
electronics

Review

Asynchronous Floating-Point Adders and
Communication Protocols: A Survey

Pallavi Srivastava 1,* , Edwin Chung 1 and Stepan Ozana 2

1 School of Computer Science and Engineering, Taylor’s University, 1 Jalan Taylor’s, 47500 Subang Jaya,
Malaysia; chinyau.edwinchung@taylors.edu.my

2 Faculty of Electrical Engineering and Computer Science, Department of Cybernetics and Biomedical
Engineering, VSB-Technical University of Ostrava, 708 00 Ostrava, Czech Republic; stepan.ozana@vsb.cz

* Correspondence: tu.pallavi@gmail.com

Received: 18 September 2020; Accepted: 9 October 2020; Published: 15 October 2020
����������
�������

Abstract: Addition is the key operation in digital systems, and floating-point adder (FPA) is frequently
used for real number addition because floating-point representation provides a large dynamic
range. Most of the existing FPA designs are synchronous and their activities are coordinated by
clock signal(s). However, technology scaling has imposed several challenges like clock skew, clock
distribution, etc., on synchronous design due to presence of clock signal(s). Asynchronous design is
an alternate approach to eliminate these challenges imposed by the clock, as it replaces the global
clock with handshaking signals and utilizes a communication protocol to indicate the completion of
activities. Bundled data and dual-rail coding are the most common communication protocols used in
asynchronous design. All existing asynchronous floating-point adder (AFPA) designs utilize dual-rail
coding for completion detection, as it allows the circuit to acknowledge as soon as the computation is
done; while bundled data and synchronous designs utilizing single-rail encoding will have to wait
for the worst-case delay irrespective of the actual completion time. This paper reviews all the existing
AFPA designs and examines the effects of the selected communication protocol on its performance.
It also discusses the probable outcome of AFPA designed using protocols other than dual-rail coding.

Keywords: asynchronous circuit design; floating-point adder; dual-rail protocol; bundled data
scheme; completion detection

1. Introduction

The computational complexity of scientific and engineering applications has increased in recent
years, and it is difficult to envision a modern scientific infrastructure without numerical computing.
Several scientific and engineering applications utilize floating-point representation for the computation
of real numbers, as it provides a large dynamic range. The use of floating-point in computing goes
all the way back to the world’s first operating computing machine, the Z3, designed by Konrad Zuse,
where it includes a binary floating-point number for computation [1].

Goldberg [2] demonstrates that negligence in floating-point designs can result in erroneous
outcome, and hence, thorough research is required for floating-point numbers. One such example
of design failure due to inaccurate calculations for floating-point representation is the Intel Pentium
Processor failure [3]. Professor Thomas R. Nicely was working on the sum of the reciprocal of
twin prime numbers. Being a mathematician, he developed several algorithms and evaluated those
algorithms on different types of processors. In 1994, when he included a machine based on the Intel
Pentium Processor, he noticed that for division algorithm, the processor might produce an incorrect
floating-point result. At first, Intel denied such kind of possibility, but several other researchers reported
similar challenges for different applications. Later, it was proved by engineer Tim Coe that for a few

Electronics 2020, 9, 1687; doi:10.3390/electronics9101687 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-6837-5402
https://orcid.org/0000-0002-2042-3161
https://orcid.org/0000-0003-1102-8204
http://dx.doi.org/10.3390/electronics9101687
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/10/1687?type=check_update&version=2

Electronics 2020, 9, 1687 2 of 23

cases, floating-point computations of double-precision numbers produced an error larger than that for
single-precision floating-point. The worst-case error was produced when double-precision floating
point representation is used to calculate the ratio of two numbers 4,195,835 and 3,145,727. The correct
result was 1.33382044 . . . and the result computed on Pentium was 1.33373906, which was accurate only
up to the 14th bits, and the error produced in this case was larger than its single-precision equivalent.

In February 1991 [3], the inaccurate representation of floating-point numbers might have led
to an accident that killed 28 soldiers. An American Patriot Missile battery miscalculated and failed
to predict the range of an Iraqi Scud Missile. The time was expressed as an integer number, but it
was measured in 1/10 by the internal clock of the system, which is a non-terminating floating-point
number in binary number representation. All the computations were done in a 24-bit fixed-point
register; therefore, the numbers after 24 bits were truncated, resulting in a negligible truncation error.
This small truncation error computed in the Patriot battery became a significant one as the battery was
utilized continuously for more than 100 h. As a result, the accumulation of multiple small numbers
resulted in a larger error.

Another similar incident happened in June 1996 [3], when a crewless Ariane rocket exploded 30
s after its lift-off due to the inaccurate conversion of floating-point numbers. The project including
the rocket and its cargo cost approximately $500 million, but fortunately this time no lives were lost.
The computation system was unable to find the accurate conversion of the rocket velocity represented
by a 64-bit floating-point number into a 16-bit signed integer, as the resulting velocity (in 16-bit
signed integer representation) was greater than 32,767, the largest number represented by a 16-bit
signed integer.

These floating-point computation failures indicate that floating-point operations are very crucial
for various applications. For instance, applications like computer graphics, mechatronics, aerospace
vehicle, drone, etc., need to perform very precise and accurate computations in order to provide the
desired outcome [4]. This paper focuses on reviewing the implementation of floating-point addition
operation, as almost half of the floating-point operations are dominated by addition and subtraction
operations [5], as shown in Figure 1. For instance, 60% of signal processing algorithms require addition
operation [6].

Figure 1. Distribution of floating-point instructions [5].

Several patents deal with the design and implementation of Floating-Point Adder (FPA) [7–12].
FPA has various operations of variable latencies and the latency of FPA should be be optimized [13,14];
either by determining the smaller exponent to be subtracted from the larger exponent [15], or by using
dual path algorithm [16–22], or considering subtraction operation separately [23]. Various design
techniques are proposed to improve the performance of FPA to increase its speed [24–28], to reduce its
silicon area [29], dealing with denormalized numbers [30] and rounding logic [31] and implementing
FPA using field programmable gate array (FPGA) [32,33]. A Leading Zero Anticipator (LZA) is also

Electronics 2020, 9, 1687 3 of 23

designed for normalization process in dual path algorithm to improve the speed of FPA [34–38],
and extensive research articles are available for synchronous FPA [39–45].

The process completion time between two synchronous logic blocks is evaluated based on their
critical paths, and the clock period for the design must be larger than the worst of these critical paths,
hence limiting the scope of speed improvement. Clock skew and hence clock delay balancing are
difficult to manage due to technology scaling, as the clock signal needs to arrive at the same time at all
storage elements [46–49]. Moreover, synchronous circuits invest 40% and more of its power in clock
distribution [50,51], and as the design grows in complexity, additional delay units are required to tune
the delay from the clock source to the flip-flops/latches to overcome clock skew [52–54]. This implies
that the presence of a global clock signal leads to more latency and power consumption. Asynchronous
circuits provide an alternate solution for these challenges that arise due to the presence of a global
clock [49,55], as the clock signal is replaced by the handshaking (request REQ and acknowledge ACK)
signals in such circuits. The datapath becomes active upon the reception of a request signal REQ,
and it goes back to the inactive state after it has completed its operation and issued an acknowledge
signal ACK.

The asynchronous design approach is not new; in fact, circuits built right after the invention of
the transistor were asynchronous. The ORDVAC at the University of Illinois and the IAS machine
at Princeton [56] were examples of these earlier designs. Later, it was realized that the presence of a
global clock would help to build smaller and faster circuits, and today it is the preferred design method
supported by a vast Electronic Design Automation (EDA) industry. The involvement of technology
in our day to day life, however, creates the need for even faster and more compact electronic devices
with lower power consumption. The technology scaling imposes various limitations on synchronous
circuits [49,57–59], and the asynchronous design approach is being reconsidered by various researchers
to overcome the limitations due to the presence of the clock signal. The demand for portable
electronic devices with minimal power consumption [60] without compromising the processing
speed and silicon area is another major concern [61,62]. Various asynchronous digital circuits are
designed and commercialized by the leading companies such as IBM, Intel, Philips Semiconductors,
Sun Microsystems (now Oracle), etc., [63–67] over the last two decades with considerable cost benefits.
Several successful industrial experiments have also been performed to support the asynchronous
circuit design such as Intel RAPPID [68], IBM FIR filter [69,70], optimizing continuous-time digital
signal processors [71,72], developing ultra-low-energy devices [73–76], system design to handle
extreme temperature [77] and finally, developing alternative computing paradigms [78–80]; however,
these experiments were not commercialized. One of the primary reasons for the absence of commercial
asynchronous circuits is the absence of sufficiently mature asynchronous EDA tools [51,81]. Fortunately,
several languages and design tools are being developed for asynchronous approach such as UNCLE
(Unified NULL Convention Logic Environment) [82], Tangram [65,83–88], CHP (communicating
hardware processes) [89–95], BALSA [96], asynchronous circuit compiler [97–100], Petrify [101–103]
and various other tools [104–113], as the asynchronous circuit design promises to overcome the
limitations posed by the synchronous logic due to technology scaling [114].

An FPA requires various operations of variable latencies, and the asynchronous design approach
can utilize this feature of FPA to optimize its speed and energy consumption. The asynchronous
approach is capable of indicating the process completion as soon as the computation is done, therefore,
the AFPA does not have to wait for the worst-case delay if the current computation has finished
earlier than that; and the power rail would go to ideal state if there is no ongoing activity. However,
limited research work is available on implementing an FPA using asynchronous approach, and all of
them have utilised dual-rail coding for completion detection. This paper aims to review the existing
designs of asynchronous floating-point adder (AFPA). The organization of the rest of the manuscript is
as follows: Section 2 discusses the basic algorithm of floating-point adders. Various communication
protocols used to control the datapath of asynchronous circuits are discussed in Section 3. Section 4
reviews the existing asynchronous floating-point adder designs. A summarised comparison of various

Electronics 2020, 9, 1687 4 of 23

AFPA design is provided in Section 5 along with a discussion of the scope of implementing an AFPA
using bundled data protocol, followed by the conclusion in Section 6.

2. Basic Operation of Floating-Point Adder

The implementation of a floating-point adder is more complicated than an integer adder,
as floating-point numbers cannot perform addition/subtraction without a few essential preliminary
steps, which consists of at least six operations with different computation time [115]. Floating-point
numbers are represented using the IEEE754 format developed by the Technical Committees of the
IEEE Societies [116,117], and it is widely accepted by academics and industries.

