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Abstract: The complexity and throughput of computer networks are rapidly increasing as a result of
the proliferation of interconnected devices, data-driven applications, and remote working. Providing
situational awareness for computer networks requires monitoring and analysis of network data
to understand normal activity and identify abnormal activity. A scalable platform to process and
visualize data in real time for large-scale networks enables security analysts and researchers to not
only monitor and study network flow data but also experiment and develop novel analytics. In this
paper, we introduce InSight2, an open-source platform for manipulating both streaming and archived
network flow data in real time that aims to address the issues of existing solutions such as scalability,
extendability, and flexibility. Case-studies are provided that demonstrate applications in monitoring
network activity, identifying network attacks and compromised hosts and anomaly detection.
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1. Introduction

One of the prominent issues security analysts and researchers face when analyzing network data,
whether archived or real-time streaming flow data, is finding tools that can extract, enrich, index, filter,
process, and visualize the large-scale network data. For exploratory visual analysis in threat hunting
and forensic study, a tool that allows processing of network flows filtered by a complex pipeline is
important to find threats and events for proper incident response and decision-making. Flow data
enriched with Open Source Intelligence (OSINT) as well as proprietary information provide valuable
information for the analysis. Intuitive visualizations can help the human analysts not only understand
the typical behaviors but also detect anomalies and further investigate them.

Furthermore, when generating datasets to develop novel analytics researchers also have to
implement the frameworks to manipulate flow data and generate visualizations since general purpose
data analysis tools are not designed to connect to network sockets to read different formats of streaming
flow data and process flows at gigabit speeds. Existing works focus on providing visualizations and
analytics for specific networks and applications and may not be ideal for real-time visual flow data
analysis for large-scale networks. By learning past behavioral patterns, future states of the network can
be predicted such as bandwidth utilization patterns to detect anomalies. These functional requirements
for situational awareness are critical for identifying incidents and threats, investigating anomalies and
making decisions [1-4]. A flexible platform that can provide a framework for researchers to read and
manipulate flow data and augment them with contextual information such as geolocation and known
threat labels can improve and streamline analytics development.
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1.1. Motivation

InSight2 is conceived as a platform specifically designed for flow data analysis that creates a
synergy between researchers who develop analytics and analysts that make use of them. This led to the
development of InSight2 with the goals to monitor networks in real time for cybersecurity awareness,
visually analyze archived flow data for incident response, augment and extract a subset of flow data
for the development of novel analytics such as anomaly detection and deploy said analytics back in the
system for continued growth of its capabilities. These goals require a common efficient flow processing
back-end and a software architecture that overcome issues with existing solutions.

Network flow data are used for the analysis in this work as most networks collect and store some
form of flow data. A network flow summarizes the attributes of a communication between two nodes in
a computer network, such as size of the data transferred during a given session, source and destination
identifiers, protocol used, etc. Capturing and processing network flows instead of network packets has
many advantages. Since flow records do not contain any payload data, they are dramatically smaller
in size and offer better user privacy as well as efficient storage and faster processing. In most cases,
network packet processing techniques, such as deep packet inspection, are becoming less effective
due to the widespread use of end-to-end encryption and privacy concerns. Enriching flow data with
attributes such as geographic location, Domain Name Service (DNS) hostname, domain name, known
malicious status, Autonomous System (AS) number, etc. provides vital information for real-time
monitoring and analysis. Enriched flow data can be filtered, sorted and aggregated to generate
real-time interactive visualizations to provide comprehensive network visibility. Visualizations based
on port, protocol, geographic location, and custom attributes allow for detection of anomalies more
effectively [5,6]. It is essential for modern networks to have an operational tool to visualize this data in
real time to obtain situational awareness.

While most cybersecurity incidents are caused by intentional malicious activities, some firewall
misconfigurations, software bugs, human errors, etc. can degrade the security posture of a network
and leave it vulnerable for attackers. Comprehensive data about the network usage down to each
device including attributes, such as traffic characteristics, communication with known threats, and use
of restricted ports and protocols, can uncover risk factors proactively. Researchers and network
operators can gain a vast amount of knowledge through exploratory visual analytics on datasets such
as penetration testing data and Capture the Flag (CTF) competition data.

Development of flow analytics requires access to comprehensive datasets. Publicly available
benchmark datasets such as KDD-99 may not be suitable in certain cases [7]. Due to the lack of an open
platform to collect, enrich, organize, and manipulate flow data to develop flow analytics, each research
group has to develop their own code to perform these functions. An open platform that provides such
capabilities while facilitating the implementation of the developed analytics as plugin modules and
see their output using a unified visualization framework, has the potential to lower the barrier to entry
as well streamline the development for researchers.

