USENIX Annual Technical Conference (USENIX ATC 12), Boston, MA, USA, 13–15 June 2012; pp. 77–88.

16. Sivaraman, A.; Cheung, A.; Budiu, M.; Kim, C.; Alizadeh, M.; Balakrishnan, H.; Varghese, G.; McKeown, N.;
Licking, S. Packet transactions: High-level programming for line-rate switches. In Proceedings of the 2016
ACM SIGCOMM Conference, Florianopolis, Brazil, 22–26 August 2016; pp. 15–28.

17. Pontarelli, S.; Bifulco, R.; Bonola, M.; Cascone, C.; Spaziani, M.; Bruschi, V.; Sanvito, D.; Siracusano, G.;
Capone, A.; Honda, M.; et al. FlowBlaze: Stateful Packet Processing in Hardware; In Proceedings of the
NSDI, Boston, MA, USA, 26–28 February 2019; pp. 531–548.

18. Wrold’s Fastest P4-Programmable Ethernet Switch ASICs 2019. Available online: https://www.
barefootnetworks\.com/products/brief-tofino (accessed on 10 December 2019).

19. Forwarding Metamorphosis: Fast Programmable Match-Action Processing in Hardware for SDN 2019.
Available online: https://www.barefootnetworks.com/products/brief-tofino/ (accessed on 10 December
2019).

20. Bosshart, P.; Daly, D.; Gibb, G.; Izzard, M.; McKeown, N.; Rexford, J.; Schlesinger, C.; Talayco, D.; Vahdat, A.;
Varghese, G.; et al. P4: Programming protocol-independent packet processors. ACM SIGCOMM Comput.
Commun. Rev. 2014, 44, 87–95. [CrossRef]

21. The Snort Project 2019. Available online: https://www.snort.org (accessed on 10 December 2019).
22. Virtex 7 Series FPGA White Paper 2019. Available online: https://www.xilinx.com/products/silicon-

devices/fpga/virtex-7.html (accessed on 10 December 2019).
23. Intel Stratix 10 FPGAs 2019. Available online: https://www.intel.cn/content/www/cn/zh/products/

\programmable/soc/stratix-10.html (accessed on 10 December 2019).
24. Bremler-Barr, A.; Harchol, Y.; Hay, D. OpenBox: A software-defined framework for developing, deploying,

and managing network functions. In Proceedings of the 2016 ACM SIGCOMM Conference, Florianopolis,
Brazil, 22–26 August 2016; pp. 511–524.

25. Sun, C.; Bi, J.; Zheng, Z.; Yu, H.; Hu, H. Nfp: Enabling network function parallelism in nfv. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication, Los Angeles, CA, USA,
21–25 August 2017; pp. 43–56.

26. “Service Function Chaining (sfc) Architecture” in RFC 7665. 2015. Available online: https://datatracker.ietf.
org/doc/rfc7665 (accessed on 10 November 2015).

27. Vivado Design Suit 2019. Available online: https://www.xilinx.com/products/design-tools/vivado.html
(accessed on 10 December 2019).

28. FPGA Development Tools 2019. Available online: https://www.intel.com/content/www/us/en/software/
\programmable/quartus-prime/overview.html (accessed on 10 December 2019).

29. Sekar, V.; Egi, N.; Ratnasamy, S.; Reiter, M.K.; Shi, G. Design and implementation of a consolidated
middlebox architecture. In Proceedings of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 12), San Jose, CA, USA, 25–27 April 2012; pp. 323–336.

30. Patel, P.; Bansal, D.; Yuan, L.; Murthy, A.; Greenberg, A.; Maltz, D.A.; Kern, R.; Kumar, H.; Zikos, M.; Wu, H.;
et al. Ananta: Cloud scale load balancing. In Proceedings of the ACM SIGCOMM Symposium, Hong Kong,
China, 12–16 August 2013; Volume 43, pp. 207–218.

31. Neugebauer, R.; Antichi, G.; Zazo, J.F.; Audzevich, Y.; López-Buedo, S.; Moore, A.W. Understanding PCIe
performance for end host networking. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, Budapest, Hungary, 20–25 August 2018; pp. 327–341.

32. Panda, A.; Han, S.; Jang, K.; Walls, M.; Ratnasamy, S.; Shenker, S. NetBricks: Taking the V out of NFV.
In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),
Savannah, GA, USA, 2–4 November 2016; pp. 203–216.

33. Jamshed, M.A.; Moon, Y.; Kim, D.; Han, D.; Park, K. mos: A reusable networking stack for flow monitoring
middleboxes. In Proceedings of the 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), Boston, MA, USA, 27–29 March 2017; pp. 113–129.

