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Abstract: In recent years, the concept of the Internet of Things has been introduced. Information,
communication, and network technology can be integrated, so that the unmanned aerial vehicle
(UAV) from consumer leisure and entertainment toys can be utilized in high value commercial,
agricultural, and defense field applications, and become a killer product. In this paper, a traceable
and privacy-preserving authentication is proposed to integrate the elliptic curve cryptography (ECC),
digital signature, hash function, and other cryptography mechanisms for UAV application. For
sensitive areas, players must obtain flight approval from the ground control station before they can
control the UAV in these areas. The traditional cryptography services such as integrity, confidentiality,
anonymity, availability, privacy, non-repudiation, defense against DoS (Denial-of-Service) attack, and
spoofing attack can be ensured. The feasibility of mutual authentication was proved by BAN logic. In
addition, the computation cost and the communication cost of the proposed scheme were analyzed.
The proposed scheme provides a novel application field.

Keywords: UAV; Mutual authentication; Privacy; Traceable; BAN logic

1. Introduction

With the development of battery power, sensing systems, artificial intelligence and other
technologies, small commercial unmanned aerial vehicles (UAVs) combining these technologies
have, in recent years, become a very popular product. Small UAVs have tremendous potential in
different fields and tasks, and have great flexibility in application. In addition to personal aerial
photography, entertainment, and commercial markets, they can be used in various monitoring
work such as disaster relief [1], in various environments involving animals and plants, coasts and
borders [2,3], in freight transportation, military and police law enforcement tasks, and even agricultural
and industrial applications [4–8]. Nader et al. [9] pointed out that UAVs could be employed in different
ways to achieve smart city services. For example, using UAVs for traffic monitoring and management,
merchandise delivery, health and emergency services, and air taxi services can enhance these services
in terms of quality, productivity, timeliness, reliability, and performance and could help reduce the
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costs of offering these services. However, small UAVs also can pose a variety of security threats under
improper use.

Although every case of an unmanned aerial vehicle being improperly used has complex security
implications, it is difficult to sum this up as a single security threat; for example, in the protection of
important persons, unmanned aerial vehicles may violate their privacy, launch attacks, threaten their
lives, or destroy their facilities. Different threats in several different cases are examined below.

(1) Personal safety of specific persons and military and police officers: The small UAVs used by the
fighters of the Organization of Islamic States could, for example, be used to attack enemy soldiers
on the battlefield in the Middle East. This situation can be described as the future personal
safety protection work for important persons and law enforcement officers. It is necessary to take
precautions against small UAVs.

(2) Protection of key infrastructure: In July 2018, Greenpeace posted a video on the Internet showing
the small UAVs operated by members of Greenpeace, painted superhuman, hitting a spent fuel
facility near Lyon, France. This incident still reminds us of the importance of UAV protection for
key infrastructure or the environment (for example, forest fire detection).

(3) Flight safety: In late December 2018 and early January 2019, London’s Gatwick and Heathrow
airports were disrupted by UAVs, causing chaos in takeoff, landing, and scheduling. The
former even closed for 33 h and cancelled hundreds of flights, causing losses of more than
50 million pounds.

(4) Privacy and confidentiality protection: UAVs can be used to steal important confidential
information, such as in Northern Ireland in August 2016, when UAVs were used to take pictures
of people entering passwords in ATMs. Small UAVs can even be used as hackers’ tools to further
steal business secrets. According to the reports of The Times on 21 January 2019, in recent
years, secrets have been stolen by eavesdropping, or even masquerading as wireless network
connections to obtain employee passwords, etc. More and more companies are seeking anti-UAV
technology to ensure against commercial benefits by stealing secrets by disguising wireless
network connections to obtain employee passwords and other information.

(5) Other criminal behaviors: In addition to the use of military and police personnel to monitor
and assist in law enforcement, small UAVs may also operate in the hands of criminals. The
surveillance functions provided by UAVs also enable criminal groups to detect and monitor their
targets before committing crimes.

(6) Security loopholes become a hidden concern: In addition to the improper use by the users
themselves, UAVs may also be attacked by intentional hackers. By means of security loopholes
including GPS and control signals, wireless networks and so on, “hijacking” may take control
of a UAV. Vulnerabilities in the UAV manufacturer’s security may also become another type
of drone-derived security problem. A well-known software technology website Check Point
reported in November 2018 that the world’s largest manufacturer, China’s Dajiang, has a security
vulnerability in its identity authentication process. If it is attacked by a hacker, it may leak the
location of the operator and the captured image, etc. Even the possibility of intercepting the
carried goods also highlights the security problems of drones.

To sum up, in spite of UAVs being widely used in civilian, commercial, and military applications
in recent years, because they use wireless networks for information exchange, there are many security
issues that are faced.

Firstly, “privacy” refers to the part of an individual that he does not want to be known by others,
and that he has the right to protect. In English, “to be let alone” means to “not be disturbed by others”,
which is the basic spirit of privacy. Privacy also means “secret”. In general, what we call privacy
refers to information privacy. Privacy and freedom are related to individual behavior rather than
inappropriate observation and interference by others. The interests of privacy include sexual activities,
religious practices, and political activities. What is the importance of privacy? Privacy is about human
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dignity, personal subjectivity, and personality development. If some of a person’s own information is
exposed, he will feel uncomfortable, embarrassed, or harassed by others, and it will be difficult to live
comfortably. Compared with personal privacy, sensitive information of the state or government has a
greater impact.

Secondly, the malicious attacker can perform passive eavesdropping, active interfering, leaking
of secret information, data tampering, denial of service, message misuse, message replay, and
impersonation attack between sender and receiver. This will cause the resource collapse attack,
and even disturb the operations of routing protocol for UAVs [10]. UAVs are conducted in flying
ad hoc networks (FANETs) which should provide defense against various known attacks under
wireless environment.

Thirdly, because of the specific properties of FANET (wireless links, collaborative characteristics,
uncontrollable environment, and lack of a fixed infrastructure) securing the network is difficult. The
traditional security issues are availability, authentication, integrity, and confidentiality, which have
become targets that the attacker wants to break. [11]. Legitimate UAVs suffer from malicious UAVs by
implanting the incorrect information into their sensors. Therefore, it causes these compromised UAVs
to transmit the wrong messages for the base station, and thereby endangering the data integrity [10].

In order to legalize and guarantee the privacy of the broadcasted messages, much literature
is focused on this issues. For example, Strohmeier et al. [12] surveyed an automatic dependent
surveillance-broadcast protocol (ADS-B), and that is an on-board component part of the UAV system,
and discussed and listed the vulnerabilities in ADS-B protocol. Wesson et al. [13] further analyzed and
evaluated the cryptographic strategies of ADS-B based on their effectiveness and practicality in the
cost-averse, technologically-complex, and interoperability-focused aviation community. The purpose
of these works was to find a suitable mechanism to ensure the security of the UAVs system for sensitive
control areas.

In past literature, some articles [10,14–16] refer to malicious attacks on UAV applications, such as
intrusion detection, enhancing security against the lethal cyber-attacks for UAV networks. Therefore, a
Q-learning-based UAV power allocation strategy combining Q-learning and deep learning to accelerate
the learning speed for attack modes was proposed by Xiao et al. [17]. García-Magariño et al. [16] used
a secure asymmetric encryption with a pre-shared list of official UAVs and an agent-based approach to
detect if an official UAV is physically hijacked. However, these articles only focus on the intrusion
detection or the problem of UAVs being physical hijacked. It is a fact that to prevent all intrusions from
being attacked by hackers, the fundamental solution is to propose an effective and comprehensive
security protocol. Such a secure mechanism should comprehensively detect and provide information
and identity authentication to achieve the purposes of availability, privacy, and non-repudiation and to
defend against known attacks for the UAV’s environment.

Recently, some literature [18–21] has used specific cryptographic algorithms to implement security
mechanisms in UAVs. In 2017, Yoon et al. [18] used the Raspberry Pi to present a design of a second
channel security system that can regain control of a UAV when there is an attack on the UAV. In this
scheme, the authors only used flow charts to describe the scenario. The authors claimed that they can
provide authentication with the ground station and defense against the DoS attack. However, this
scheme does not present the detail cryptography scenario and no performance analysis.