A standard floating-point representation is shown in Figure 2 with sign bit S, characteristics E,
and significand. The mantissa M is represented as ’h.significand’; ‘h’ is the hidden bit that is not stored
in the memory, but it is used for computation, and the value of the hidden bit is always 1.

Figure 2. Floating-point representation.

There are two primary floating-point representations defined in the IEEE754 format: Single-Precision
and Double Precision, as shown in Figure 3. A single-precision floating-point number is 32-bit
long: the MSB is the sign bit, the next eight bits the exponent, and the final 23-bits the significand.
A double-precision floating-point number is 64-bits. The MSB represents the sign bit, followed by an
11-bit exponent and a 52-bit significand. The hidden bit ‘1’ is virtually present in both representations
with the significand to provide the mantissa.

Figure 3. Floating-point representation format.

Figure 4 shows the basic algorithm to add/subtract two floating-point numbers A and B,
as explained in the following steps, where operands A and B are represented in the IEEE format
as SA EA MA and SB EB MB, respectively.

Step 1: Calculate the exponent difference: d = |EA − EB|
Step 2: Alignment: Monitor the carry Cout to identify the smaller operand. The smaller operand

needs to be shifted by amount d before performing addition and the larger operand is directly fed to
the adder.

Step 3: The shifter output is fed to the XOR gates with a Control signal such that:

Electronics 2020, 9, 1687 5 of 23

If Control = 0, effective operation is addition. The shifted mantissa from Step 2 would be
transferred as it is to the adder with Cin = 0, as performing XOR operation with zero bit would provide
the same variable, i.e., x⊕ 0 = x

If Control = 1, effective operation is subtraction. 2’s complement of the shifted mantissa from
Step 2 would be transferred to the adder, as performing XOR operation with one bit would provide
the complement of the variable, i.e., x ⊕ 1 = x′ and Cin = 1 would provide the additional 1 for 2’s
complement. The sign of the result would be calculated by the sign computation block.

Step 4: Add the shifted mantissa with the mantissa of the other number. The summation output
is sent to the normalization unit to provide the final outcome in the IEEE format. The normalization
unit performs the following operations:

• Convert the resultant mantissa into a signed magnitude format, find the 2’s complement of the
result if it is negative.

• Leading One Detector (LOD): Detect the leading one in the result after subtraction operation,
to find the amount required for left shifting.

• For addition operation, either no shifting or maximum 1-bit right shifting is required.
• Convert the result into the standard IEEE format.
• Rounding: Round off the bits shifted out due to normalization.

Figure 4. Basic asynchronous floating-point adder (AFPA) architecture.

Electronics 2020, 9, 1687 6 of 23

The basic algorithm is modified by several researchers to improve the performance of the FPA.
For example, introducing the FAR/CLOSE algorithm to utilize two paths for two different cases of
subtraction [34,39,42], or by replacing LOD with LZA [34–38] to mention a few modifications. It is
evident from the basic steps of floating-point addition algorithm that FPA requires various operations
with variable computational time in order to provide the final output. The synchronous FPA, however,
cannot take the advantage of variable computational time as the time-period of the clock signal is
fixed, which is calculated according to the critical path delay or the worst-case delay. It cannot start
the next task unless the next clock pulse is available, even if the ongoing computation has finished
earlier than the critical path delay. On the other hand, some asynchronous implementations of FPAs
can indicate process completion as soon as the computation is done, and therefore do not have to
wait for the worst-case delay if the current computation has finished earlier than that. However,
asynchronous design approach requires communication protocol to indicate that the process is done
before sending the acknowledge signal, as there is no global clock to synchronize the timings. The next
section discusses the communication protocols used for asynchronous circuits and compares the effect
of different communication protocols on asynchronous circuit design.

3. Communication Protocols for Asynchronous Designs

The absence of a global clock in asynchronous circuits has the potential to overcome the clock
distribution and clock skew related challenges, but it creates the need for a communication protocol to
detect the process completion and data validity [48,118,119]. As asynchronous circuits are event-driven,
a circuit becomes active only after receiving a request signal and goes back to an inactive state once the
process is complete and sends the acknowledge signal. This process is controlled by the communication
protocol in asynchronous circuits with the help of data encoding, and the most widely accepted
encoding protocols are

1. Bundled Data Scheme: In the bundled data scheme, a single bit is encoded with one wire [81]
similar to the synchronous circuit [120], hence, it is also known as Single-Rail Protocol.

The circuit starts its process after receiving a request signal REQ and sends acknowledgment
ACK after the worst-case delay required by the critical path of the circuit to ensure the process
completion and data validity, as shown in Figure 5.

Figure 5. Worst-Case Bundled-data completion detection technique.

2. Dual-Rail Protocol: In the dual-rail protocol, a single bit is encoded with two wires. To encode
n-bit data ‘d’, 2n wires are required (d.t and d.f for the true and false value of data, respectively),
and the request signal is encoded with the data [121], as shown in Figure 6.

Once the data is available at the receiver, a completion detection circuit is used to determine
the value of data ‘d’ by observing the d.t and d.f signals. This implies that the dual-rail coding
requires more implementation area compared to bundled data or synchronous design, but it can
indicate the data validity as soon as the computation is done. However, detection of valid data
from d.t and d.f signals requires a completion detection technique, which needs an additional
process delay, and it might not deliver the anticipated outcome.

Electronics 2020, 9, 1687 7 of 23

Figure 6. Dual-rail encoding protocol.

The other protocols used to encode data are special cases of M-of-N encoding, in which log2N
bits can be represented using N wires, and one extra wire is used to send the acknowledgment [122].
Circuits with such encoding are known as quasi-delay insensitive (QDI) circuits as it assumes a finite
gate and wire delays [123–125]. Dual-rail coding is also a special case of M-of-N encoding with M = 1
and N = 2 [126].

Most of the asynchronous circuit designs utilize either bundled data or dual-rail coding to
indicate the process completion. However, all of the existing designs of AFPA utilize dual-rail coding,
as dual-rail design encodes the information of data validity with the data and allows the circuit
to acknowledge as soon as the computation is done. The asynchronous design of AFPA is rarely
discussed, and next section discusses all the existing designs of AFPA in detail.

4. Asynchronous Floating-Point Adders

The asynchronous implementation of floating-point adders has not been explored much, and most
researchers have focused mainly on implementing asynchronous floating-point multiplication
and division operations [127–131]. This could perhaps be due to the complexity involved in
FPA implementation. The floating-point addition operation consists of various operations of
variable latencies: mantissa shifting for exponent matching, addition of aligned mantissa, rounding,
and normalization of the computed output. The synchronous FPA utilizes the worst-case delay to
determine the clock frequency, hence, there is no need to worry about the process completion, as every
process can complete within or before the worst-case delay. However, 60–90% of the addition process
can take the benefit of early completion [132]. Implementing an asynchronous floating-point adder by
replacing the clock pulse with REQ and ACK signals can take advantage of early completion detection
and reduce the processing time from worst-case delay to average-case delay. The next section discusses
the existing AFPA architecture proposed by Noche and Jose [133], Sheikh and Manohar [134–136],
and Jun and Wang [115], and these are the only designs available in literature that discusses the
implementation of AFPA architecture. The MTNCL approach discussed in [137] does not provide any
details on implementing the AFPA; however, this paper is included for the review since it provides the
performance comparison of floating-point addition/subtraction operations for both synchronous and
asynchronous floating-point co-processor.

4.1. Single-Precision AFPA

This section discusses a single-precision asynchronous floating-point unit (AFPU) implemented
using a variable latency algorithm proposed by Noche and Jose [133]. This design introduces the
first asynchronous implementation of a single-precision floating-point adder [136] along with other
arithmetic operations, while all the previous implementations of floating-point units have focused
on multiplication or division operations. The design has used dual-rail differential cascode voltage
switch (DCVS) logic for datapath and complementary metal-oxide semiconductor (CMOS) logic for
the control path. The AFPU is designed at transistor level using 3.3 V supply voltage and 0.35 µm

Electronics 2020, 9, 1687 8 of 23

process, and Cadence software is used to design and test the arithmetic unit at the transistor level.
This paper discusses the performance of AFPU for addition operation only.

Registers and adders are the two key components of the datapath for addition operation.
Bidirectional shift registers are used to implement the shifter circuit required for exponent matching
and normalization with a provision of rounding bit [138]. The two adders required to find the exponent
difference and mantissa addition are designed by using 9-bit and 25-bit Carry Lookahead Adders
(CLA), respectively [139]. DCVS multiplexers are used to select inputs for registers and adders, and it
would be replaced by OR gates to optimize the design if the dual-rail inputs will never be active at the
same time. The control circuitry of the AFPU includes logic gates, SR latches, and C-elements [140].
The asynchronous floating-point addition operation is event-driven, and it has utilized the dual-rail
protocol with four-phase signaling to detect the process completion.

The process completion time reported by Noche and Jose for single-precision AFPA (SPAFPA)
includes

• Time required for unpacking the operands tun
• Time required to check for exceptions in input data (Not a number, zero, or infinity) tas, typically 8

to 9 ns.
• Time required to determine larger operand tad
• Time required to match the exponents d × taa, where d = |EA − EB|
• Time required to provide the final outcome tal , it will be small if the result is zero, and large

for a negative result. However, value of tal is less compared to the shift operation, therefore,
the average value of tal is considered during computation.

The completion time t can be calculated as

t = tun + tas + tad + d× taa + tal ≈ aa × d + ba ≈ (22.8× d + 59)ns (1)

For a single-precision operand, the value of d ranges from 0 to 254, providing the addition
completion time ranges from 59 ns to 5850.2 ns, as reported by Noche and Jose. Simulation is
performed using 248 test vectors at 25 oC with 5 fF (femtofarad) capacitance connected at the output.
The average addition completion time reported is 127.4 ns for ten applications from the SPECfp92
benchmark suite.

Figure 7. Addition completion times (ordinary cases) in ns as a function of |EA − EB| [133].

A graph has been plotted by Noche & Jose between the addition completion time and exponent
difference |EA − EB| for ordinary cases (no exceptions), as shown in Figure 7. The computation time for
the critical path of SPAFPA might be greater than the worst-case delay of its synchronous equivalent,
but the computation time is much shorter when the exponent difference ‘d’ is small. Cases with a

Electronics 2020, 9, 1687 9 of 23

large shift amount are not common, and 45% of cases have the shift amount either 0 or 1 [129,134]
and as such the speed of the AFPA is much improved over its synchronous counterpart. A single test
case to add two random numbers 4,195,835 and 3,145,727 has been also considered by Noche & Jose
to evaluate the SPAFPA performance. The computation is done in 79.0 ns with 0.32 nJ energy and
4.08 mW power consumption.