1.2. Related Work

In this section, we examine current state-of-the-art of network situational awareness in large-scale
networks and identify their shortcomings and challenges when adapting them to analyze flow datasets,
streaming flow data, and developing analytics. To reduce the amount of data to be processed for
large-scale networks, preprocessing steps such as filtering and sampling have been suggested in
the literature [8]. These lossy preprocessing steps may, however, eliminate important data. In fact,
it has been shown that anomaly detection algorithms can degrade when data are sampled [9,10].
We have analyzed 14.6TB of network traces from the Global Ring Network for Advanced Applications
Development (GLORIAD) project [11,12]. Operational from 2012 to 2015, GLORIAD was one of the
largest Research and Education (R&E) networks of its time, connecting researchers and scientists at a
global scale. We found the GLORIAD traffic to consist of many small flows less than 100 kB in size with
a relatively small number of larger "elephant flows” accounting for the majority of data transmitted.
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Only by amalgamating the many small flows can a complete picture of the traffic be obtained. Even
though accuracy with sampling may be adequate for operational measurements, detection of malicious
activity such as slow port scan traffic may go undetected. We developed a novel multi-threaded flow
processing back-end to process all flow data that scales well on modern CPU architectures to overcome
this problem.

A number of purpose-built flow data tools have been developed for deployment on specific
networks. The GLORIAD team based at the University of Tennessee had previously developed a
tool called InSight for their internal operational measurement purposes. InSight sampled Argus flow
data [13] and filtered out flows smaller than 100 kB. InSight2 was inspired by this work, and archived
flow data from the GLORIAD R&E network was used for testing prior to deployment on live university
networks. Other than the name and lineage, InSight2 does not have any relation with InSight as the
code bases and capabilities are completely different. Details are provided in Section 2.

Network monitoring using In-band Network Telemetry (INT) is one of the recent developments in
network monitoring [14]. However, it requires the maximum number of hops in the INT reports to be
six or less and an INTCollector to be placed on every sink switch which takes the switch resources away
from its core functions and may be infeasible in certain situations. Another network operations related
tool, NetSage [15,16], focuses on visualizing the R&E network infrastructure of the National Science
Foundation. NetSage filters out flows smaller than 100 MB. The current implementation consists of a
web portal for visualizations of the traffic measurements. Internet2 provides the Deepfield Analytics
Service (DAS) [17] for visualization and analysis of cloud and network data and Network Diagnostic
Tool [18] for network diagnostics. DAS is only available to Internet2 members. ESNet that is part of the
U.S. Department of Energy has a visualization tool for displaying network bandwidth utilization [19].
SiLK [20] is a collection of Unix command-line tools for querying and analyzing converted NetFlow
records. It requires the conversion of flow data to SiLK data-structure and additional software are
needed for their visualization such as Analysis Pipieline [21]. NVisionIP [22], VisFlowConnect [23],
and NfSen [24] provide visualization capabilities for NetFlow data generated by Cisco routers, but none
of the projects appear to be active. Tstat visualizes traffic patterns at the network and transport
levels [25] and is used by NetSage. However, Tstat also appears to be inactive. Commercial products
are considered outside of the scope of our work.

1.3. Outline

The paper is organized as follows. Section 2 describes the software architecture from the modular
scalable processing back-end and the visualization front-end to the deployment mechanism. We also
explore the design decisions that address the issues with existing systems for network situational
awareness. Section 3 presents case-studies relating to real-time situational awareness, incident response
and anomaly detection. Section 4 provides the conclusions.

2. System Architecture

The core of InSight2 is a novel and flexible multi-threaded system architecture. Multi-threaded
software can increase the throughput by delegating tasks to separate processor cores making the
software more scalable. It also employs an optimized data flow control mechanism, uses a redundancy
based indexed schemaless distributed database and a search engine, and visualizations to present
the information using a web-based front-end. Compared to relational databases, schemaless indexed
databases can significantly reduce the time needed to process queries (to the point of supporting
real-time). They also allow custom attributes to be added without having to recreate the data tables.
These functionalities are required for the generation of in-depth visualizations and running analysis
tasks on complex filter pipelines.

InSight2 incorporates up-to-date security features to protect from unauthorized access such
as server-side authentication and encryption using Transport Layer Security (TLS). Furthermore,
its platform nature allows researchers to collect, enrich, organize, and manipulate flow data from
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real and virtual environments, such as Software Defined Networks (SDN), to aid flow analysis
research. The modular architecture allows such analytics to be implemented within InSight2 as
modules extending its functionality. This modular nature also allows the sharing of these modules
for extendability.