Later, Chen et al. [19] proposed a mutual authentication improvement in security. In order to
achieve higher efficiency and reduce the computational cost, thus the proposed scheme conformed
to the network-connected UAV communication systems, and that satisfied the requirements of the
limited bandwidth and computation resources. However, the authors used the asymmetric bilinear
pairings mechanism and the cost of this was high and it was not supported by formal proof. Wazid
et al. [20] also presented a lightweight remote user authentication and key agreement scheme to solve
security issues between the user and the accessed drone in Internet of Drones (IoD) applications.

Recently, Tian et al. [21] proposed an efficient privacy-preserving authentication framework for
the edge-assisted Internet of Drones. They followed a predictive UAV authentication approach. The
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authors considered that location, identity, and flying routes of each legitimate UAV are sensitive
information in the IoD network. Therefore, they proposed a secure authentication and privacy
protection for an efficient MEC-assisted (mobile edge computing) framework. But this scheme did not
consider mutual authentication for ensuring the communication entity.

In fact, due to the UAV’s characteristics, it is hard to prevent a privacy leak. Therefore, this study
aims to focus on sensitive areas (for example: airports and military areas) to set up this management
system and use ECC (elliptic curve cryptography) technology [22,23] to ensure data integrity and
nonrepudiation. It is a fact that any intruders can break through the defense function of the system
if the security mechanism of the system is not perfect and the user’s identity is not authenticated
accurately. This study also intends to employ the proof mode of BAN logic mechanism for mutual
authentication to eliminate the intrusive chances of malicious attackers.

The paper is organized as follows. The applied mechanisms and security mechanisms are
reviewed and discussed in Section 2. The designs and flows of the proposed scheme are presented
in Section 3. Security analyses and comparisons are discussed in Section 4. Finally, in Section 5,
conclusions are offered.

2. Preliminary and Security Requirements

This section includes two subsections: (1) the elliptic curve cryptography and Diffie–Hellman key
exchange are presented in Section 2.1 and (2) security requirements are defined in Section 2.2.

2.1. Elliptic Curve Cryptography and Diffie–Hellman Key Exchange

Elliptic curve cryptography [22,23] was proposed in 1995. Digital signature schemes can be
used to provide the following basic cryptographic services: data integrity, data origin authentication,
and non-repudiation.

The Diffie–Hellman key exchange [24] is a method for securely exchanging cryptographic keys
over a public channel. It is one of the earliest practical examples of public key exchange implemented
within the field of cryptography. The Diffie–Hellman key exchange method allows two parties that
have no prior knowledge of each other to jointly establish a shared secret key over an insecure channel.
This key can then be used to encrypt subsequent communications by using a symmetric key cipher.

The following problems exist for the Elliptic Curve Diffie-Hellman method:

Computational Diffie–Hellman (CDH) Problem: Given aP and bP, where a, b ∈ R, Z ∗ q, and P are the
generator of G, compute abP.
Decisional Diffie–Hellman (DDH) Problem: Given aP, bP, and cP, where a, b, c ∈ R, Z ∗ q, and P are
the generators of G, confirm whether or not cP = abP, which is equal to confirming whether or not
c = abmodq.

2.2. Security Requirements

A UAV communication control system has the following main security requirements and known
attacks [11,13–15,19,20,25]:

• Mutual authentication: this ensures that only legitimate parties are allowed to participate in the
UAV network. There are two types of authentication services: node authentication and message
authentication [11,19,20,25]. In order to ensure the communication security. The communication
entity should perform mutual authentication before communication. As long as the mutual
authentication is implemented, some known attacks can be excluded.

• Integrity: preventing the altering GPS coordinates or disseminating of false information [25], thus
ensuring the consistent and uncompromising adherence of data message over their whole passage
through the flying networks [11,19,20]

• Confidentiality: Only the authorized UAVs are allowed to access the data packets [11,13,19,20,25].
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• Identity anonymity: The UAV communication control system should keep identity anonymity
from the attacker to ensure the users real identity is not obtained from eavesdropped or captured
messages [11].

• Availability: The UAV communication control system should be always available to provide all
services in any time and in any conditions [11,25].

• Privacy: By tracking the messages sent out by the same UAV at different locations, adversaries
can disclosure the UAVs’ identities and perform further analysis to get other information from the
UAVs [11,18,20].

• Non-repudiation: Repudiation threat comes from the UAVs denying their behaviors in the IoD.
For example, malicious UAVs abuse their valid identities to broadcast fake information in the
IoD [18,20,25].

• DoS attack: DoS attack means that a malicious node attempts to exhaust energy resources of UAVs
or disturb the network and routing protocol [15,20,25].

• Spoofing attack: The attacker could generate a spoofed message such that the receiver gets the
incorrect message [15,25].

3. The Proposed Scheme

This section includes nine subsections: (1) system architecture is designed and described in
Section 3.1, (2) the used notations in this study are defined in Section 3.2, (3) the manufacturer
(UAV) registration phase of the proposed scheme is illustrated in Section 3.3, (4) the player (mobile
device) registration phase of the proposed scheme is presented in Section 3.4, (5) the ground control
station registration phase of the proposed scheme is described in Section 3.5, (6) the player and
manufacturer authentication and communication phase of the proposed scheme is shown in Section 3.6,
(7) the player and ground control station authentication and communication phase of the proposed
scheme is designed in Section 3.7, (8) the player, UAV, and ground control station authentication and
communication phase of the proposed scheme is discussed in Section 3.8, and (9) the ground control
station and UAV authentication and communication phase of the proposed scheme is illustrated in
Section 3.9.

3.1. System Architecture

Figure 1 is the system framework of the proposed scheme in this study.
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There are four parties in the scheme:

(1) Trusted authority center: a trusted third party agency which provides a public key and private
key to the registrant.

(2) Manufacturer (UAV): a UAV manufacturing company. The company has jurisdiction over all
manufactured UAVs.

(3) Player (mobile device): a person who intends to control a UAV. He/she must first buy or rent a
UAV from the manufacturer, then obtain the flight permit before he/she can control the UAV.

(4) Ground control station (GCS): a control center that provides the facilities for human control of the
UAV. A GCS reviews the flight path proposed by the player, and decides whether to agree to the
flight request.

1. All UAVs manufactured, all mobile devices carried by players, and all ground control stations
must be registered to the trusted authority center through a secure channel. The manufacturer
(UAV), player (with mobile device), and ground control station sends their universally unique
IDs to the trusted authority center. The trusted authority center returns parameters calculated by
elliptic curve group technology.

2. When a player wants to control UAVs, the player carries his/her mobile device to buy or rent a UAV
from the manufacturer. After mutual authentication between the player and the manufacturer,
the manufacturer will transfer the purchase or rental certificate of the UAV to the player, and
store the certificate to the UAV.

3. After the player has the right to use the UAV, then he/she must submit flight information and a
purpose to the ground control station for review. After mutual authentication between the player
and the ground control station, the ground control station will transfer the decision of the flight
plan to the player, and keep the relevant flight information.

4. The player transfers the purchase or rental certificate of the UAV, and the flight path agreed by
the ground control station to the UAV. After mutual authentication between the player and the
UAV and mutual authentication between the UAV and the ground control station, the ground
control station will confirm the legality of the UAV flight path. Once the legality of the relevant
identity and flight path have been confirmed, the player can control the UAV through his/her
mobile device.

3.2. Notations

q: A k-bit prime
Fq: A prime finite field
E/Fq: An elliptic curve E over Fq

G: A cyclic additive group of composite order q
P: A generator for the group G
s: A secret key of the trusted authority center
PKTAC: A public key of the trusted authority center, PKTAC = sP
Hi( ): ith one-way hash function
IDx: x’s identity, like a universal unique ID code
rx, a, b, c, d, e, f : A random numbers of elliptic curve group
Sx: x’s elliptic curve group signature
SEKxy: A session key established by x and y
Ex(m): Use a session key x to encrypt the message m
Dx(m): Use a session key x to decrypt the message m
Sigxy: The signed message for parties x and y
SKx/PKx: x’s private key SKx/x’s public key PKx

SSKx (m): Use x’s private key SKx to sign the message m
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VPKx (m): Use x’s public key PKx to verify the message m
CHKx: x’s verified message

A ?
= B: Determines if A is equal to B

Mpayment: The payment message between the player and the manufacturer (UAV)
Mrequest: The flight plan proposed by the player
Mcon f irm: The flight permission issued by ground control station to UAV
MGPS: The GPS message reported by the UAV
ci: The session key encrypted sensitive information
CertUAV : The purchase or rental certificate of the UAV held by the player

3.3. Manufacturer (UAV) Registration Phase

The manufacturer must take the UAV to register with the trusted authority center. The
manufacturer (UAV) registration phase of the proposed scheme is shown in Figure 2.