The SPAFPA design focuses to reduce the processing time from the worst-case delay to
average-case delay. Serial architecture is used to implement an area-efficient design, and the AFPU
is designed by using 17,085 transistors only. However, it uses shift registers to shift the data for
exponent matching, in which the processing time ts is directly proportional to the exponent difference
‘d’. This would reduce the speed of the SPAFPA if the value of ‘d’ is large. A logarithmic/barrel shifter
would be a better choice for shifter as an N-bit barrel shifter requires only log2N stages to implement,
therefore reducing the processing time of shifting operation [141–143]. Furthermore, CLA can be
replaced by a faster average case adder such as a parallel prefix adder, carry select adder, ripple carry
adder [144], or any advanced adder design, as discussed in the next section. Shifter and adder are
two basic modules of AFPA, and improving the processing time of these modules would optimize the
processing time of AFPA.

4.2. Operand-Optimized Double-Precision AFPA

Noche and Joes claim to have reduced the process completion time from worst-case to average-case
for a single-precision AFPA [133], but the processing time does not include the time to compute
the rounding logic. Moreover, the design is completely non-pipelined, and it does not use any
other energy optimization technique. Pipelining is a technique where multiple tasks are executed in
parallel for different data values and consequently optimize the output, and several asynchronous
pipelining techniques are used to optimize the throughput [105,145–153]. Sheikh & Manohar [136]
have designed an operand-optimized double-precision AFPA (DPAFPA) along with all four rounding
logic, as discussed in this section. The performance of the DPAFPA was compared with a baseline
high performance AFPA, and the operating conditions were as follows: Temperature is 25 oC with
1 V supply voltage, in a 65 nm bulk CMOS process at typical-typical (TT) corner. The baseline AFPA
consists of a 56-bit Hybrid Kogge Stone Carry Select Adder (HKSCSA) to add mantissa. The adder
provides two speculative sum output for two different values of carry-in, and the final output will
be selected at the final stage according to the actual value of carry-in. Dual-rail protocol is used with
1-of-4 encoding and radix-4 arithmetic to optimize the energy and speed requirements.

Normalization is done in parallel with the addition operation by using the Leading One Predictor
(LOP) technique. The shift amount is speculated by the LOP, and the final outcome has to be shifted by
one bit if the estimated shift amount is wrong [43]. The datapath is divided into two separate pipelines
(Left and Right) to normalize the summation output. The left pipeline is used for a massive left shift
required due to subtraction operation, and all other cases are managed by the right pipeline. 30 pipeline
stages are used in datapaths with minimal increase in latency. It has utilized the pre-charge enable
half-buffer (PCEHB) pipeline for all data computation [154], which is faster and more energy-efficient
compared to the original pre-charge half-buffer (PCHB) pipeline [155]. Moreover, it uses weak
condition half-buffer (WCHB) in spite of PCEHB for simple buffers and tokens, as it is more energy
efficient. A detailed power breakdown of the FPA datapath is shown in Figure 8, which indicates that
addition is the highest power-consuming operation, followed by the right shift operation. The DPAFPA
design proposed by Sheikh improves the power saving compared to the baseline AFPA by making the
following changes:

• The HKSCSA is replaced by an interleaved asynchronous adder, which utilizes two ripple-carry
adders of radix-4. Both of the ripple-carry adders can perform parallelly for different input
operands, one adder is used to add even operand pairs, and the other one adds odd operand
pairs. The length of maximum carry-chain is seven for radix-4 arithmetic for approximately
90% cases, and the requirement of energy/operation by an interleaved adder is 2.9 pJ/op for

Electronics 2020, 9, 1687 10 of 23

the carry length less than 15 with a throughput of 2.2 GHz. On the contrary, the 56-bit adder
(HKSCSA) used by the baseline FPA needs 13.6 pJ/op with a throughput of 2.17 GHz. Therefore,
the reduction in power consumption by an interleaved adder is more than four times compared
to HKSCSA. The number of transistors required by a 56-bit adder is also reduced by 35% for
interleaved adders.

• The right shifter is designed by using three pipeline stages: Stage 1 shifts the mantissa between 0
to 3 bits, Stage 2 shifts the mantissa by 0, 4, 8, or 12 bits, and Stage 3 shifts the mantissa by 0, 16,
32 or 48 bits. The computation time of shifter to shift the mantissa between 0 to 55 bits is fixed in
baseline AFPA. Sheikh’s AFPA design has split the shifter into two paths: long path and short
path, which allows the shifter to select a path according to the shift amount and bypass the other
path. The shifter design is data-driven, and it can optimize power consumption.

• The LOP scheme is modified in the design, and only one pipeline (either left or right) is used for
normalization. The selection of the left or right pipeline is made before activating the LOP stage.
The left and right pipelines provide up to 13% and 18% of power-saving, respectively, compared
to baseline AFPA.

• The post-add right pipeline manages the left/right 1-bit shifter, 53-bit mantissa incrementor,
rounding operation, and calculation of the final value of the exponent. The DPAFPA design
uses the interleaved incrementor, similar to the interleaved adder, compared to the carry-select
incrementor used by the baseline AFPA. It will make DPAFPA more energy efficient.

• The design can detect the zero input operands. If one or both operands are zero, the final outcome
can be given without using the power-consuming blocks of AFPA.

Figure 8. Data encoding protocols [136].

The DPAFPA design requires 30.2 pJ/op, compared to the baseline AFPA, which consumes
69.3 pJ/op, resulting in 56.7% of reduction in energy consumption [136]. The performance of DPFPA is
also compared with a synchronous FPA proposed by Quinnell [156], as it is one of the rare designs
of fully implemented FPA and it provided a good baseline for analyzing the performance of DPFPA.
The synchronous is FPA designed using a standard-cell library with 65 nm SOI (Silicon-On-Insulator)
process. Performance comparison of DPAFPA, baseline FPA and a synchronous design of FPA
considered by Sheikh & Manohar is given in Table 1 [136].

Table 1. Comparison of DPAFPA with baseline FPA and synchronous FPA [136].

S. No. Name Process VDD Frequency Latency Power Energy/ GFLOPS/W(Volts) (GHz) (ps) (mW) Operation (pJ)

1 DPAFPA 65 nm 1 2.15 1060 64.9 30.2 33.1
2 Baseline AFPA 65 nm 1 2.15 1098 149 69.3 14.5
3 Synchronous FPA [156] 65 nm SOI 1.3 666 946 118 177.17 5.64

Electronics 2020, 9, 1687 11 of 23

GFLOPS (gigaflops) is used to measure the performance of a floating-point unit (FLOPS—
floating-point operations per second). A high GFLOPS/W for the proposed DPFPA [136] makes
the asynchronous design scheme suitable for optimizing the circuit performance. The input set for
both baseline AFPA and DPFPA is taken for the right shift amount ranging from 0 to 3, and it considers
only non-zero operands.

The use of interleaved adders and shifters helped to reduce the power consumption of the circuit.
The shifter architecture is also split and implemented with pipelines, therefore reducing the processing
time and power consumption of the circuit. A gate-level simulation tool PRISM is used to design
and test AFPA, by using ten billion random input operands, and one billion stored inputs from
actual application benchmark. The design is also tested for exceptions (NaN, Zero, Infinity, Denormal
numbers). This design implementation of DPAFPA focuses mainly on reducing energy/operation and
power consumption using the pipelining technique, with minimal increment in the processing time.

4.3. Double-Precision AFPA with Operand-Dependent Delay Elements

The desynchronization technique provides better performance compared to the synchronous
design [140,157], and it can also be used to implement the AFPA. However, it cannot take advantage
of the event-driven nature of asynchronous circuits, as the clock signal is replaced by worst-case
delay models during desynchronization. Xu and Wang [115] have examined the speed of various
sub-operation required to perform floating-point addition and proposed an AFPA design with
operand-dependent delay elements, as discussed in this section. A synchronous FPA [158] is used as
the baseline (by Xu and Wang), which has the FAR/CLOSE path architecture, a balanced 56-bit shifter
with LOP, and rounding by injection technique. This synchronous FPA is redesigned by Xu and Wang
by using asynchronous logic with variable-length delay elements to utilize its event-driven property.
Various sub-operations of AFPA with different computation time should be identified in order to select
the delay models. At least six operations processing at different speeds have been identified [115]
as follows:

1. The computation time can be reduced if the computation involves zero because most of the steps
of floating-point addition can be skipped.

2. CLOSE path computation time: depends upon the computation time of LOP and compound
adder.

3. FAR path computation time: It can be further calculated depending upon the value of
exponent difference.

(a) BIG_FAR computation time: The exponent difference is more than 56 for double-precision FPA.
(b) NOM_FAR computation time: The exponent difference is less than 56 for double-precision FPA.

4. The FPA design supports EVZOUI (E-unimplemented, V-invalid, Z-divide by zero, O-overflow,
U-underflow, I-inexact) exceptions, and E and I exceptions can be detected at the initial stages
depending upon the input operands.

(a) Computation time for evaluating E exceptions.
(b) Computation time for evaluating I exceptions.

It is evident from the above discussion that at least six delay elements with variable latencies
are required. However, Xu and Wang have used only three variable-length delay elements with six
multiplexers to design AFPA to reduce the area overhead. A two-phase MOUSETRAP pipelining [159]
is used instead of master-slave latches, and it utilized dual-rail protocol for completion detection
to generate control information. A total of 10,000 random inputs are taken for simulation from six
benchmarks. The design claims to improve the speed of proposed AFPA by 33%, reduce the energy
consumption 12% but increase the area by 5% compared to its synchronous counterpart.