34. Ganegedara, T.; Jiang, W.; Prasanna, V.K. A scalable and modular architecture for high-performance packet
classification. IEEE Trans. Parallel Distrib. Syst. 2013, 25, 1135–1144. [CrossRef]

35. Taylor, D.E. Survey and taxonomy of packet classification techniques. ACM Comput. Surv. (CSUR) 2005,
37, 238–275. [CrossRef]

https://www.barefootnetworks\.com/products/brief-tofino
https://www.barefootnetworks\.com/products/brief-tofino
https://www.barefootnetworks.com/products/brief-tofino/
http://dx.doi.org/10.1145/2656877.2656890
https://www.snort.org
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html
https://www.intel.cn/content/www/cn/zh/products/\programmable/soc/stratix-10.html
https://www.intel.cn/content/www/cn/zh/products/\programmable/soc/stratix-10.html
https://datatracker.ietf.org/doc/rfc7665
https://datatracker.ietf.org/doc/rfc7665
https://www.xilinx.com/products/design-tools/vivado.html
https://www.intel.com/content/www/us/en/software/\programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/\programmable/quartus-prime/overview.html
http://dx.doi.org/10.1109/TPDS.2013.261
http://dx.doi.org/10.1145/1108956.1108958

Electronics 2020, 9, 59 23 of 24

36. Gupta, P.; McKeown, N. Packet classification using hierarchical intelligent cuttings. In Proceedings of Hot
Interconnects VII, Stanford, CA, USA, 18–20 August 1999; Volume 40.

37. Singh, S.; Baboescu, F.; Varghese, G.; Wang, J. Packet classification using multidimensional cutting.
In Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, Karlsruhe, Germany, 25–29 August 2003; pp. 213–224.

38. Gupta, P.; McKeown, N. Packet classification on multiple fields. ACM SIGCOMM Comput. Commun. Rev.
1999, 29, 147–160. [CrossRef]

39. Srinivasan, V.; Suri, S.; Varghese, G. Packet classification using tuple space search. In Proceedings of ACM
SIGCOMM Symposium, Cambridge, MA, USA, 30 August–3 September 1999; pp. 135–146.

40. Tang, P.P.; Tai, T.Y. Network traffic characterization using token bucket model. In Proceedings of the
Conference on Computer Communications, Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies, The Future Is Now (Cat. No. 99CH36320) (IEEE INFOCOM’99), New York, NY,
USA, 21–25 March 1999; pp. 51–62.

41. Demers, A.; Keshav, S.; Shenker, S. Analysis and simulation of a fair queueing algorithm. In Proceedings of
ACM SIGCOMM Symposium, Austin, Texas, USA, 19–22 September 1989; pp. 1–12.

42. Fu, W.; Li, T.; Yang, J.; Li, J.; Sun, Z. STRIDE: Single-Trip-Time Based Reliable Data Transport Protocol
for the Reconfigurable Cloud. In Proceedings of the ICC 2019–2019 IEEE International Conference on
Communications (ICC), Shanghai, China, 20–24 May 2019; pp. 1–7.

43. Mao, J.; Han, B.; Sun, Z.; Lu, X.; Zhang, Z. Efficient mismatched packet buffer management with packet
order-preserving for OpenFlow networks. Comput. Netw. 2016, 110, 91–103. [CrossRef]

44. Yang, X.; Sun, Z.; Li, J.; Yan, J.; Li, T.; Quan, W.; Xu, D.; Antichi, G. FAST: Enabling fast software/hardware
prototype for network experimentation. In Proceedings of the International Symposium on Quality of
Service, Phoenix, Arizona, 24–25 June 2019; p. 32.

45. Hardware/Software Co-Processing Platforms Designed by FAST Group 2019. Available online: www.
fastswitch.org/platform/ (accessed on 10 December 2019).

46. Zynq-7000 soc 2019. Available online: https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.
html (accessed on 10 December 2019).

47. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J.
OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Comput. Commun. Rev. 2008,
38, 69–74. [CrossRef]

48. Zhu, S.; Bi, J.; Sun, C.; Wu, C.; Hu, H. Sdpa: Enhancing stateful forwarding for software-defined networking.
In Proceedings of the 2015 IEEE 23rd International Conference on Network Protocols (ICNP), San Francisco,
CA, USA, 10–13 November 2015; pp. 323–333.

49. Xu, C.; Niu, D.; Muralimanohar, N.; Balasubramonian, R.; Zhang, T.; Yu, S.; Xie, Y. Overcoming the challenges
of crossbar resistive memory architectures. In Proceedings of the 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), Burlingame, CA, USA, 7–11 February 2015; pp. 476–488.

50. Catania, V.; Mineo, A.; Monteleone, S.; Palesi, M.; Patti, D. Cycle-accurate network on chip simulation with
noxim. ACM Trans. Model. Comput. Simul. (TOMACS) 2016, 27, 4. [CrossRef]

51. ixia emulator 2019. Available online: https://www.ixiacom.com/products/network-emulator-ii
(accessed on 10 December 2019).

52. Martins, J.; Ahmed, M.; Raiciu, C.; Olteanu, V.; Honda, M.; Bifulco, R.; Huici, F. ClickOS and the art of
network function virtualization. In Proceedings of the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14), Seattle, WA, USA, 2–4 April 2014; pp. 459–473.