Step 1: The manufacturer selects an identity IDUAV , and transmits it to the trusted authority center.
Step 2: The trusted authority center selects a random number rUAV, calculates

RUAV = rUAVP,
hUAV = H1(IDUAV, RUAV),

SUAV = rUAV + hUAVs,

and then sends (RUAV, SUAV, PKUAV, SKUAV) to the manufacturer.
Step 3: The manufacturer verifies

SUAVP ?
= RUAV + H1(IDUAV, RUAV)PKTAC.

If the verification is passed, the manufacturer stores (RUAV, SUAV, PKUAV, SKUAV) to the UAV.
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3.4. Player (Mobile Device) Registration Phase

The player must take the mobile device to register with the trusted authority center. The scenarios
of player (mobile device) registration phase is shown in Figure 3.

Step 1: The player selects an identity IDPMD, and transmits it to the trusted authority center.
Step 2: The trusted authority center selects a random number rPMD, calculates

RPMD = rPMDP,
hPMD = H1(IDPMD, RPMD),

SPMD = rPMD + hPMDs,
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and then sends (RPMD, SPMD, PKPMD, SKPMD) to the player.
Step 3: The player verifies

SPMDP ?
= RPMD + H1(IDPMD, RPMD)PKTAC.

If the verification is passed, the player stores (RPMD, SPMD, PKPMD, SKPMD) to the mobile device.

Electronics 2020, 9, 62 8 of 30 

 

UAV UAV UAVS r h s= + , 
and then sends ( , , , )UAV UAV UAV UAVR S PK SK  to the manufacturer. 

Step 3: The manufacturer verifies 
?

1( , )UAV UAV UAV UAV TACS P R H ID R PK= + . 

If the verification is passed, the manufacturer stores ( , , , )UAV UAV UAV UAVR S PK SK  to the UAV. 

3.4. Player (Mobile Device) Registration Phase 

The player must take the mobile device to register with the trusted authority center. The 
scenarios of player (mobile device) registration phase is shown in Figure 3. 

 
Figure 3. Player (mobile device) registration phase of the proposed scheme. 

Step 1: The player selects an identity PMDID , and transmits it to the trusted authority center. 

Step 2: The trusted authority center selects a random number PMDr , calculates 

PMD PMDR r P= , 

1( , )PMD PMD PMDh H ID R= , 

PMD PMD PMDS r h s= + , 
and then sends ( , , , )PMD PMD PMD PMDR S PK SK  to the player. 

Step 3: The player verifies 
?

1( , )PMD PMD PMD PMD TACS P R H ID R PK= + . 

If the verification is passed, the player stores ( , , , )PMD PMD PMD PMDR S PK SK  to the mobile device. 

3.5. Ground Control Station Registration Phase 

The ground control station must also register with the trusted authority center. The ground 
control station registration phase of the proposed scheme is shown in Figure 4. 

Trusted authority center Player (mobile device) 
Choose PMDID

PMDID

( , , , )PMD PMD PMD PMDR S PK SK
?

1( , )PMD PMD PMD PMD TACS P R H ID R PK= +

Stores  ( , , , )PMD PMD PMD PMDR S PK SK

1

Choose  a random number 

( , )

PMD

PMD PMD

PMD PMD PMD

PMD PMD PMD

r
R r P
h H ID R
S r h s

=
=
= +

Figure 3. Player (mobile device) registration phase of the proposed scheme.

3.5. Ground Control Station Registration Phase

The ground control station must also register with the trusted authority center. The ground
control station registration phase of the proposed scheme is shown in Figure 4.

Step 1: The ground control station selects an identity IDGCS, and transmits it to the trusted
authority center.

Step 2: The trusted authority center selects a random number rGCS, calculates

RGCS = rGCSP,
hGCS = H1(IDGCS, RGCS),

SGCS = rGCS + hGCSs,

and then sends (RGCS, SGCS, PKGCS, SKGCS) to the ground control station.
Step 3: The ground control station verifies

SGCSP ?
= RGCS + H1(IDGCS, RGCS)PKTAC.

If the verification is passed, the ground control station stores (RGCS, SGCS, PKGCS, SKGCS).
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Figure 4. Ground control station registration phase of the proposed scheme.

3.6. Player and Manufacturer Authentication and Communication Phase

When a player wants to control UAVs, the player carries his/her mobile device to buy or rent a
UAV from the manufacturer. After mutual authentication between the player and the manufacturer,
the manufacturer will transfer the purchase or rental certificate of the UAV to the player, and store
the certificate of the UAV. The player and manufacturer authentication and communication phase is
shown in Figure 5.

Step 1: The player selects a random number a, computes

TPMD = aP,

and then transmits (IDPMD, RPMD, TPMD) to the manufacturer.
Step 2: The manufacturer selects a random number b, calculates

TUAV = bP,
PKPMD = RPMD + H1(IDPMD, RPMD)PKTAC,

KUP1 = SUAVTPMD + bPKPMD,
KUP2 = bTPMD,

and the session key
SEKUP = H2(KUP1, KUP2).

The manufacturer then calculates

CHKPU = H3(SEKUP, TPMD)

and transmits (IDUAV, RUAV, TUAV, CHKPU) to the player.
Step 3: The player calculates

PKUAV = RUAV + H1(IDUAV, RUAV)PKTAC,
KPU1 = SPMDTUAV + aPKUAV,

KPU2 = aTUAV,

and the session key
SEKUP = H2(KPU1, KPU2),
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The player verifies

CHKPU
?
= H3(SEKUP, TPMD)

to check the legality of the manufacturer. If the verification is passed, the player computes

cPMD = ESEKUP(Mpayment),
CHKUP = H3(SEKUP, TUAV),

and transmits (IDPMD, cPMD, CHKUP) to the manufacturer.
Step 4: The manufacturer verifies

CHKUP
?
= H3(SEKUP, TUAV)

to check the legality of the player. If the verification is passed, the session key SEKUP between the
player and the manufacturer is established successfully. The manufacturer calculates

Mpayment = DSEKUP(cPMD)

to get the payment information of the player. After the payment, the manufacturer generates the
encrypted purchase or rental certificate of the UAV

cUAV = ESEKUP(Mpayment, CertUAV),
SigUAV = SSKUAV (Mpayment, CertUAV),

and transmits (IDUAV, cUAV, SigUAV) to the player.
Step 5: The player decrypts the received message

(Mpayment, CertUAV) = DSEKUP(cUAV),

verifies the signature

(Mpayment, CertUAV)
?
= VPKUAV (SigUAV),

and obtains the purchase or rental certificate of the UAV from the manufacturer.
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Figure 5. Player and manufacturer authentication and communication phase of the proposed scheme.

3.7. Player and Ground Control Station Authentication and Communication Phase

After the player has the right to use the UAV, then he/she must submit a flight path and purpose to
the ground control station for review. After mutual authentication between the player and the ground
control station, the ground control station will transfer the decision of the flight plan to the player,
and keeps the relevant flight information. The player and ground control station authentication and
communication phase of the proposed scheme is shown in Figure 6.
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Step 1: The player selects a random number c, computes

TPMD2 = cP,

and then transmits (IDPMD, RPMD, TPMD2) to the ground control station.
Step 2: The ground control station selects a random number d, calculates

TGCS = dP,
PKPMD = RPMD + H1(IDPMD, RPMD)PKTAC,

KGP1 = SGCSTPMD2 + dPKPMD,
KGP2 = dTPMD2,

and the session key
SEKGP = H2(KGP1, KGP2).