We studied the proof-of-concept InSight tool in-depth developed by GLORIAD at the University
of Tennessee. It was designed to be an internal tool for the visualization of archived Argus flow data.
The code base consisted of Perl 5 scripts that were invoked as Unix cronjobs at set intervals. Each script
would carry out a specific task such as reading archived Argus data, extracting elephant flows, adding
geolocation information, host attributes, etc. A ZeroMQ publisher-subscriber queue was used to share
data between scripts. MySQL and SQLite databases were used for intermediate data storage of host
attributes. During this study, we discovered issues with scaling, due to the use of single-threaded
enrichment back-end and the use of SQL databases to hold contextual information and temporary flow
records. It had issues with usability due to the lack of a proper installation mechanism and a run-time
data-flow structure. It also had timing alignment issues due to being a collection of independent
scripts that passed data between each other asynchronously. It was not extensible due to the lack of a
core enrichment engine nor a mechanism to add modules to further process the enriched data to bring
out more insights from the data.

InSight2 was inspired by InSight but has been built from the ground-up addressing the above
issues. InSight2 consists of a core enrichment engine written in Python 3 along with peripheral
modules that allow further management, processing, and analysis of the flow data. It uses an indexed
schemaless database structure and does not depend on intermediate databases to hold temporary
results. These design decisions enable better maintainability of the code-base as well as minimize the
bottlenecks present in InSight architecture. The system runs in containerized environments, which
simplifies the installation, streamlines updating, and eliminates dependency conflicts with the host
operating system while allowing it to run on a wide range of hardware and virtualized environments,
including standard commodity computers, Virtual Machines (VM) and SDNs. InSight2 uses the
open-source Elasticsearch database, Kibana visualizations [26], and Docker containers but does not
rely on any commercial software.

2.1. Overview

The flow data are processed through InSight2 as shown in Figure 1. Network packets are converted
to network flows and are enriched using different information sources such as OSINT or proprietary
information. They are stored in the database which has a search-engine functionality capable of
on-the-fly data manipulation without storing an intermediate copy of the results. They are used to
build the real-time visualizations and are further processed by the flow analysis plugins. Final results
of the flow analysis plugins are added back to the database so that they can also be visualized in the
same manner. Each component of the system function as modules as described below, providing data
ingestion, database maintenance, and further analysis.

Network Information
Packets Sources
|—> Enrichment 4J

Analysis

Visualization

Figure 1. Data-flow overview.
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Furthermore, the web-based Graphical User Interface (GUI) hosts the dashboards that allow for
visual filtering of the displayed data in real-time. They react in unison according to the filters specified
for the particular dashboard. Visual filtering includes limiting the scope of the displayed data based
on the parameters such as time-range, IP/port range, geographic location, etc. Once the filters are
defined the filtered data can be exported in CSV format to facilitate the use of third-party data analysis
tools for further study. This facilitates extraction of critical enriched data as well as the outputs of
the analysis modules. Below, we discuss the system modules in detail with reference to Figure 2,

the system architecture.
Network Information
/ Packets /_> M / Sources /L' ol

Flow Data

] ——— ¢+ <

[Pm2] Main EM Information
| PMn | Index Index

A

Seal_'ch —| Visualization
Engine

5 ;L> .
MM
Events Summary
Index Index

Figure 2. System architecture.

2.2. Input Module

The Input Module (IM) carries out flow data generation, storage, and presentation to the other
modules. IM uses the Argus client ‘rabins’ to process six widely used flow standards in real time:
NetFlow, sFlow, JFlow, IPFIX, Flow-tools, and Argus itself. IM also supports ingesting data from raw
network streams such as network mirrors, which also are converted into Argus format. Furthermore,
generated flow data can be archived for future enrichment and archived flow data can be re-enriched
with new information such as updated threat-lists and host attributes at any time for forensic study.

Network packets are converted into bi-directional network flows. They are subjected to time-series
binning which allows real-time stream block processing to synchronize the enrichment process. In this
method, a network flow record is not only created when a FIN or RST flag is seen in the packet header
but also at the end of each time bin. This method is lossless and retains all the information in every
network flow. The flow data created at this step are enriched in-memory for efficiency and then are
sent to the database for indexing. It facilitates the generation of real-time visualizations when a flow
does not terminate at or before the time boundary. Even though this fragments a flow record at the
boundary, they are re-aligned based on the timestamp for accurate flow reconstruction for analysis.

2.3. Enrichment Module

The Enrichment Module (EM) augments the raw flow data with contextual information and
is crucial in visualizing relationships between end-points in the network. End-points consist of
user-devices in the network and critical infrastructure such as network equipment and servers.
These connections, and statistics about them, can be filtered to obtain detailed information, as explored
in detail in Section 3, providing network administrators and security analysts the capability to evaluate
the data from various perspectives for situational awareness. The contextual information can be
intrinsic, such as the hostname, the institution associated with the end-point, physical location, type and
the owner of the end-point, or extrinsic, such as whether the IP address has been involved with botnet
activity, compromised hosts, distribution of malware, as well as the geographical location if it is a
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public IP address. Intrinsic information is maintained by the network administrators while extrinsic
information such as OSINT is kept up-to-date by different organizations that specialize in a particular
task such as tracking botnet activity on the Internet.