Electronics 2020, 9, 1687 12 of 23

4.4. Multi-Threshold NULL Convention Logic (MTNCL)

Liang et al. [137] have proposed a Multi-Threshold NULL Convention Logic (MTNCL) or Sleep
Convention Logic (SCL), which is a combination of Multi-Threshold CMOS (MTCMOS) with NULL
Convention Logic (NCL). MTCMOS is designed using transistors with different threshold voltages
(Vt) viz. Low Vt (high leakage current, fast speed) and High Vt (lesser leakage current, slower speed).
Low Vt and high Vt are combined to design MTCMOS to preserve the performance with less leakage.
MTCMOS has a sleep mode which maintains minimum power dissipation when the circuit is not active.
However, maintaining the sleep signal requires complex logic since it is critical to the timing constraints,
and transistor sizing and logic block partitioning is difficult for synchronous circuits. On the other
hand, NCL utilizes asynchronous dual-rail design, which requires two wires to implement a single bit,
along with a spacer or NULL signal as shown in Figure 6. Combining MTCMOS with NCL in MTNCL
allows the circuit to utilize the sleep mode during NULL logic without dealing with clock-related
challenges. A modification in the MTNCL architecture is done by placing the power gating high
Vt transistor to the pull-down network. This design is known as the Static MTNCL threshold gate
structure (SMTNCL), and it eliminates two bypass transistors and removes the output wake-up glitch.

Liang et al. have provided a comparison between a synchronous MTCMOS design and several
variations of NCL designs for single-precision floating-point co-processors. The performance of
co-processors is provided for addition/subtraction and multiplication operations, however, this paper
discusses the performance for addition/subtraction operations only. An average time TDD is
considered for MTNCL circuits to process both data and NULL, which is comparable to the
synchronous clock period. The multi-threshold designs do not provide any specific architecture for
AFPA, but these designs are considered in this survey paper due to less available literature on AFPA.

The comparison is given only for basic NCL designs (Low and High Vt), the best MTNCL design,
and the synchronous MTNCL design, as provided in Table 2 [137].

Table 2. Multi-Threshold NULL Convention Logic (MTNCL) Comparison [137].

Circuit Type Transistors TDD (ns) Energy/ Operation (pJ) Idle Power (nW)

MTCMOS Synchronous 104,571 10.0 124.3 156,000
NCL Low Vt 158,059 14.1 27.4 12,300
NCL High Vt 158,059 32.7 28.5 208.0

SMTNCL with SECRII w/o nsleep 90,041 10.0 12.1 112.1

It would require some basic understanding of available SMTNCL designs to understand their
reportedly best MTNCL (SMTNCL with SECRII w/o nsleep) architecture [137]. The basic design
of MTNCL uses the Early Completion Input-Incomplete (ECII) feature, which puts a stage to sleep
only when all the inputs are NULL. A variation of the design known as SECII puts the combinational
logic of NCL circuit to sleep during the NULL cycle to reduce power dissipation. Another variation
in the design known as SECRII makes the completion and registration logic to sleep along with the
combinational logic when the circuit is not active. Signals sleep and nsleep (sleep) are used to put the
circuit in sleep mode. However, when the SMTNCL circuit combines with bitwise MTNCL, it would
remove the need for nsleep signal, and provides the SMTNCL with SECRII w/o nsleep architecture.
This design is reported as the best design by Liang et al. [137] when simulated for 25 sets of randomly
selected floating-point numbers as it requires 86% less energy, three orders of magnitude less idle
power and 14% less area; however, the speed is slower (not less than 2×) compared to the synchronous
MTCMOS design.

Electronics 2020, 9, 1687 13 of 23

5. Discussion

The asynchronous circuit design has the potential to improve the performance of digital circuits,
especially in terms of speed and power consumption. It can also eliminate the limitations of
synchronous circuits imposed by clock signals due to technology scaling. The performance of existing
AFPA designs is analyzed in Section 4, and their comparison is given in Table 3.

Table 3 indicates that most of the asynchronous implementation of floating-point adders provides
better performance compared to their synchronous counterparts. However, all the existing AFPA
designs have been implemented using the dual-rail protocol, which requires two wires to implement
a single bit data. Moreover, the process of determining data validity in dual-rail circuits requires a
large number of gates, as each bit in the datapath needs to be examined in the process. The logic to
determine data validity might take a considerable amount of time and higher power consumption for
some applications, therefore, it may not deliver the anticipated outcome [160].

A different approach has been used to implement a few asynchronous circuits using the bundled
data scheme with completion detection techniques [112,161–165], which can indicate the data validity
as soon as the process is complete. A speculative completion detection scheme is designed for
asynchronous fixed-point adders [161,162], and for barrel shifters [163], where the datapath channel is
implemented with multiple delay models, including the worst-case delay. The bundled data adder
and shifter implementation using a speculative completion detection technique provided a better
performance compared to synchronous design without increasing the silicon area significantly like
dual-rail circuits. However, there is no design available for AFPA using bundled data protocol.
Shift and add are two fundamental operations of AFPA, and since a bundled data implementation
for asynchronous shifter and fixed-point adder are already available with a speculative completion
detection scheme, there exists a possibility of implementing a bundled data AFPA with speculative
completion detection technique. Moreover, the speculative design of a bundled data fixed-point adder
can be replaced by a deterministic completion detection technique adder proposed by Lai [165,166] to
further improve the AFPA performance.

Electronics 2020, 9, 1687 14 of 23

Table 3. Comparison of existing asynchronous floating-point adder (AFPA) designs.

Features/Citations SPAFPA [133] DPAFPA [136]
DPAFPA
with Operand-Dependent Delay
Elements [115]

SMTNCL with SECRII w/o
nsleep [137]

Floating-point
format Single-Precision Double-Precision Double-Precision Single-Precision

Adder CLA HKSCSA Not mentioned Not mentioned

Shifter Shift Registers Logarithmic Shifter Not mentioned Not mentioned

Pipeline Non-pipelined PCEHB and WCHB MOUSETRAP 4-stage pipeline

Communication
Protocol

Dual-Rail with 4-phase
handshaking

Dual-Rail with 4-phase
handshaking Dual-Rail Dual-Rail with 4-phase

handshaking

Processing Time

59 ns to 5850.2 ns for 0 ≤ d ≤ 254
and applications from SPECfp92
benchmark suite provide an average
time of 127.4 ns

737 ps for zero operand cases and
1060 ps for non-zero operands with
shift align (0–3); Latency reduction
by 32.8% and 3.5% respectively

Six benchmarks with 10,000
operand pairs are designed, and it
provides 33% performance
advantage over its synchronous
version

Requires more processing time than
synchronous MTCMOS for 25 sets
of randomly selected floating-point
nos. (not more than 2×)

Energy and Power
Consumption

Energy consumption is 0.32 nJ and
power dissipation is 4.08 mW,
reported for addition of two random
operands 4,195,835 and 3,145,727

Energy consumption is 30.2 pJ and
power dissipation is 464.9 mW,
for non-zero operands with shift
align (0–3); 56.7% reduction in
energy consumption

Energy consumption is 12% less
than its synchronous version and
15% less energy than
desynchronized design, for six
benchmarks with 10,000 operand
pairs

86% less energy, and three orders of
magnitude less idle power than the
synchronous MTCMOS design for
25 sets of randomly selected
floating-point nos.

Area
Serial architecture is used and the
AFPU is implemented by using only
17,085 transistors

12% less transistors are used
compared to baseline AFPA

5% more area required compared
to the desynchronized design

14% less area than the synchronous
MTCMOS design

Other Features 0.35 µm process, 3.3 V, 25 ◦C 65 nm bulk process, 1 V, 25 ◦C 65 nm process 130 nm process, 1.2 V

Electronics 2020, 9, 1687 15 of 23

6. Conclusions

Floating-point addition and subtraction are the most frequent arithmetic operation in the typical
scientific applications, yet very few research articles are available for the design of asynchronous
floating-point adder. The existing designs of AFPA are designed using dual-rail coding which
requires a large implementation area, but their speed and power consumption has been improved
compared to their baseline FPA. This survey paper discussed all the four existing designs of AFPA,
comparing different performance features with their respective baseline FPA. An absolute comparison
of all the designs is not possible as all the existing designs have different performance features;
however, these are the only implementation of AFPA available in the literature and it shows that
the asynchronous design technique has the potential to improve the performance of AFPA. It also
discusses the probable outcome of AFPA designed using bundled data protocol using some completion
detection technique.

Author Contributions: Conceptualization, P.S.; Formal analysis, P.S. and E.C.; Investigation, P.S.; Methodology, P.S.
and E.C.; Writing—original draft preparation, P.S.; Writing—review and editing, P.S., E.C. and S.O.; Supervision,
E.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Regional Development Fund in the Research Centre of
Advanced Mechatronic Systems project, grant number CZ.02.1.01/0.0/0.0/16_019/0000867 within the Operational
Programme Research, Development, and Education.

Acknowledgments: This work is supported by Taylor’s University under its TAYLOR’S RESEARCH
SCHOLARSHIP programme through grant TUFR/2017/001/01.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ACK Acknowledge
AFPA Asynchronous Floating-Point Adder
AFPU Asynchronous Floating-Point Unit
CHP Communicating Hardware Processes
CLA Carry Lookahead Adders
CMOS Complementary Metal-Oxide Semiconductor
DCVS Differential Cascode Voltage Switch
DPAFPA Double-Precision Asynchronous Floating-Point Adder
ECII Early Completion Input-Incomplete
EDA Electronics Design Automation
fF femtofarad
FLOPS Floating-Point operations per second
FPA Floating-Point Adder
FPGA Field Programmable Gate Array
GFLOPS Gigaflops
HKSCSA Hybrid Kogge Stone Carry Select Adder
IAS Institute for Advanced Study
LOD Leading One Detector
LOP Leading One Predictor
LZA Leading Zero Anticipator
MSB Most Significant Bit
MTCMOS Multi-Threshold CMOS
MTNCL Combination of MTCMOS with NCL
NCL Null Convention Logic
ORDVAC Ordnance Discrete Variable Automatic Computer
PCEHB Pre-Charge Enable Half-Buffer

Electronics 2020, 9, 1687 16 of 23

PCHB Pre-Charge Half-Buffer
QDI Quasi-Delay Insensitive
REQ Request
SCL Sleep Convention Logic
SECII MTNCL with combinational logic slept
SECRII MTNCL with combinational, completion and registration logic slept
SMTNCL Static MTNCL
SOI ilicon-On-Insulator
SPAFPA Single-Precision Asynchronous Floating-Point Adder
TT typical-typical
UNCLE Unified NULL Convention Logic Environment
WCHB Weak condition half-buffer

References

1. Overton, M.L. Numerical Computing with IEEE Floating Point Arithmetic; Siam: Philadelphia, PA, USA, 2001.
2. Goldberg, D. What every computer scientist should know about floating-point arithmetic. ACM Comput.

Surv. (CSUR) 1991, 23, 5–48. [CrossRef]
3. Behrooz, P. Computer Arithmetic: Algorithms and Hardware Designs; Oxford University Press: New York, NY,

USA, 2000; Volume 19, pp. 512583–512585.
4. Joldeş, M.; Muller, J.-M. Algorithms for Manipulating Quaternions in Floating-Point Arithmetic.