The ground control station then calculates

CHKPG = H3(SEKGP, TPMD2)

and transmits (IDGCS, RGCS, TGCS, CHKPG) to the player.
Step 3: The player calculates

PKGCS = RGCS + H1(IDGCS, RGCS)PKTAC,
KPG1 = SPMDTGCS + cPKGCS,

KPG2 = cTGCS,

and the session key
SEKGP = H2(KPG1, KPG2).

The player verifies

CHKPG
?
= H3(SEKGP, TPMD2)

to check the legality of the ground control station. If the verification is passed, the player calculates

cPMD2 = ESEKGP(Mrequest, CertUAV),
CHKGP = H3(SEKGP, TGCS),

and transmits (IDPMD, cPMD2, CHKGP) to the ground control station.
Step 4: The ground control station verifies

CHKGP
?
= H3(SEKGP, TGCS)

to check the legality of the player. If the verification is passed, the session key SEKGP between the
player and the ground control station is established successfully. The ground control station calculates

(Mrequest, CertUAV) = DSEKGP(cPMD2)

to get the flight path information of the player. After the review, the ground control station generates
the encrypted decision of the flight plan

cGCS = ESEKGP(IDPMD, Mrequest, CertUAV),
SigGCS = SSKGCS(IDPMD, Mrequest, CertUAV),

and transmits (IDGCS, cGCS, SigGCS) to the player.
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Step 5: The player decrypts the received message

(IDPMD, Mrequest, CertUAV) = DSEKGP(cGCS),

verifies the signature

(IDPMD, Mrequest, CertUAV)
?
= VPKGCS(SigGCS),

and obtains the decision of the flight plan from the ground control station.Electronics 2020, 9, 62 12 of 30 
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Figure 6. Player and ground control station authentication and communication phase of the
proposed scheme.
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3.8. Player, UAV and Ground Control Station Authentication and Communication Phase

The player transfers the purchase or rental certificate of the UAV, and the flight path agreed by the
ground control station to the UAV. After mutual authentication between the player and the UAV, and
mutual authentication between the UAV and the ground control station, the UAV will confirm the
legality of the flight path again from the ground control station. After confirming the legality of the
relevant identity and flight path, the player can control the UAV through his/her mobile device. The
player, UAV and ground control station authentication and communication phase of the proposed
scheme is shown in Figure 7.

Step 1: The player calculates
cPMD3 = ESEKUP(Mrequest, CertUAV),

SigPMD3 = SSKPMD(Mrequest, CertUAV),

and transmits (IDPMD, cPMD3, SigPMD3) to the UAV.
Step 2: The UAV decrypts the received message

(Mrequest, CertUAV) = DSEKUP(cPMD3),

verifies the signature

(Mrequest, CertUAV)
?
= VPKPMD(SigPMD3),

and obtains the purchase or rental certificate of the UAV, and the flight path agreed by the ground
control station.

The UAV then chooses a random number e, calculates

TUAV2 = eP,

and then transmits (IDUAV, RUAV, TUAV2) to the ground control station.
Step 3: The ground control station chooses a random number f , computes

TGCS2 = f P,
PKUAV = RUAV + H1(IDUAV, RUAV)PKTAC,

KGU1 = SGCSTUAV2 + f PKUAV,
KGU2 = f TUAV2,

and the session key
SEKGU = H2(KGU1, KGU2).

The ground control station then calculates

CHKUG = H3(SEKGU, TUAV2),

and transmits (IDGCS, RGCS, TGCS2, CHKUG) to the UAV.
Step 4: The UAV calculates

PKGCS = RGCS + H1(IDGCS, RGCS)PKTAC,
KUG1 = SUAVTGCS2 + ePKGCS,

KUG2 = eTGCS2,

and the session key
SEKGU = H2(KUG1, KUG2).

The UAV verifies
CHKUG

?
= H3(SEKGU, TUAV2)
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to check the legality of the ground control station. If the verification is passed, the UAV calculates

cUAV2 = ESEKGU (IDPMD, Mrequest, CertUAV),
CHKGU = H3(SEKGU, TGCS2),

and transmits (IDUAV, cUAV2, CHKGU) to the ground control station.
Step 5: The ground control station verifies

CHKUG
?
= H3(SEKGU, TGCS2)

to check the legality of the UAV. If the verification is passed, the session key SEKGU between
the UAV and the ground control station is established successfully. The ground control station
calculates

(IDPMD, Mrequest, CertUAV) = DSEKGU (cUAV2)

to get the flight path information of the UAV. After the review, the ground control station generates
the encrypted confirm message of the flight plan

cGCS2 = ESEKGU (IDPMD, Mcon f irm, CertUAV),
SigGCS2 = SSKGCS(IDPMD, Mcon f irm, CertUAV),

and transmits (IDGCS, cGCS2, SigGCS2) to the UAV.
Step 6: The UAV decrypts the received message

(IDPMD, Mcon f irm, CertUAV) = DSEKGU (cGCS2),

verifies the signature

(IDPMD, Mcon f irm, CertUAV)
?
= VPKGCS(SigGCS2),

and obtains the confirm message of the flight plan from the ground control station. Then, the
UAV generates the encrypted confirm message of the flight plan and GPS information

cUAV3 = ESEKUP(IDPMD, Mcon f irm, MGPS, CertUAV),
SigUAV3 = SSKUAV (IDPMD, Mcon f irm, MGPS, CertUAV),

and transmits (IDUAV, cUAV3, SigUAV3) to the player.
Step 7: The player decrypts the received message

(IDPMD, Mrequest, MGPS, CertUAV) = DSEKUP(cUAV3),

verifies the signature

(IDPMD, Mcon f irm, MGPS, CertUAV)
?
= VPKUAV (SigUAV3),

then obtains the confirm message of the flight plan and GPS information.
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Figure 7. Player, UAV, and ground control station authentication and communication phase of the
proposed scheme.
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3.9. Ground Control Station and UAV Authentication and Communication Phase

When the ground control station wants to know whether the scope of the regulation has been
applied to the UAV, the ground control station can ask the UAV to provide relevant proof. After mutual
authentication between the ground control station and the UAV, the UAV will respond and confirm
the message of the flight plan from the ground control station and GPS information to the ground
control station. The ground control station and UAV authentication and communication phase of the
proposed scheme is shown in Figure 8.

Step 1: The ground control station calculates

cGCS3 = ESEKGU (IDUAV, Mrequest),
SigGCS3 = SSKGCS(IDUAV, Mrequest),

and transmits (IDUAV, Mrequest) = DSEKGU (cGCS3) to the UAV.
Step 2: The UAV decrypts the received message

(IDUAV, Mrequest) = DSEKGU (cGCS3),

verifies the signature

(IDUAV, Mrequest)
?
= VPKGCS(SigGCS3),

and obtains the legality check request from the ground control station. Then, the UAV generates
the encrypted confirmation message of the flight plan and GPS information

CUAV4 = ESEKGU (IDPMD, Mcon f irm, MGPS, CertUAV),
SigUAV4 = SSKUAV (IDPMD, Mcon f irm, MGPS, CertUAV),

and transmits (IDUAV, cUAV4, SigUAV4) to the ground control station.
Step 3: The ground control station decrypts the received message

(IDPMD, Mcon f irm, MGPS, CertUAV) = DSEKGU (cUAV4),

verifies the signature

(IDPMD, Mcon f irm, MGPS, CertUAV)
?
= VPKUAV (SigUAV4),

then obtains the response of the UAV and GPS information.
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Figure 8. Ground control station and UAV authentication and communication phase of the
proposed scheme.

4. Security Analysis

This section includes nine subsections: (1) the mutual authentication of the proposed scheme is
analyzed in Section 4.1, (2) the integrity and confidentiality of the proposed scheme are evaluated in
Section 4.2, (3) the identity anonymity and privacy of the proposed scheme are proved in Section 4.3, (4)
availability and prevention of DoS attack are discussed in Section 4.4, (5) prevention of spoofing attack
is discussed in Section 4.5, (6) the non-repudiation of the proposed scheme is analyzed in Section 4.6,
(7) security issues are compared in Section 4.7, (8) the computation cost of the proposed scheme is
compared with other schemes in Section 4.8, and (9) the communication cost of the proposed scheme is
compared with other schemes in Section 4.9.