53. Han, S.; Jang, K.; Park, K.; Moon, S. PacketShader: A GPU-accelerated software router. ACM SIGCOMM
Comput. Commun. Rev. 2011, 41, 195–206.

54. Song, H. Protocol-oblivious forwarding: Unleash the power of SDN through a future-proof forwarding plane.
In Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking,
Hong Kong, China, 12–16 August 2013; pp. 127–132.

55. Naous, J.; Gibb, G.; Bolouki, S.; McKeown, N. NetFPGA: Reusable router architecture for experimental
research. In Proceedings of the ACM Workshop on Programmable Routers for Extensible Services of
Tomorrow, Seattle, WA, USA, 22 August 2008; pp. 1–7.

http://dx.doi.org/10.1145/316194.316217
http://dx.doi.org/10.1016/j.comnet.2016.09.016
www.fastswitch.org/platform/
www.fastswitch.org/platform/
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1145/2953878
https://www.ixiacom.com/products/network-emulator-ii

Electronics 2020, 9, 59 24 of 24

56. Rubow, E.; McGeer, R.; Mogul, J.; Vahdat, A. Chimpp: A click-based programming and simulation
environment for reconfigurable networking hardware. In Proceedings of the 6th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems, San Diego, CA, USA, 25–26 October 2010;
p. 36.

57. Kachris, C.; Sirakoulis, G.; Soudris, D. Network Function Virtualization based on FPGAs: A Framework for
all-Programmable network devices. arXiv 2014, arXiv:1406.0309.

58. Betkaoui, B.; Thomas, D.B.; Luk, W. Comparing performance and energy efficiency of FPGAs and GPUs for
high productivity computing. In Proceedings of the 2010 International Conference on Field-Programmable
Technology, Beijing, China, 8–10 December 2010; pp. 94–101.

59. Kestur, S.; Davis, J.D.; Williams, O. Blas comparison on fpga, cpu and gpu. In Proceedings of the 2010 IEEE
Computer Society Annual Symposium on VLSI, Lixouri, Kefalonia, Greece, 5–7 July 2010; pp. 288–293.

60. Shrivastav, V. Fast, scalable, and programmable packet scheduler in hardware. In Proceedings of the ACM
Special Interest Group on Data Communication, Beijing, China, 19–23 August 2019; pp. 367–379.

61. Jiang, Y.; Chen, H.; Yang, X.; Sun, Z.; Quan, W. Design and Implementation of CPU & FPGA Co-Design
Tester for SDN Switches. Electronics 2019, 8, 950.

62. Ibanez, S.; Brebner, G.; McKeown, N.; Zilberman, N. The P4-> NetFPGA Workflow for Line-Rate Packet
Processing. In Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, Seaside, CA, USA, 24–26 February 2019; pp. 1–9.

63. Shu, R.; Cheng, P.; Chen, G.; Guo, Z.; Qu, L.; Xiong, Y.; Chiou, D.; Moscibroda, T. Direct Universal Access:
Making Data Center Resources Available to FPGA. In Proceedings of the NSDI, Boston, MA, USA, 26–28
February 2019; pp. 127–140.

64. De Matteis, T.; de Fine Licht, J.; Beránek, J.; Hoefler, T. Streaming Message Interface: High-performance
distributed memory programming on reconfigurable hardware. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA,
17–19 November 2019; p. 82.

65. Eran, H.; Zeno, L.; Tork, M.; Malka, G.; Silberstein, M. NICA: An Infrastructure for Inline Acceleration of
Network Applications. In Proceedings of the 2019 USENIX Annual Technical Conference (USENIX ATC 19),
San Diego, CA, USA, 10–12 July 2019; pp. 345–362.

66. Phothilimthana, P.M.; Liu, M.; Kaufmann, A.; Peter, S.; Bodik, R.; Anderson, T. Floem: A programming
system for NIC-accelerated network applications. In Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), Carlsbad, CA, USA, 8–10 October 2018;
pp. 663–679.

67. Nobach, L.; Hausheer, D. Open, elastic provisioning of hardware acceleration in nfv environments.
In Proceedings of the 2015 International Conference and Workshops on Networked Systems (NetSys),
Cottbus, Germany, 9–12 March 2015; pp. 1–5.

68. Filsfils, C.; Nainar, N.K.; Pignataro, C.; Cardona, J.C.; Francois, P. The segment routing architecture.
In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA,
6–10 December 2015; pp. 1–6.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Requirements and Approach
	Design of DrawerPipe and DrawerPipe Shell
	DrawerPipe Model
	DrawerPipe Shell

	Design of PMI
	Strawman Design of PMI
	Optimizations of PMI
	Centralized PMI Model
	Hybrid PMI Model

	PMI Compiler Design

	Evaluation
	Applications
	Performance and Resource Utilization
	PMI Evaluation

	Related Work
	Conclusions and Future Work
	References