In Proceedings of the IEEE 27th Symposium on Computer Arithmetic (ARITH), Portland, OR, USA, 7–10
June 2020.

5. Oberman, S.F.; Flynn, M.J. Design issues in division and other floating-point operations. IEEE Trans. Comput.
1997, 46, 154–161. [CrossRef]

6. Pappalardo, F.; Visalli, G.; Scarana, M. An application-oriented analysis of power/precision trade-off in fixed
and floating-point arithmetic units for VLSI processors. In Circuits, Signals, and Systems; Citeseer: Clearwater
Beach, FL, USA, 2004; pp. 416–421.

7. Haener, T.; Roetteler, M.; Svore, K. Quantum Circuit Libraries for Floating-Point Arithmetic. U.S. Patent No.
10,699,209, 30 June 2020.

8. Yamada, H.; Murabayashi, F.; Yamauchi, T.; Hotta, T.; Sawamoto, H.; Nishiyama, T.; Kiyoshige, Y.; Ido, N.;
Hitachi Ltd. Floating-Point Addition/substraction Processing Apparatus and Method Thereof. U.S. Patent
5,684,729, 4 November 1997.

9. Gorshtein, V.Y.; Grushin, A.I.; Shevtsov, S.R. Floating Point Addition Methods and Apparatus. U.S. Patent
5,808,926, 15 September 1998.

10. Kawaguchi, T. Floating Point Addition and Subtraction Arithmetic Circuit Performing Preprocessing of
Addition or Subtraction Operation Rapidly. U.S. Patent 5,931,896, 3 August 1999.

11. Iourcha, K.I.; Nguyen, A.; Hung, D. Fast Adder/Subtractor for Signed Floating Point Numbers. U.S. Patent
6,175,851, 16 January 2001.

12. Resnick, D.R.; Moore, W.T. Floating-Point Adder Performing Floating-Point and Integer Operations.
U.S. Patent 6,529,928, 4 March 2003.

13. Seidel, P.-M.; Even, G. Fast IEEE Floating-Point Adder. U.S. Patent 10/138,659, 20 March 2003.
14. Pangal, A.; Somasekhar, D.; Vangal, S.R.; Hoskote, Y.V. Floating Point Adder. U.S. Patent No. 6,889,241,

3 May 2005.
15. Lutz, D.R.; Hinds, C.N. Data Processing Apparatus and Method for Performing Floating Point Addition.

U.S. Patent No. 7,433,911, 7 October 2008.
16. Nystad, J. Floating-Point Adder. U.S. Patent No. 9,009,208, 14 April 2015.
17. Langhammer, M. Variable Precision Floating-Point Adder and Subtractor. U.S. Patent No. 10,055,195,

21 August 2018.
18. Quinnell, E.C. High Performance Floating-Point Adder With Full in-Line Denormal/Subnormal Support.

U.S. Patent No. 10,108,398, 23 October 2018.
19. Langhammer, M.; Pasca, B. Floating-Point Adder Circuitry with Subnormal Support. U.S. Patent Application

No. 15/704,313, 14 March 2019.

http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1109/12.565590

Electronics 2020, 9, 1687 17 of 23

20. Stiles, D. Method and Apparatus for Performing Floating Point Addition. U.S. Patent No. 5,764,556,
9 June 1998.

21. Eisen, L.E.; Elliott, T.A.; Golla, R.T.; Olson, C.H. Method and System for Performing a High Speed Floating
Point Add Operation. U.S. Patent No. 5,790,445, 4 August 1998.

22. Oberman, S.F. Floating Point Arithmetic Unit Including an Efficient Close Data Path. U.S. Patent No.
6,094,668, 25 July 2000.

23. Nakayama, T. Hardware Arrangement for Floating-Point Addition and Subtraction. U.S. Patent No.
5,197,023, 23 March 1993.

24. Govindu, G.; Zhuo, L.; Choi, S.; Prasanna, V. Analysis of high-performance floating-point arithmetic on
FPGAs. In Proceedings of the 18th International Parallel and Distributed Processing Symposium, Santa Fe,
NM, USA, 26–30 April 2004; p. 149.

25. Malik, A.; Ko, S.-B. Effective implementation of floating-point adder using pipelined LOP in FPGAs.
In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Saskatoon, SK, Canada,
1–4 May 2005; pp. 706–709.

26. Karlstrom, P.; Ehliar, A.; Liu, D. High performance, low latency fpga based floating point adder and
multiplier units in a virtex 4. In Proceedings of the 2006 NORCHIP, Linkoping, Sweden, 20–21 November
2006; pp. 31–34.

27. Akkaş, A. Dual-mode floating-point adder architectures. J. Syst. Arch. 2008, 54, 1129–1142. [CrossRef]
28. Tao, Y.; Deyuan, G.; Xiaoya, F.; Xianglong, R. Three-operand floating-point adder. In Proceedings of the

2012 IEEE 12th International Conference on Computer and Information Technology, Chengdu, China, 27–29
October 2012; pp. 192–196.

29. Ehliar, A. Area efficient floating-point adder and multiplier with IEEE-754 compatible semantics.
In Proceedings of the 2014 International Conference on Field-Programmable Technology (FPT), Shanghai,
China, 10–12 December 2014; pp. 131–138.

30. Mathis, B.; Stine, J. A Well-Equipped Implementation: Normal/Denormalized Half/Single/Double Precision
IEEE 754 Floating-Point Adder/Subtracter. In Proceedings of the 2019 IEEE 30th International Conference
on Application-specific Systems, Architectures and Processors (ASAP), New York, NY, USA, 15–17 July 2019;
Volume 2160, pp. 227–234.

31. Nannarelli, A. Tunable Floating-Point Adder. IEEE Trans. Comput. 2019, 68, 1553–1560. [CrossRef]
32. Hassan, H.S.; Ismail, S.M. CLA based Floating-point adder suitable for chaotic generators on FPGA.

In Proceedings of the 2018 30th International Conference on Microelectronics (ICM), Sousse, Tunisia, 16–19
December 2018; pp. 299–302.

33. Villalba, J.; Hormigo, J.; González-Navarro, S. Fast HUB Floating-point Adder for FPGA. IEEE Trans. Circuits
Syst. II Express Briefs 2018, 66, 1028–1032. [CrossRef]

34. Farmwald, P.M. On the Design of High Performance Digital Arithmetic Units; Stanford University: Stanford, CA,
USA, 1982.

35. Hokenek, E.; Montoye, R.K. Leading-zero anticipator (LZA) in the IBM RISC System/6000 floating-point
execution unit. IBM J. Res. Dev. 1990, 34, 71–77. [CrossRef]

36. Quach, N.; Flynn, M.J. Leading One Prediction-Implementation, Generalization, and Application; Computer
Systems Laboratory, Stanford University: Stanford, CA, USA, 1991.

37. Oklobdzija, V.G. An algorithmic and novel design of a leading zero detector circuit: Comparison with logic
synthesis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 1994, 2, 124–128. [CrossRef]

38. Suzuki, H.; Morinaka, H.; Makino, H.; Nakase, Y.; Mashiko, K.; Sumi, T. Leading-zero anticipatory logic for
high-speed floating point addition. IEEE J. Solid-State Circuits 1996, 31, 1157–1164. [CrossRef]

39. Oberman, S.F.; Al-Twaijry, H.; Flynn, M.J. The SNAP project: Design of floating point arithmetic units.
In Proceedings of the 13th IEEE Sympsoium on Computer Arithmetic, Asilomar, CA, USA, 6–9 July 1997;
pp. 156–165.

40. Pillai, R.; Al-Khalili, D.; Al-Khalili, A.J. A low power approach to floating point adder design. In Proceedings
of the International Conference on Computer Design VLSI in Computers and Processors, Austin, TX, USA,
USA, 12–15 October 1997; pp. 178–185.

41. Oberman, S.F.; Flynn, M.J. Reducing the mean latency of floating-point addition. Theor. Comput. Sci. 1998,
196, 201–214. [CrossRef]

http://dx.doi.org/10.1016/j.sysarc.2008.05.004
http://dx.doi.org/10.1109/TC.2019.2906907
http://dx.doi.org/10.1109/TCSII.2018.2873194
http://dx.doi.org/10.1147/rd.341.0071
http://dx.doi.org/10.1109/92.273153
http://dx.doi.org/10.1109/4.508263
http://dx.doi.org/10.1016/S0304-3975(97)00201-6

Electronics 2020, 9, 1687 18 of 23

42. Beaumont-Smith, A.; Burgess, N.; Lefrere, S.; Lim, C.-C. Reduced latency IEEE floating-point standard adder
architectures. In Proceedings of the 14th IEEE Symposium on Computer Arithmetic (Cat. No. 99CB36336),
Adelaide, Australia, 14–16 April 1999; pp. 35–42.

43. Bruguera, J.D.; Lang, T. Leading-one prediction with concurrent position correction. IEEE Trans. Comput.
1999, 48, 1083–1097. [CrossRef]

44. Nielsen, A.M.; Matula, D.W.; Lyu, C.N.; Even, G. An IEEE compliant floating-point adder that conforms
with the pipeline packet-forwarding paradigm. IEEE Trans. Comput. 2000, 49, 33–47. [CrossRef]

45. Seidel, P.-M.; Even, G. On the design of fast IEEE floating-point adders. In Proceedings of the 15th IEEE
Symposium on Computer Arithmetic, ARITH-15, Vail, CO, USA, 11–13 June 2001; pp. 184–194.

46. Renaudin, M. Asynchronous circuits and systems: A promising design alternative. Microelectron. Eng. 2000,
54, 133–149. [CrossRef]

47. Maitham Shams; Jo C. Ebergen; Mohamed I. Elmasry Asynchronous Circuits. Available online:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.1778&rep=rep1&type=pdf (accessed on 12
October 2020).

48. Spars, J.; Furber, S. Principles Asynchronous Circuit Design; Springer: Boston, MA, USA, 2002.
49. Tabassam, Z.; Naqvi, S.R.; Akram, T.; Alhussein, M.; Aurangzeb, K.; Haider, S.A. Towards Designing

Asynchronous Microprocessors: From Specification to Tape-Out. IEEE Access 2019, 7, 33978–34003.
[CrossRef]

50. Krstic, M.; Grass, E.; Fan, X. Asynchronous and GALS design-overview and perspectives. In Proceedings of
the 2017 New Generation of CAS (NGCAS), Genova, Genoa, 6–9 September 2017; pp. 85–88.