4.1. Mutual Authentication

BAN logic [26] is used to prove that the proposed scheme achieves mutual authentication between
different parties in each phase.

In the player and manufacturer authentication and communication phase, the main goal of the
scheme is to make sure whether the legality is authenticated by the player P and the manufacturer M.

G1 : P| ≡ P
SEKUP
↔ M

G2 : P| ≡M| ≡ P
SEKUP
↔ M

G3 : M| ≡ P
SEKUP
↔ M

G4 : M| ≡ P| ≡ P
SEKUP
↔ M

G5 : P| ≡ IDUAV

G6 : P| ≡M| ≡ IDUAV

G7 : M| ≡ IDPMD

G8 : M| ≡ P| ≡ IDPMD

According to the player and manufacturer authentication and communication phase, BAN logic
is used to produce an idealized form as follows.
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M1 : (< IDPMD, RPMD, TPMD >PKUAV ,< H(SEKUP, TUAV) >CHKUP)

M2 : (< IDUAV, RUAV, TUAV >PKPMD ,< H(SEKUP, TPMD) >CHKPU )

To analyze the proposed scheme, the following assumptions are made.

A1 : P| ≡ #(TPMD)

A2 : M| ≡ #(TPMD)

A3 : P| ≡ #(TUAV)

A4 : M| ≡ #(TUAV)

A5 : P| ≡M| ⇒ P
SEKUP
↔ M

A6 : M| ≡ P| ⇒ P
SEKUP
↔ M

A7 : P| ≡M| ⇒ IDUAV

A8 : M| ≡ P| ⇒ IDPMD

According to these assumptions and goals of BAN logic, the main proof of the player and
manufacturer authentication and communication phase is as follows.

a. The manufacturer M authenticates the player P.

By M1 and the seeing rule, Statement 1 can be derived.
M C (< IDPMD, RPMD, TPMD >PKUAV ,<
H(SEKUP, TUAV) >CHKUP ).

(Statement 1)

By A2 and the freshness rule, Statement 2 can be derived.
M| ≡ #(< IDPMD, RPMD, TPMD >PKUAV ,<
H(SEKUP, TUAV) >CHKUP ).

(Statement 2)

By (Statement 1), A4, and the message meaning rule, Statement 3 can be derived.
M| ≡ P| ∼ (< IDPMD, RPMD, TPMD >PKUAV ,<
H(SEKUP, TUAV) >CHKUP ).

(Statement 3)

By (Statement 2), (Statement 3), and the nonce verification rule, Statement 4 can be derived.
M| ≡ #(< IDPMD, RPMD, TPMD >PKUAV ,<
H(SEKUP, TUAV) >CHKUP ).

(Statement 4)

By (Statement 4) and the belief rule, Statement 5 can be derived.

M| ≡ P| ≡ P
SEKUP
↔ M. (Statement 5)

By (Statement 5), A6, and the jurisdiction rule, Statement 6 can be derived.

M| ≡ P
SEKUP
↔ M. (Statement 6)

By (Statement 6) and the belief rule, Statement 7 can be derived.
M| ≡ P| ≡ IDPMD. (Statement 7)
By (Statement 7), A8, and the jurisdiction rule, Statement 8 can be derived.
M| ≡ IDPMD. (Statement 8)

b. The player P authenticates the manufacturer M.

By M2 and the seeing rule, Statement 9 can be derived.
P C (< IDUAV , RUAV , TUAV >PKPMD ,<
H(SEKUP, TPMD) >CHKPU ).

(Statement 9)

By A1 and the freshness rule, Statement 10 can be derived.
P| ≡ #(< IDUAV , RUAV , TUAV >PKPMD ,<
H(SEKUP, TPMD) >CHKPU ).

(Statement 10)

By (Statement 9), A3, and the message meaning rule, Statement 11 can be derived.
P| ≡M| ∼ (< IDUAV , RUAV , TUAV >PKPMD ,<
H(SEKUP, TPMD) >CHKPU ).

(Statement 11)
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By (Statement 10), (Statement 11), and the nonce verification rule, Statement 12 can be derived.
P| ≡M| ≡ (< IDUAV , RUAV , TUAV >PKPMD ,<
H(SEKUP, TPMD) >CHKPU ).

(Statement 12)

By (Statement 12) and the belief rule, Statement 13 can be derived.

P| ≡M| ≡ P
SEKUP
↔ M. (Statement 13)

By (Statement 13), A5, and the jurisdiction rule, Statement 14 can be derived.

P| ≡ P
SEKUP
↔ M. (Statement 14)

By (Statement 14) and the belief rule, Statement 15 can be derived.
P| ≡M| ≡ IDUAV . (Statement 15)
By (Statement 15), A7, and the jurisdiction rule, Statement 16 can be derived.
P| ≡ IDUAV . (Statement 16)

By (Statement 6), (Statement 8), (Statement 14), and (Statement 16), it can be proved that the
player P and the manufacturer M authenticate each other in the proposed scheme. Moreover, it can
also be proved that the proposed scheme can establish a session key between the player P and the
manufacturer M.

In the proposed scheme, the manufacturer authenticates the player by

CHKUP
?
= H3(SEKUP, TUAV).

If it passes the verification, the manufacturer authenticates the legality of the player. The player
authenticates the manufacturer by

CHKPU
?
= H3(SEKUP, TPMD).

If it passes the verification, the player authenticates the legality of the manufacturer. The player
and manufacturer authentication and communication phase of the proposed scheme thus guarantees
mutual authentication between the player and the manufacturer.

In the player and ground control station authentication and communication phase, the main goal
of the scheme is to make sure whether the legality is authenticated by the player P and the ground
control station G.

G9 : P| ≡ P
SEKGP
↔ G

G10 : P| ≡ G| ≡ P
SEKGP
↔ G

G11 : G| ≡ P
SEKGP
↔ G

G12 : G| ≡ P| ≡ P
SEKGP
↔ G

G13 : P| ≡ IDGCS

G14 : P| ≡ G| ≡ IDGCS

G15 : G| ≡ IDPMD

G16 : G| ≡ P| ≡ IDPMD

According to the player and ground control station authentication and communication phase,
BAN logic is used to produce an idealized form as follows.

M3 : (< IDPMD, RPMD, TPMD2 >PKGCS ,< H(SEKGP, TGCS) >CHKGP)

M4 : (< IDGCS, RGCS, TGCS >PKPMD ,< H(SEKGP, TPMD2) >CHKPG)

To analyze the proposed scheme, the following assumptions are made.

A9 : P| ≡ #(TPMD2)

A10 : G| ≡ #(TPMD2)

A11 : P| ≡ #(TGCS)
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A12 : G| ≡ #(TGCS)

A13 : P| ≡ G| ⇒ P
SEKGP
↔ G

A14 : G| ≡ P| ⇒ P
SEKGP
↔ G

A15 : P| ≡ G| ⇒ IDGCS

A16 : G| ≡ P| ⇒ IDPMD

According to these assumptions and goals of BAN logic, the main proof of the player and ground
control station authentication and communication phase is as follows.

c. The ground control station G authenticates the player P.

By M3 and the seeing rule, Statement 17 can be derived.
G C (< IDPMD, RPMD, TPMD2 >PKGCS ,<
H(SEKGP, TGCS) >CHKGP ).

(Statement 17)

By A10 and the freshness rule, Statement 18 can be derived.
G| ≡ #(< IDPMD, RPMD, TPMD2 >PKGCS ,<
H(SEKGP, TGCS) >CHKGP ).

(Statement 18)

By (Statement 17), A12, and the message meaning rule, Statement 19 can be derived.
G| ≡ P| ∼ (< IDPMD, RPMD, TPMD2 >PKGCS ,<
H(SEKGP, TGCS) >CHKGP ).

(Statement 19)

By (Statement 18), (Statement 19), and the nonce verification rule, Statement 20 can be derived.
G| ≡ P| ≡ (< IDPMD, RPMD, TPMD2 >PKGCS ,<
H(SEKGP, TGCS) >CHKGP ).

(Statement 20)

By (Statement 20) and the belief rule, Statement 21 can be derived.

G| ≡ P| ≡ P
SEKGP
↔ G. (Statement 21)

By (Statement 21), A14, and the jurisdiction rule, Statement 22 can be derived.