51. Shin, Z.; Oh, M.-H.; Lee, J.-G.; Kim, H.Y.; Kim, Y.W. Design of a clockless MSP430 core using mixed
asynchronous design flow. IEICE Electron. Express 2017, 14, 20170162. [CrossRef]

52. Davis, A.; Nowick, S.M. An introduction to asynchronous circuit design. Encycl. Comput. Sci. Technol. 1997,
38, 1–58.

53. Donno, M.; Ivaldi, A.; Benini, L.; Macii, E. Clock-tree power optimization based on RTL clock-gating.
In Proceedings of the 40th annual Design Automation Conference, Anaheim, CA, USA, 2–6 June 2003;
pp. 622–627.

54. Srivastava, N.; Manohar, R. Operation-Dependent Frequency Scaling Using Desynchronization. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 2018, 27, 799–809. [CrossRef]

55. Naqvi, S.R.; Veeravalli, V.S.; Steininger, A. Protecting an asynchronous NoC against transient channel
faults. In Proceedings of the 2012 15th Euromicro Conference on Digital System Design, Izmir, Turkey,
5–8 September 2012; pp. 264–271.

56. Wilcox, S.P. Synthesis of Asynchronous Circuits; University of Cambridge, Computer Laboratory: Cambridge,
UK, 1999.

57. Naqvi, S.R. An asynchronous router architecture using four-phase bundled handshake protocol.
In Proceedings of the International Multi-Conference on Computing in the Global Information Technology,
Venice, Italy, 24–29 June 2012; pp. 200–205.

58. Naqvi, S.R. A Non-Blocking Fault-Tolerant Asynchronous Networks-on-Chip Router; Technische Universität Wien:
Vienna, Austria, 2013.

59. Sadeghi, R.; Jahanirad, H. Performance-based clustering for asynchronous digital circuits. In Proceedings of
the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 238–243.

60. Wheeldon, A.; Morris, J.; Sokolov, D.; Yakovlev, A. Self-timed, minimum latency circuits for the internet of
things. Integration 2019, 69, 138–146. [CrossRef]

61. Rodrigo, F.L.P.B. FD-SOI Technology Opportunities for More Energy Efficient Asynchronous Circuits.
Ph.D. Thesis, Grenoble Alpes, Grenoble, France, 2019.

62. Oliveira, D.L.; Verducci, O.; Torres, V.L.; Saotome, O.; Moreno, R.L.; Brandolin, J.B. A Novel Architecture
for Implementation of Quasi Delay Insensitive Finite State Machines. In Proceedings of the 2018 IEEE XXV
International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru,
8–10 August 2018; pp. 1–4.

63. Davies, M.; Lines, A.; Dama, J.; Gravel, A.; Southworth, R.; Dimou, G.; Beerel, P. A 72-port 10G ethernet
switch/router using quasi-delay-insensitive asynchronous design. In Proceedings of the 2014 20th IEEE
International Symposium on Asynchronous Circuits and Systems, Potsdam, Germany, 12–14 May 2014;
pp. 103–104.

http://dx.doi.org/10.1109/12.805157
http://dx.doi.org/10.1109/12.822562
http://dx.doi.org/10.1016/S0167-9317(00)80065-9
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.1778&rep=rep1&type=pdf
http://dx.doi.org/10.1109/ACCESS.2019.2903126
http://dx.doi.org/10.1587/elex.14.20170162
http://dx.doi.org/10.1109/TVLSI.2018.2885335
http://dx.doi.org/10.1016/j.vlsi.2019.01.013

Electronics 2020, 9, 1687 19 of 23

64. Teifel, J.; Manohar, R. Highly pipelined asynchronous FPGAs. In Proceedings of the 2004 ACM/SIGDA 12th
International Symposium on Field Programmable Gate Arrays, Monterey, CA, USA, 28 February–2 March
2004; pp. 133–142.

65. van Gageldonk, H.; van Berkel, K.; Peeters, A.; Baumann, D.; Gloor, D.; Stegmann, G. An asynchronous
low-power 80C51 microcontroller. In Proceedings of the Fourth International Symposium on Advanced
Research in Asynchronous Circuits and Systems, San Deigo, CA, USA, 30 March–2 April 1998; pp. 96–107.

66. Fant, K.M. Logically Determined Design: Clockless System Design with NULL Convention Logic; Wiley: NewYork,
NY, USA, 2005.

67. Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Jackson, B.L.; Imam, N.;
Guo, C.; Nakamura, Y.; et al. A million spiking-neuron integrated circuit with a scalable communication
network and interface. Science 2014, 345, 668–673. [CrossRef]

68. Stevens, K.S.; Rotem, S.; Ginosar, R.; Beerel, P.; Myers, C.J.; Yun, K.Y.; Koi, R.; Dike, C.; Roncken, M.
An asynchronous instruction length decoder. IEEE J. Solid-State Circuits 2001, 36, 217–228. [CrossRef]

69. Singh, M.; Tierno, J.A.; Rylyakov, A.; Rylov, S.; Nowick, S.M. An adaptively pipelined mixed
synchronous-asynchronous digital FIR filter chip operating at 1.3 gigahertz. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 2009, 18, 1043–1056. [CrossRef]

70. Singh, M.; Tierno, J.A.; Rylyakov, A.; Rylov, S.; Nowick, S.M. An adaptively-pipelined mixed synchronous-
asynchronous digital FIR filter chip operating at 1.3 gigahertz. In Proceedings of the Eighth International
Symposium on Asynchronous Circuits and Systems, Manchester, UK, 8–11 April 2002; pp. 84–95.

71. Aeschlimann, F.; Allier, E.; Fesquet, L.; Renaudin, M. Asynchronous FIR filters: Towards a new digital
processing chain. In Proceedings of the 10th International Symposium on Asynchronous Circuits and
Systems, Crete, Greece, 19–23 April 2004; pp. 198–206.

72. Vezyrtzis, C.; Jiang, W.; Nowick, S.M.; Tsividis, Y. A flexible, event-driven digital filter with frequency
response independent of input sample rate. IEEE J. Solid-State Circuits 2014, 49, 2292–2304. [CrossRef]

73. Liu, T.-T.; Alarcón, L.P.; Pierson, M.D.; Rabaey, J.M. Asynchronous computing in sense amplifier-based pass
transistor logic. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2009, 17, 883–892.

74. Nielsen, L.S.; Sparso, J. Designing asynchronous circuits for low power: An IFIR filter bank for a digital
hearing aid. Proc. IEEE 1999, 87, 268–281. [CrossRef]

75. Chang, K.-L.; Chang, J.S.; Gwee, B.-H.; Chong, K.-S. Synchronous-logic and asynchronous-logic 8051
microcontroller cores for realizing the internet of things: A comparative study on dynamic voltage scaling
and variation effects. IEEE J. Emerg. Sel. Top. Circuits Syst. 2013, 3, 23–34. [CrossRef]

76. Christmann, J.F.; Beigne, E.; Condemine, C.; Leblond, N.; Vivet, P.; Waltisperger, G.; Willemin, J. Bringing
robustness and power efficiency to autonomous energy harvesting microsystems. In Proceedings of the 2010
IEEE Symposium on Asynchronous Circuits and Systems, Grenoble, France, 3–6 May 2010; pp. 62–71.

77. Shepherd, P.; Smith, S.C.; Holmes, J.; Francis, A.M.; Chiolino, N.; Mantooth, H.A. A robust, wide-temperature
data transmission system for space environments. In Proceedings of the 2013 IEEE Aerospace Conference,
Big Sky, MT, USA, 2–9 March 2013; pp. 1–13.

78. Peper, F.; Lee, J.; Adachi, S.; Mashiko, S. Laying out circuits on asynchronous cellular arrays: A step towards
feasible nanocomputers?. Nanotechnology 2003, 14, 469. [CrossRef]

79. Vacca, M.; Graziano, M.; Zamboni, M. Asynchronous solutions for nanomagnetic logic circuits. ACM J.
Emerg. Technol. Comput. Syst. (JETC) 2011, 7, 15. [CrossRef]

80. Karaki, N.; Nanmoto, T.; Ebihara, H.; Utsunomiya, S.; Inoue, S.; Shimoda, T. A flexible 8b asynchronous
microprocessor based on low-temperature poly-silicon TFT technology. In Proceedings of the ISSCC,
2005 IEEE International Digest of Technical Papers, Solid-State Circuits Conference, San Francisco, CA, USA,
10 February 2005; pp. 272–598.

81. Kondratyev, A.; Lwin, K. Design of asynchronous circuits using synchronous CAD tools. IEEE Des.
Test Comput. 2002, 19, 107–117. [CrossRef]

82. Reese, R.B.; Smith, S.C.; Thornton, M.A. Uncle-an rtl approach to asynchronous design. In Proceedings of
the 2012 IEEE 18th International Symposium on Asynchronous Circuits and Systems, Lyngby, Denmark, 7–9
May 2012.

83. van Berkel, K. Handshake Circuits: An Asynchronous Architecture for VLSI Programming; Cambridge University
Press: Cambridge, UK, 1993.

http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.1109/4.902762
http://dx.doi.org/10.1109/TVLSI.2009.2019660
http://dx.doi.org/10.1109/JSSC.2014.2336532
http://dx.doi.org/10.1109/5.740020
http://dx.doi.org/10.1109/JETCAS.2013.2243031
http://dx.doi.org/10.1088/0957-4484/14/4/312
http://dx.doi.org/10.1145/2043643.2043645
http://dx.doi.org/10.1109/MDT.2002.1018139

Electronics 2020, 9, 1687 20 of 23

84. van Berkel, K.; Burgess, R.; Kessels, J.L.; Peeters, A.; Roncken, M.; Schalij, F. A fully asynchronous low-power
error corrector for the DCC player. IEEE J. Solid-State Circuits 1994, 29, 1429–1439. [CrossRef]

85. Peeters, A.; van Berkel, K. Single-rail handshake circuits. In Proceedings of the Second Working Conference
on Asynchronous Design Methodologies, London, UK, 30–31 May 1995; pp. 53–62.

86. Van Berkel, K.; Burgess, R.; Kessels, J.; Peeters, A.; Roncken, M.; Schalij, F.; van de Wiel, R. A single-rail
re-implementation of a DCC error detector using a generic standard-cell library. In Proceedings of the Second
Working Conference on Asynchronous Design Methodologies, London, UK, 30–31 May 1995; pp. 72–79.