G| ≡ P
SEKGP
↔ G. (Statement 22)

By (Statement 22) and the belief rule, Statement 23 can be derived.
G| ≡ P| ≡ IDPMD. (Statement 23)
By (Statement 23), A16, and the jurisdiction rule, Statement 24 can be derived.
G| ≡ IDPMD. (Statement 24)

d. The player P authenticates the ground control station G.

By M4 and the seeing rule, Statement 25 can be derived.
P C (< IDGCS, RGCS, TGCS >PKPMD ,<
H(SEKGP, TPMD2) >CHKPG ).

(Statement 25)

By A9 and the freshness rule, Statement 26 can be derived.
P| ≡ #(< IDGCS, RGCS, TGCS >PKPMD ,<
H(SEKGP, TPMD2) >CHKPG ).

(Statement 26)

By (Statement 25), A11, and the message meaning rule, Statement 27 can be derived.
P| ≡ G| ∼ (< IDGCS, RGCS, TGCS >PKPMD ,<
H(SEKGP, TPMD2) >CHKPG ).

(Statement 27)

By (Statement 26), (Statement 27), and the nonce verification rule, Statement 28 can be derived.
P| ≡ G| ≡ (< IDGCS, RGCS, TGCS >PKPMD ,<
H(SEKGP, TPMD2) >CHKPG ).

(Statement 28)

By (Statement 28) and the belief rule, Statement 29 can be derived.

P| ≡ G| ≡ P
SEKGP
↔ G. (Statement 29)

By (Statement 29), A13, and the jurisdiction rule, Statement 30 can be derived.

P| ≡ P
SEKGP
↔ G. (Statement 30)

By (Statement 30) and the belief rule, Statement 31 can be derived.
P| ≡ G| ≡ IDGCS. (Statement 31)
By (Statement 31), A15, and the jurisdiction rule, Statement 32 can be derived.
P| ≡ IDGCS. (Statement 32)

By (Statement 22), (Statement 24), (Statement 30), and (Statement 32), it can be proved that the player
P and the ground control station G authenticate each other in the proposed scheme. Moreover, it can
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also be proved that the proposed scheme can establish a session key between the player P and the
ground control station G.

In the proposed scheme, the ground control station authenticates the player by

CHKGP
?
= H3(SEKGP, TGCS).

If it passes the verification, the manufacturer authenticates the legality of the player. The player
authenticates the ground control station by

CHKPG
?
= H3(SEKGP, TPMD2).

If it passes the verification, the player authenticates the legality of the ground control station. The
player and ground control station authentication and communication phase of the proposed scheme
thus guarantees mutual authentication between the player and the ground control station.

In the player, UAV, and ground control station authentication and communication phase, the
main goal of the scheme is to make sure whether the legality is authenticated by the UAV U and the
ground control station G.

G17 : U| ≡ U
SEKGU
↔ G

G18 : U| ≡ G| ≡ U
SEKGU
↔ G

G19 : G| ≡ U
SEKGU
↔ G

G20 : G| ≡ U| ≡ U
SEKGU
↔ G

G21 : U| ≡ IDGCS

G22 : U| ≡ G| ≡ IDGCS

G23 : G| ≡ IDUAV

G24 : G| ≡ U| ≡ IDUAV

According to the player, UAV, and ground control station authentication and communication
phase, BAN logic is used to produce an idealized form as follows:

M5 : (< IDUAV, RUAV, TUAV2 >PKGCS ,< H(SEKGU, TGCS2) >CHKGU )

M6 : (< IDGCS, RGCS, TGCS2 >PKUAV ,< H(SEKGU, TUAV2) >CHKUG)

To analyze the proposed scheme, the following assumptions are made.

A17 : U| ≡ #(TUAV2)

A18 : G| ≡ #(TUAV2)

A19 : U| ≡ #(TGCS2)

A20 : G| ≡ #(TGCS2)

A21 : U| ≡ G| ⇒ U
SEKGU
↔ G

A22 : G| ≡ U| ⇒ U
SEKGU
↔ G

A23 : U| ≡ G| ⇒ IDGCS

A24 : G| ≡ U| ⇒ IDUAV

According to these assumptions and goals of BAN logic, the main proof of the player, UAV, and
ground control station authentication and communication phase is as follows.

e The ground control station G authenticates the UAV U.
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By M5 and the seeing rule, Statement 33 can be derived.
G C (< IDUAV , RUAV , TUAV2 >PKGCS ,<
H(SEKGU, TGCS2) >CHKGU ).

(Statement 33)

By A18 and the freshness rule, Statement 34 can be derived.
G| ≡ #(< IDUAV , RUAV , TUAV2 >PKGCS ,<
H(SEKGU, TGCS2) >CHKGU ).

(Statement 34)

By (Statement 33), A20, and the message meaning rule, Statement 35 can be derived.
G| ≡ U| ∼ (< IDUAV , RUAV , TUAV2 >PKGCS ,<
H(SEKGU, TGCS2) >CHKGU ).

(Statement 35)

By (Statement 34), (Statement 35), and the nonce verification rule, Statement 36 can be derived.
G| ≡ U| ≡ (< IDUAV , RUAV , TUAV2 >PKGCS ,<
H(SEKGU, TGCS2) >CHKGU ).

(Statement 36)

By (Statement 36) and the belief rule, Statement 37 can be derived.

G| ≡ U| ≡ U
SEKGU
↔ G. (Statement 37)

By (Statement 37), A22, and the jurisdiction rule, Statement 38 can be derived.

G| ≡ U
SEKGU
↔ G. (Statement 38)

By (Statement 38) and the belief rule, Statement 39 can be derived.
G| ≡ U| ≡ IDUAV . (Statement 39)
By (Statement 39), A24, and the jurisdiction rule, Statement 40 can be derived.
G| ≡ IDUAV . (Statement 40)

f The UAV U authenticates the ground control station G.

By M6 and the seeing rule, Statement 41 can be derived.
U C (< IDGCS, RGCS, TGCS2 >PKUAV ,<
H(SEKGU, TUAV2) >CHKUG ).

(Statement 41)

By A17 and the freshness rule, Statement 42 can
be derived.
U| ≡ #(< IDGCS, RGCS, TGCS2 >PKUAV ,<
H(SEKGU, TUAV2) >CHKUG ).

(Statement 42)

By (Statement 41), A19, and the message meaning rule, Statement 43 can
be derived.
U| ≡ G| ∼ (< IDGCS, RGCS, TGCS2 >PKUAV ,<
H(SEKGU, TUAV2) >CHKUG ).

(Statement 43)

By (Statement 42), (Statement 43), and the nonce verification rule, Statement 44 can
be derived.
U| ≡ G| ≡ (< IDGCS, RGCS, TGCS2 >PKUAV ,<
H(SEKGU, TUAV2) >CHKUG ).

(Statement 44)

By (Statement 44) and the belief rule, Statement 45 can
be derived.

U| ≡ G| ≡ U
SEKGU
↔ G. (Statement 45)

By (Statement 45), A21, and the jurisdiction rule, Statement 46 can be derived.

U| ≡ U
SEKGU
↔ G. (Statement 46)

By (Statement 46) and the belief rule, Statement 47 can be derived.
U| ≡ G| ≡ IDGCS. (Statement 47)
By (Statement 47), A23, and the jurisdiction rule, Statement 48 can be derived.
U| ≡ IDGCS. (Statement 48)

By (Statement 38), (Statement 40), (Statement 46), and (Statement 48), it can be proved that the UAV
U and the ground control station G authenticate each other in the proposed scheme. Moreover, it can
also be proved that the proposed scheme can establish a session key between the UAV U and the
ground control station G.

In the proposed scheme, the ground control station authenticates the UAV by

CHKGU
?
= H3(SEKGU, TGCS2).
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If it passes the verification, the ground control station authenticates the legality of the UAV. The
UAV authenticates the ground control station by

CHKUG
?
= H3(SEKGU, TUAV2).

If it passes the verification, the UAV authenticates the legality of the ground control station. The
player, UAV, and ground control station authentication and communication phase of the proposed
scheme thus guarantees mutual authentication between the UAV and the ground control station.

Scenario: A malicious attacker uses an illegal mobile reader to control an UAV.
Analysis: The attacker will not succeed because the illegal mobile reader has not been registered to the
trusted authority center and thus cannot calculate the correct session key SEKUP. Thus, the attack will
fail when the legal UAV attempts to authenticate the illegal mobile device. In the proposed scheme,
the attacker cannot achieve their purpose using an illegal mobile device. In the same scenario, the
proposed scheme can also defend against a malicious attack using an illegal ground control station to
send a fake message to a legal UAV, because the illegal ground control station has not been registered
to the trusted authority center and thus cannot calculate the correct session key SEKGU. Thus, the
attack will fail when the legal UAV attempts to authenticate the illegal ground control station.

4.2. Integrity and Confidentiality

To ensure the integrity and confidentiality of the transaction data, this study uses elliptic curve
cryptography and Diffie–Hellman key exchange algorithm to calculate the session key SEKUP, SEKGP
and SEKGU, and also to protect the integrity and confidentiality. The malicious attacker cannot use the
signatures (KUP1, KUP2), (KPU1, KPU2), (KGP1, KGP2), (KPG1, KPG2), (KGU1, KGU2), and (KUG1, KUG2) to
calculate the correct session key SEKUP, SEKGP, and SEKGU.

Only a legal mobile device or UAV can calculate the correct session key SEKUP. The legal UAV
calculates the session key

SEKUP = H2(KUP1, KUP2)

and the legal mobile device calculates the session key

SEKUP = H2(KPU1, KPU2).
KPU1 = SPMDTUAV + aPKUAV

= SPMDbP + aSUAVP
= bSPMDP + SUAVaP

= bPKPMD + SUAVTPMD = KUP1

KPU2 = aTUAV = abP = baP = bTPMD = KUP2

Only a legal mobile device or ground control station can calculate the correct session key SEKGP.
The legal ground control station calculates the session key

SEKGP = H2(KGP1, KGP2)

and the legal mobile device calculates the session key

SEKUP = H2(KPU1, KPU2).
KPG1 = SPMDTGCS + cPKGCS

= SPMDdP + cSGCSP
= dSPMDP + SGCScP

= dPKPMD + SGCSTPMD2 = KGP1

KPG2 = cTGCS = cdP = dcP = dTPMD2 = KGP2
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Only a legal UAV or ground control station can compute the correct session key SEKGU. The legal
ground control station computes the session key

SEKGU = H2(KGU1, KGU2)

and the legal UAV calculates the session key

SEKGU = H2(KUG1, KUG2).
KUG1 = SUAVTGCS2 + ePKGCS

= SUAV f P + eSGCSP
= f SUAVP + SGCSeP

= f PKUAV + SGCSTUAV2 = KGU1

KUG2 = eTGCS2 = e f P = f eP = f TUAV2 = KGU2

Only the correct session key will allow successful communication. Thus, attackers cannot decrypt
or modify the transmitted message. Therefore, the proposed scheme achieves the integrity and
confidentiality.

Scenario: A malicious attacker intercepts the transmitted message from the ground control station to
the player and decrypts the message or sends a modified message to the player.
Analysis: The attacker will not succeed because the legal player will use

CHKPG
?
= H3(SEKGP‖TPMD2)

to check the integrity. The attacker cannot calculate the correct session key SEKGP. Thus, the attack will
fail when the legal player authenticates the received message. In the proposed scheme, the attacker
cannot achieve his/her purpose by sending a modified message to the player, and he/she also cannot
decrypt the intercepted message. For the same reason, the attack will fail when the legal ground control
station uses

CHKGP
?
= H3(SEKGP‖TGCS)

to check the integrity. Therefore, attackers cannot achieve their purpose by sending a modified message
to the ground control station or decrypt the intercepted message.

4.3. Identity Anonymity and Privacy

Another form of privacy attack involves attempting to obtain a player’s real name or physical
location by tracing his/her mobile device. If the mobile device sends the same message continuously, an
attacker can trace its location. In the proposed scheme, the session key SEKUP and SEKGP is changed
for every communication round in order to avoid location tracing. Besides, the pseudonym identity is
used instead of real name in the proposed scheme. Thus, location privacy is protected and identity
anonymity is achieved.

4.4. Availability and Prevention of DoS Attack

An attacker may impersonate a legal sender and then send the same message again to the intended
receiver, trying to make the system unable to provide services properly. However, this attack will
fail in the proposed scheme, as all messages between the sender and the receiver are protected with
the session key SEKUP, SEKGP, and SEKGU, and the attacker cannot calculate the correct session key.
Because the transmitted messages are changed every round, the same message cannot be sent twice.
Thus, the DoS attack is prevented and system availability is achieved.
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4.5. Prevention of Spoofing Attack

In the proposed scheme, the GPS message is obtained by the UAV then transmitted to the ground
control station or the player. The GPS message MGPS is protected by the session key SEKUP and SEKGU.
The attacker cannot compute the correct session key SEKUP or SEKGU and he/she cannot impersonate
a legal UAV and send a fake message. Therefore, the spoofing attack is prevented.

Scenario: A malicious attacker pretends a legal UAV and sends a fake message to the legal ground
control station.
Analysis: The attacker will not succeed because the illegal UAV has not been registered to the trusted
authority center and thus cannot calculate the correct session key SEKGU. Thus, the attack will fail
when the legal ground control station attempts to authenticate the illegal UAV. In the proposed scheme,
the attacker cannot achieve the purpose of pretending to be a legal UAV and sending a fake message.
In the same scenario, the proposed scheme can also defend against a malicious attacker pretending
to be a legal UAV and sending a fake message to the legal player, because the illegal UAV has not
been registered to the trusted authority center and thus cannot calculate the correct session key SEKUP.
Thus, the attack will fail when the legal player attempts to authenticate the illegal UAV.

4.6. Non-Repudiation

In the proposed scheme, the digital signature is used to achieve non-repudiation between the
parties in each phase. The sender uses his/her private key to sign the transmitted message, and the
receiver uses the public key of the sender to verify the received message. Thus, the non-repudiation is
achieved. Table 1 shows the non-repudiation of the proposed scheme.

Table 1. Non-repudiation of the proposed scheme.

Item Phase Proof Issuer Holder Verification

Player and manufacturer
authentication

and communication phase
(CUAV , SigUAV) M P

SigUAV = SSKUAV (Mpayment, CertUAV)

(Mpayment, CertUAV)
?
= VPKUAV (SigUAV)

Player and ground control station
authentication

and communication phase
(CGCS, SigGCS) G P

SigGCS =
SSKGCS (IDPMD, Mpayment, CertUAV)

(IDPMD, Mpayment, CertUAV)
?
=

VPKGCS (SigGCS)

Player, UAV, and ground control
station

authentication and
communication phase

(CPMD3, SigPMD3) P U
SigPMD3 = SSKPMD (Mrequest, CertUAV)

(Mrequest, CertUAV)
?
= VPKPMD (SigPMD3)

(CGCS2, SigGCS2) G U

SigGCS2 =
SSKGCS (IDPMD, Mcon f irm, CertUAV)

(IDPMD, Mcon f irm, CertUAV)
?
=

VPKGCS (SigGCS2)

(CUAV3, SigUAV3) U P

SigUAV3 =
SSKUAV (IDPMD, Mcon f irm, MGPS, CertUAV)

(IDPMD, Mcon f irm, MGPS, CertUAV)
?
=

VPKUAV (SigUAV3)

Ground control station and UAV
authentication

and communication phase

(CGCS3, SigGCS3) G U
SigGCS3 = SSKGCS (IDUAV , Mrequest)

(IDUAV , Mrequest)
?
= VPKGCS (SigGCS3)

(CUAV4, SigUAV4) U G

SigUAV4 =
SSKUAV (IDPMD, Mcon f irm, MGPS, CertUAV)

(IDPMD, Mcon f irm, MGPS, CertUAV)
?
=

VPKUAV (SigUAV4)

4.7. Comparison of Security Issues

Table 2 shows a comparison of security issues of related works.
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Table 2. Comparison of security issues.