87. Kessels, J.; Kramer, T.; den Besten, G.; Peeters, A.; Timm, V. Applying asynchronous circuits in contactless
smart cards. In Proceedings of the Sixth International Symposium on Advanced Research in Asynchronous
Circuits and Systems (ASYNC 2000)(Cat. No. PR00586), Eilat, Israel, 2–6 April 2000; pp. 36–44.

88. Kessels, J.; Kramer, T.; Peeters, A.; Timm, V. DESCALE: A design experiment for a smart card application
consuming low energy. In European Low Power Initiative for Electronic System Design; Springer US: New York,
NY, USA, 2001; pp. 247–262.

89. Martin, A.J.; Burns, S.M.; Lee, T.-K.; Borkovic, D.; Hazewindus, P.J. The Design of an Asynchronous
Microprocessor. Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/a447727.pdf (accessed on 12
October 2020).

90. Martin, A.J.; Lines, A.; Manohar, R.; Nystrom, M.; Penzes, P.; Southworth, R.; Cummings, U.; Lee, T.K.
The design of an asynchronous MIPS R3000 microprocessor. In Proceedings of the Seventeenth Conference
on Advanced Research in VLSI, Ann Arbor, MI, USA, 15–16 September 1997; pp. 164–181.

91. Renaudin, M.; Vivet, P.; Robin, F. ASPRO: An Asynchronous 16-bit RISC Microprocessor with DSP
Capabilities. In Proceedings of the 25th European Solid-State Circuits Conference, Duisburg, Germany, 21–23
September 1999; pp. 428–431.

92. Manohar, R.; Kelly, C. Network on a chip: Modeling wireless networks with asynchronous VLSI.
IEEE Commun. Mag. 2001, 39, 149–155. [CrossRef]

93. Boahen, K.A. A burst-mode word-serial address-event link-I: Transmitter design. IEEE Trans. Circuits Syst. I
Regul. Pap. 2004, 51, 1269–1280. [CrossRef]

94. Patel, G.N.; Reid, M.S.; Schimmel, D.E.; DeWeerth, S.P. An asynchronous architecture for modeling
intersegmental neural communication. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2006, 14, 97–110.
[CrossRef]

95. Martin, A.J.; Moore, C.D. CHP and CHPsim: A Language and Simulator for Fine-Grain Distributed Computation;
Tech. Rep. CS-TR-1–2011; Department of Computer Science, California Institute of Technology: Pasadena,
CA, USA, 2011.

96. Edwards, D.; Bardsley, A. Balsa: An asynchronous hardware synthesis language. Comput. J. 2002, 45, 12–18.
[CrossRef]

97. Spear, C. System Verilog for Verification: A Guide to Learning the Testbench Language Features; Springer US.
Science & Business Media: Berlin, Germany, 2008.

98. Yakovlev, A.; Vivet, P.; Renaudin, M. Advances in asynchronous logic: From principles to GALS & NoC,
recent industry applications, and commercial CAD tools. In Proceedings of the Conference on Design,
Automation and Test in Europe, Grenoble, France, 18–22 March 2013; pp. 1715–1724.

99. Tiempo Secure. ACC: Asynchronous Circuit Compiler. Available online: Http://www.tiempoic.com/
products/sw-tools/acc.html (accessed on 23 December 2018).

100. Tiempo Secure. TAM16: 16-Bit Microcontroller IP Core. Available online: Http://www.tiempoic.com/
products/ip-cores/TAM16.html (accessed on 23 December 2018).

101. Cortadella, J.; Kishinevsky, M.; Kondratyev, A.; Lavagno, L.; Yakovlev, A. Petrify: A tool for manipulating
concurrent specifications and synthesis of asynchronous controllers. IEICE Trans. Inf. Syst. 1997, 80, 315–325.

102. Akram, T.; Naqvi, S.R.; Haider, S.A.; Kamran, M. Towards real-time crops surveillance for disease
classification: Exploiting parallelism in computer vision. Comput. Electr. Eng. 2017, 59, 15–26. [CrossRef]

103. Catalunya, U.P.d. Petrify: A Tool for Synthesis of Petri Nets and Asynchronous Circuits. Available online:
https://www.cs.upc.edu/~jordicf/petrify/distrib/home.html (accessed on 24 December 2018).

104. Theodoropoulos, G.K.; Tsakogiannis, G.; Woods, J. Occam: An asynchronous hardware description language?
In Proceedings of the EUROMICRO 97, 23rd EUROMICRO Conference: New Frontiers of Information
Technology (Cat. No. 97TB100167), Budapest, Hungary, 1–4 September 1997; pp. 249–256.

http://dx.doi.org/10.1109/4.340416
https://apps.dtic.mil/dtic/tr/fulltext/u2/a447727.pdf
http://dx.doi.org/10.1109/35.965373
http://dx.doi.org/10.1109/TCSI.2004.830703
http://dx.doi.org/10.1109/TVLSI.2005.863762
http://dx.doi.org/10.1093/comjnl/45.1.12
Http://www.tiempoic.com/products/sw-tools/acc.html
Http://www.tiempoic.com/products/sw-tools/acc.html
Http://www.tiempoic.com/products/ip-cores/TAM16.html
Http://www.tiempoic.com/products/ip-cores/TAM16.html
http://dx.doi.org/10.1016/j.compeleceng.2017.02.020
https://www.cs.upc.edu/~jordicf/petrify/distrib/home.html

Electronics 2020, 9, 1687 21 of 23

105. Endecott, P.; Furber, S.B. Modelling and Simulation of Asynchronous Systems Using the LARD Hardware
Description Language; SCS Europe BVBA: Machester, UK, 1998; pp. 39–43.

106. Kangsah, B.; Wollowski, R.; Vogler, W.; Beister, J. DESI: A tool for decomposing signal transition graphs.
In Proceedings of the 3rd ACiD-WG Workshop, Heraklion, Greece, 27–28 January 2003.

107. Bardsley, A.; Tarazona, L.; Edwards, D. Teak: A token-flow implementation for the balsa language.
In Proceedings of the 2009 Ninth International Conference on Application of Concurrency to System
Design, Augsburg, Germany, 1–3 July 2009; pp. 23–31.

108. Blunno, I.; Lavagno, L. Automated synthesis of micro-pipelines from behavioral Verilog HDL. In Proceedings
of the Sixth International Symposium on Advanced Research in Asynchronous Circuits and Systems (ASYNC
2000) (Cat. No. PR00586), Eilat, Israel, 2–6 April 2000; pp. 84–92.

109. WorkCraft. Available online: Https://workcraft.org/(accessed on 24 December 2018).
110. Electrical Engineering and NUS Engineering. Asynchronous High Level Synthesis Tool (VERISYN). Available

online: http://async.org.uk/besst/verisyn/ (accessed on 24 December 2018).
111. Sune Frankild and Hans P. Palbøl. Visual STG Lab. Available online: Http://vstgl.sourceforge.net/ (accessed

on 24 December 2018).
112. DEMO Session. Available online: Http://conferences.computer.org/async2007 (accessed on 2 January 2019).
113. Handshake-Solution. TideTimeless Design Environment. Available online: Http://www.

handshakesolutions.com (accessed on 2 January 2019).
114. Rahbaran, B.; Steininger, A. Is asynchronous logic more robust than synchronous logic?. IEEE Trans. Depend.

Secur. Comput. 2008, 6, 282–294. [CrossRef]
115. Xu, J.; Wang, H. Desynchronize a legacy floating-point adder with operand-dependant delay elements.

In Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro,
Brazil, 15–18 May 2011; pp. 1427–1430.

116. Coonen, J.T. Special Feature an Implementation Guide to a Proposed Standard for Floating-Point Arithmetic.
Computer 1980, 13, 68–79. [CrossRef]

117. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985 2008, l, 1–20. [CrossRef]
118. Nowick, S.M.; Singh, M. Asynchronous design—Part 1: Overview and recent advances. IEEE Des. Test 2015,

32, 5–18. [CrossRef]
119. Delvai, M.; Steininger, A. Solving the fundamental problem of digital design-a systematic review of design

methods. In Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD’06), Dubrovnik,
Croatia, 30 August–1 September 2006; pp. 131–138.

120. Bainbridge, J. Asynchronous System-on-Chip Interconnect; Springer London. Science & Business Media:
London, UK, 2013.

121. Gilchrist, B.; Pomerene, J.H.; Wong, S. Fast carry logic for digital computers. IRE Trans. Electron. Comput.
1955, EC-4, 133–136. [CrossRef]

122. Toosizadeh, N. Enhanced Synchronous Design Using Asynchronous Techniques. Ph.D. Thesis, University of
Toronto, Toronto, ON, Canada, 2010.

123. Clark, W.A. Macromodular computer systems. In Proceedings of the Spring Joint Computer Conference,
New York, NY, USA, 18–20 April 1967; pp. 335–336.

124. Stucki, M.J.; Ornstein, S.M.; Clark, W.A. Logical design of macromodules. In Proceedings of the Spring Joint
Computer Conference, New York, NY, USA, 18–20 April 1967; pp. 357–364.

125. Naqvi, S.R.; Najvirt, R.; Steininger, A. A multi-credit flow control scheme for asynchronous NoCs.
In Proceedings of the 2013 IEEE 16th International Symposium on Design and Diagnostics of Electronic
Circuits & Systems (DDECS), Karlovy Vary, Czech Republic, 8–10 April 2013; pp. 153–158.

126. Verhoeff, T. A Theory of Delay-Insensitive Systems. Ph.D. Thesis, Eindhoven University of Technology,
The Netherlands, 1994.

127. Williams, T.E.; Horowitz, M.A. A zero-overhead self-timed 160-ns 54-b CMOS divider. IEEE J. Solid-State
Circuits 1991, 26, 1651–1661. [CrossRef]

128. Matsubara, G.; Ide, N. A low power zero-overhead self-timed division and square root unit combining a
single-rail static circuit with a dual-rail dynamic circuit. In Proceedings of the Third International Symposium
on Advanced Research in Asynchronous Circuits and Systems, Eindhoven, The Netherlands, 7–10 April
1997; pp. 198–209.

Https://workcraft.org/
http://async.org.uk/besst/verisyn/
Http://vstgl.sourceforge.net/
Http://conferences.computer.org/async2007
Http://www.handshakesolutions.com
Http://www.handshakesolutions.com
http://dx.doi.org/10.1109/TDSC.2008.37
http://dx.doi.org/10.1109/MC.1980.1653344
http://dx.doi.org/10.1109/ieeestd.1985.82928
http://dx.doi.org/10.1109/MDAT.2015.2413759
http://dx.doi.org/10.1109/TEC.1955.5219482
http://dx.doi.org/10.1109/4.98986

Electronics 2020, 9, 1687 22 of 23

129. Won, J.-H.; Choi, K. Low power self-timed floating-point divider in 0.25 um technology. In Proceedings of
the 26th European Solid-State Circuits Conference, Stockholm, Sweden, 19–21 September 2000; pp. 113–116.

130. Chen, R.-D.; Chou, Y.-C.; Liu, W.-C. Comparative design of floating-point arithmetic units using the Balsa
synthesis system. In Proceedings of the 2011 International Symposium on Integrated Circuits, Singapore,
12–14 December 2011; pp. 172–175.

131. Sheikh, B.R.; Manohar, R. An asynchronous floating-point multiplier. In Proceedings of the 2012 IEEE
18th International Symposium on Asynchronous Circuits and Systems, Lyngby, Denmark, 7–9 May 2012;
pp. 89–96.

132. Wimer, S.; Albeck, A.; Koren, I. A low energy dual-mode adder. Comput. Electr. Eng. 2014, 40, 1524–1537.
[CrossRef]

133. Noche, J.R.; Araneta, J.C. An asynchronous IEEE floating-point arithmetic unit. Sci. Diliman 2007, 19.
134. Sheikh, B. Operand-Optimized Asynchronous Floating-Point Arithmetic Circuits. 2012. Available online:

https://ecommons.cornell.edu/bitstream/handle/1813/29239/brs39thesisPDF.pdf?sequence=1 (accessed
on 12 October 2020).

135. Manohar, R.; Sheikh, B.R. Operand-Optimized Asynchronous Floating-Point Units and Method of Use
Thereof. U.S. Patent No. 9,524,270, 20 December 2016.

136. Sheikh, B.R.; Manohar, R. An operand-optimized asynchronous IEEE 754 double-precision floating-point
adder. In Proceedings of the 2010 IEEE Symposium on Asynchronous Circuits and Systems, Grenoble,
France, 3–6 May 2010; pp. 151–162.

137. Zhou, L.; Parameswaran, R.; Parsan, F.A.; Smith, S.C.; Di, J. Multi-Threshold NULL Convention Logic
(MTNCL): An ultra-low power asynchronous circuit design methodology. J. Low Power Electron. Appl. 2015,
5, 81–100. [CrossRef]

138. Kishinevsky, M.; Kondratyev, A.; Taubin, A.; Varshavsky, V. Concurrent Hardware: The Theory and Practice of
Self-Timed Design; John Wiley & Sons, Inc.: New York, NY, USA, 1994.

139. Ruiz, G. Addition to “Evaluation of three 32-bit CMOS” adders in DCVS logic for self-timed circuits. IEEE J.
Solid-State Circuits 2000, 35, 1517. [CrossRef]

140. Blunno, I.; Cortadella, J.; Kondratyev, A.; Lavagno, L.; Lwin, K.; Sotiriou, C. Handshake protocols for
de-synchronization. In Proceedings of the 10th International Symposium on Asynchronous Circuits and
Systems, Crete, Greece, 19–23 April 2004; pp. 149–158.

141. Oberman, S.F. Design Issues in High Performance Floating Point Arithmatic Units. Ph.D. Thesis, Stanford
University, Stanford, CA, USA, 1996.

142. Thornton, J. Design of a Computer-The Control Data 6600; Scott, Foresman and Co.: Glenview, IL, USA, 1970.
143. Palmer, J.F.; Ravenel, B.W.; Nave, R. Numeric Data Processor. U.S. Patent No. 4,338,675, 6 July 1982.
144. Smith, S.C.; DeMara, R.F.; Yuan, J.S.; Hagedorn, M.; Ferguson, D. NULL Conv. Mult. Accumulate Unit Cond.

Rounding, Scaling, Saturation. J. Syst. Arch. 2002, 47, 977–998. [CrossRef]
145. Burleson, W.P.; Ciesielski, M.; Klass, F.; Liu, W. Wave-pipelining: A tutorial and research survey. IEEE Trans.

Very Large Scale Integr. (VLSI) Syst. 1998, 6, 464–474. [CrossRef]
146. Hauck, O.; Huss, S. Asynchronous wave pipelines for high throughput datapaths. In Proceedings of the

1998 IEEE International Conference on Electronics, Circuits and Systems Surfing the Waves of Science and
Technology (Cat. No. 98EX196), Lisboa, Portugal, 7–10 September 1998; Volume 1, pp. 283–286.

147. Lines, A.M. Pipelined Asynchronous Circuits. Ph.D. Thesis, California Institute of Technology, Pasadena,
CA, USA, 1998.

148. Molnar, C.E.; Jones, I.W.; Coates, W.S.; Lexau, J.K.; Fairbanks, S.M.; Sutherland, I.E. Two FIFO ring
performance experiments. Proc. IEEE 1999, 87, 297–307. [CrossRef]

149. Singh, M.; Nowick, S.M. MOUSETRAP: Ultra-high-speed transition-signaling asynchronous pipelines.
In Proceedings of the 2001 IEEE International Conference on Computer Design: VLSI in Computers and
Processors, ICCD, Austin, TX, USA, 23–26 September 2001; pp. 9–17.

150. Sutherland, I.; Fairbanks, S. GasP: A minimal FIFO control. In Proceedings of the Seventh International
Symposium on Asynchronous Circuits and Systems, ASYNC 2001, Salt Lake City, UT, USA, 11–14 March
2001; pp. 46–53.

151. Ozdag, R.O.; Beerel, P.A. High-speed QDI asynchronous pipelines. In Proceedings of the Eighth International
Symposium on Asynchronous Circuits and Systems, Manchester, UK, 8–11 April 2002; pp. 13–22.

http://dx.doi.org/10.1016/j.compeleceng.2014.04.012
https://ecommons.cornell.edu/bitstream/handle/1813/29239/brs39thesisPDF.pdf?sequence=1
http://dx.doi.org/10.3390/jlpea5020081
http://dx.doi.org/10.1109/JSSC.2000.871333
http://dx.doi.org/10.1016/S1383-7621(02)00060-7
http://dx.doi.org/10.1109/92.711317
http://dx.doi.org/10.1109/5.740022

Electronics 2020, 9, 1687 23 of 23

152. Winters, B.D.; Greenstreet, M.R. A negative-overhead, self-timed pipeline. In Proceedings of the Eighth
International Symposium on Asynchronous Circuits and Systems, Manchester, UK, 8–11 April 2002;
pp. 37–46.

153. Naqvi, S.R.; Lechner, J.; Steininger, A. Protection of Muller-Pipelines from transient faults. In Proceedings of
the Fifteenth International Symposium on Quality Electronic Design, Santa Clara, CA, USA, 3–5 March 2014;
pp. 123–131.

154. Fang, D.; Manohar, A. Non-uniform access asynchronous register files. In Proceedings of the 10th
International Symposium on Asynchronous Circuits and Systems, Crete, Greece, 19–23 April 2004; pp. 78–85.

155. Lines, A. Pipelined Asynchronous Circuits. Master’s thesis, California Institute of Technology, Pasadena,
CA, USA, 1995.

156. Quinnell, E.; Swartzlander, E.E.; Lemonds, C. Floating-point fused multiply-add architectures.
In Proceedings of the 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, CA, USA, 4–7 November 2007.

157. Andrikos, N.; Lavagno, L.; Pandini, D.; Sotiriou, C.P. A fully-automated desynchronization flow for
synchronous circuits. In Proceedings of the 44th annual Design Automation Conference, San Diego, CA,
USA, 4–8 June 2007; pp. 982–985.

158. Hu, W.; Wang, J.; Gao, X.; Chen, Y.; Liu, Q.; Li, G. Godson-3: A scalable multicore RISC processor with x86
emulation. IEEE Micro 2009, 29, 17–29. [CrossRef]

159. Singh, M.; Nowick, S.M. MOUSETRAP: High-speed transition-signaling asynchronous pipelines. IEEE Trans.
Very Large Scale Integr. (VLSI) Syst. 2007, 15, 684–698. [CrossRef]

160. Poole, N. Self-timed logic circuits. Electron. Commun. Eng. J. 1994, 6, 261–270. [CrossRef]
161. Nowick, S.M. Design of a low-latency asynchronous adder using speculative completion. IEE Proc.-Comput.

Digit. Tech. 1996, 143, 301–307. [CrossRef]
162. Nowick, S.M.; Yun, K.Y.; Beerel, P.A.; Dooply, A.E. Speculative completion for the design of high-performance

asynchronous dynamic adders. In Proceedings of the Third International Symposium on Advanced Research
in Asynchronous Circuits and Systems, Eindhoven, The Netherlands, 7–10 April 1997; pp. 210–223.

163. Beerel, P.A.; Kim, S.; Yeh, P.-C.; Kim, K. Statistically optimized asynchronous barrel shifters for variable
length codecs. In Proceedings of the 1999 International Symposium on Low Power Electronics and Design
(Cat. No. 99TH8477), San Diego, CA, USA, 17 August 1999; pp. 261–263.

164. Peter, A.B.; Kim, K.-S. Statistically Optimized Asynchronous Barrel Shifters for Variable Length Codecs.
J. Korean Inst. Commun. Inf. Sci. 2003, 28, 891–901.

165. Lai, K.K.; Chung, E.C.; Lu, S.-L.L.; Quigley, S.F. Design of a Low Latency Asynchronous Adder using Early
Completion Detection. J. Eng. Sci. Technol. 2014, 9, 755–772.

166. Lai, K.K. Novel Asynchronous Completion Detection For Arithmetic Datapaths; Tech. Rep.; Taylor’s University:
Subang Jaya, Malaysia, 2016.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MM.2009.30
http://dx.doi.org/10.1109/TVLSI.2007.898732
http://dx.doi.org/10.1049/ecej:19940604
http://dx.doi.org/10.1049/ip-cdt:19960704
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basic Operation of Floating-Point Adder
	Communication Protocols for Asynchronous Designs
	Asynchronous Floating-Point Adders
	Single-Precision AFPA
	Operand-Optimized Double-Precision AFPA
	Double-Precision AFPA with Operand-Dependent Delay Elements
	Multi-Threshold NULL Convention Logic (MTNCL)

	Discussion
	Conclusions
	References