Yoon et al. [18] Chen et al. [19] Wazid et al. [20] Tian et al. [21] The Proposed
Scheme

Mutual
authentication

Unidirectional
authentication Yes Yes Unidirectional

authentication Yes

Integrity N/A Yes No Yes Yes

Confidentiality Yes Yes Yes Yes Yes

Identity
anonymity N/A N/A Yes Yes Yes

Availability No N/A N/A N/A Yes

Privacy N/A N/A Yes Yes Yes

Non-repudiation No Yes No Yes Yes

DoS attack Yes N/A Yes N/A Yes

Spoofing attack N/A N/A Yes N/A Yes

4.8. Computation Cost

Table 3 shows the computation cost of the proposed scheme and Wazid et al.’s scheme [20].
TP: Polynomial function operation
TMul: Multiplication operation
TH: Hash function operation
TCmp: Comparison operation
TEnc: Symmetric encryption operation
TSig: Signature operation
TXor: Exclusive-or operation

Table 3. Computation cost of the proposed scheme and Wazid et al.’s scheme [21].

Wazid et al. [20] The Proposed Scheme

Manufacturer (UAV) registration
phase

Manufacturer (UAV) N/A 2TMul + 1TH + 1TCmp

Trusted authority center 1TP + 2TH 2TMul + 1TH

Player (mobile device) registration
phase

Player (mobile device) 1TP + 8TH + 6TXor 2TMul + 1TH + 1TCmp

Trusted authority center 4TH 2TMul + 1TH

Ground control station
registration phase

Ground control station N/A 2TMul + 1TH + 1TCmp

Trusted authority center N/A 2TMul + 1TH

Player and manufacturer
authentication and

communication phase

Player (mobile device) N/A
5TMul + 4TH + 2TCmp

+2TEnc + 1TSig

Manufacturer (UAV) N/A
5TMul + 4TH + 1TCmp

+2TEnc + 1TSig

Player and ground control station
authentication and

communication phase

Player (mobile device) N/A
5TMul + 4TH + 2TCmp

+2TEnc + 1TSig

Ground control station N/A
5TMul + 4TH + 1TCmp

+2TEnc + 1TSig

Player, UAV, and ground control
station authentication and

communication phase

Player (mobile device)
1TP + 16TH + 3TCmp

+11TXor
1TCmp + 2TEnc + 2TSig

Manufacturer (UAV) 7TH + 2TCmp + 4TXor
5TMul + 4TH + 3TCmp

+4TEnc + 3TSig

Ground control station N/A
5TMul + 4TH + 1TCmp

+2TEnc + 1TSig

Trusted authority center 8TH + 2TCmp + 5TXor N/A

Ground control station and UAV
authentication and

communication phase

Ground control station N/A 1TCmp + 2TEnc + 2TSig

Manufacturer (UAV) N/A 1TCmp + 2TEnc + 2TSig
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In Table 3, computation costs of the proposed scheme and Wazid et al.’s for the trusted authority
center, manufacturer (UAV), player (mobile device), and ground control station in each phase are
analyzed. For the highest computation cost in the player, UAV, and ground control station authentication
and communication phase, a UAV needs five multiplication operations, four hash function operations,
three comparison operations, four symmetric encryption operations, and three signature operations.
A player needs one comparison operation, two symmetric encryption operations, and two signature
operations. A ground control station needs five multiplication operations, four hash function operations,
one comparison operation, two symmetric encryption operations, and one signature operation. The
computation cost is acceptable in the proposed scheme.

4.9. Communication Cost

The communication cost of the proposed scheme and Wazid et al.’s scheme [20] is shown in
Table 4.

Table 4. Communication cost of the proposed scheme and Wazid et al.’s scheme [21].

Wazid et al. [20] The Proposed Scheme

Manufacturer (UAV)
registration phase

Message length 560 bits 2528 bits

Round 1 2

3.5G (14 Mbps) 0.040 ms 0.181 ms

4G (100 Mbps) 0.006 ms 0.025 ms

Player (mobile device)
registration phase

Message length 880 bits 2528 bits

Round 2 2

3.5G (14 Mbps) 0.063 ms 0.181 ms

4G (100 Mbps) 0.009 ms 0.025 ms

Ground control station
registration phase

Message length N/A 2528 bits

Round N/A 2

3.5G (14 Mbps) N/A 0.181 ms

4G (100 Mbps) N/A 0.025 ms

Player and manufacturer
authentication and

communication phase

Message length N/A 2816 bits

Round N/A 4

3.5G (14 Mbps) N/A 0.201 ms

4G (100 Mbps) N/A 0.028 ms

Player and ground
control station

authentication and
communication phase

Message length N/A 2816 bits

Round N/A 4

3.5G (14 Mbps) N/A 0.201 ms

4G (100 Mbps) N/A 0.028 ms

Player, UAV, and ground
control station

authentication and
communication phase

Message length 1840 bits 5536 bits

Round 3 6

3.5G (14 Mbps) 0.131 ms 0.395 ms

4G (100 Mbps) 0.018 ms 0.055 ms

Ground control station
and UAV authentication

and communication
phase

Message length N/A 2720 bits

Round N/A 2

3.5G (14 Mbps) N/A 0.194 ms

4G (100 Mbps) N/A 0.027 ms
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The communication efficiency of the proposed scheme and Wazid et al.’s scheme during the
transaction process of each phase was also analyzed. It was assumed that an elliptic curve modular
operation required 160 bits, a hash operation required 160 bits, an AES operation required 256 bits,
a signature operation required 1024 bits, and other messages, such as id, pid, and random number,
required 80 bits. For example, the player, UAV and ground control station authentication and
communication phase of the proposed scheme requires four elliptic curve modular messages, two
hash messages, four AES messages, three signature operation messages, and six other messages. It
thus requires 160 × 4 + 160 × 2 + 256 × 4 + 1024 × 3 + 80 × 6 = 5536 bits. In a 3.5G environment, the
maximum transmission speed is 14 Mbps. This study also considered the player, UAV, and ground
control station authentication and communication phase of the proposed scheme, which only takes
0.395 ms to transfer all messages. In a 4G environment, the maximum transmission speed is 100 Mbps
and the transmission time is reduced to 0.055 ms.

Basically, Wazid et al.’s scheme provides a lightweight user authentication scheme in which a user
in the IoD environment needs to access data. This appeals as it aims at providing a fast authorization
mechanism. However, the integrity, non-reputation, and availability issues are excluded. However,
compared to Wazid et al.’s scheme, the proposed scheme used the public key cryptography to design a
UAV application field which was applied in a sensitive field such that the integrity, non-reputation and
availability issues needed to be considered and should be ensured [20]. The proposed scheme is a
different application field to Wazid et al.’s scheme. The players must pass necessary procedures to
obtain the flight authority in a sensitive area. It needs more scenarios and overloads. As shown in
Table 4, the communication cost sounds good. The proposed scheme provides a novel solution in the
UAV application field.

Compared to the Wazid et al.’s scheme, the proposed scheme achieves the following advantages:
firstly, the proposed scheme uses a signature mechanism, thus it can ensure data integrity and achieve
non-repudiation and secondly, the proposed architecture involves the role of the ground control
station to effectively grasp the UAVs’ flying status in a sensitive area. The ground control station can
also confirm whether the flying UAV is authorized. Although the proposed architecture has higher
computing and communication costs than the Wazid et al.’s scheme, it also achieves higher security
and availability.

5. Conclusions

At present, UAVs are mainly used for small package delivery and leisure entertainment. In
the future, they will have thousands of uses that could even be widely extended to agricultural,
land protection surveillance, emergency relief, military reconnaissance, space exploration, and other
applications. UAVs will also create new jobs, while also addressing population ageing and manpower
shortages. Advanced technology can bring a better and convenient living environment for mankind,
but UAVs can also be maliciously used, and even endanger national security.

In this paper, a traceable and privacy protection protocol was designed to conduct the UAVs’
application in sensitive control area. The proposed scheme creates a feasible and secure management
platform in a sensitive area surveillance for UAVs’ application. For sensitive military areas, players
must obtain flight approval from a ground control station before they can control the UAV in these
sensitive areas. The proposed scheme achieves mutual authentication, integrity and confidentiality,
anonymity and privacy, non-repudiation, availability and protection against DoS attack, while also
preventing spoofing attack. This study also analyzed the computation cost and the communication
cost in the proposed scheme to prove the proposed scheme is practical in the real world.
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