EM is multi-threaded, so that it scales well with the processor speed as well as the core count
to handle any incoming flow rate to deliver real-time visualizations. EM synchronizes with the bin
duration provided by IM to capture its output at the time boundaries and the flow records are passed
in memory. Once the records are extracted, it delegates the data into each core of the CPU by invoking
process threads. Each thread augments the flow records with the contextual information and queues
them for indexing into the database. When indexed, they are made available in the Main Index, which
is used for generating visualizations as well as providing ground level data for further analysis by
analytics modules.

Each database is divided into multiple shards and stored across multiple distributed servers.
Shards are duplicated into backup shards providing data redundancy and faster access.

2.4. Updater Module

The Updater Module (UM) keeps the contextual information up-to-date by tracking changes to
contextual data, both intrinsic and extrinsic, so that flow data enrichment is always carried out with
the most up-to-date information. This allows on-demand enrichment of past flow data with new
contextual information for forensic study.

2.5. Maintenance Module

Storage of enriched flow data is limited by the storage capacity of the host system.
The Maintenance Module (MM) routinely prunes the Main Index by deleting older indexes when
the system begins to run out of space. As a part of the pruning process, MM extracts and stores
security incidents and flagged events in a separate index named Events Index. Enriched data are
furthermore summarized to retain high level information about the performance of the network in the
Summary Index. In the long term, MM contributes to retaining high level summarized information
while retaining highly granular information in the short term.

2.6. Plug-in Modules

Plug-in Modules (PM) extend the core functionality of InSight2 provided by the aforementioned
core modules. The Main Index, Summary Index, and the Events Index are all made accessible to
the plug-in modules to enable flow analysis. Novel analytics are implemented and incorporated as
modules, extending the capability of the system. Dashboards specific to the output of each plug-in
visualize the results. When a plug-in module is created, a dashboard is created that reads data from
the relevant index.

2.7. Front-End Functionality and Security

Figure 3 illustrates web-based GUI and security features of InSight2. The GUI consists of various
tabs that are created per use case and each tab has one or more dashboards. A Dashboard consists
of a set of modular visualizations and can be configured to show a particular aspect of the data.
For example it can be, a bar chart of the traffic of top ten countries sorted in descending order along
with a line chart showing total traffic variation over time. Information shown in the dashboard can
be filtered visually from the GUI limiting the displayed data to a given scope—for example, filtering
all Secure Shell (SSH) traffic from outside the network to a particular host in the network during the
past hour. When this filter is applied to the previous scenario it will result in a bar chart showing
the top incoming SSH traffic from outside the network to that particular host during the past hour
sorted in descending order by the country as well as in the line plot spanning over the last hour.
New dashboards can be created to group frequently used visualizations together or by a specialized
purpose. Dashboards can be saved for later use as well as for reporting purposes. Data displayed in
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the dashboard after being filtered according to the filter pipeline can be exported and saved to the disk
in CSV format to create new datasets. Furthermore, when accessing data in time ranges past current
retention, an option to re-enrich the data is provided.

(]
0 Sen
[~ vV v o
Admin TLS Encrypted Users
Connection
Server-side
Authentication
Edit Read-only

Visualizations

Figure 3. Web-interface security.

The dashboards are capable of detecting the user agent of the web-browser, either mobile or
desktop, and serving the appropriate format of the dashboard that fits the available screen real-estate.
The visualizations are created on-demand within the web-browser. The web-interface is secured with
modern authentication and encryption standards to restrict access only to authorized users. It uses TLS
(HTTPS) encryption to thwart man-in-the-middle (MITM) attacks. Based on the user type, relevant
dashboards are loaded when each user logs in, controlling access to information. This also allows
dashboards to be modified only by authorized users, making it possible to delegate monitoring and
generate reports to less privileged users. It also facilitates collaborating with remote analyst teams for
network forensics.

2.8. Deployment Mechanism

Virtualization allows InSight?2 to be installed on a wide range of operating systems, hardware,
and virtual environments such as SDN [27,28]. Using InSight2 with SDNs is not tested as of writing of
this paper, but the Ingestion Module is designed to connect to either a supported network flow source
such as Argus with the default port 561 over the network or convert network packets from a network
mirror port to Argus format. Modular structure of the system provides better maintainability as well
as deployability of the system. They can be installed in either hardware computers or VMs. InSight2
modules use application level abstraction that packages code and dependencies together, and shares
the operating system (OS) kernel. InSight2 packages each of its modules as a separate Docker image
and connects them using the Docker network. This is an abstract network that enables each image
to be installed on either a single host or across multiple hosts as they communicate using network
sockets. Figure 4 illustrates the connectivity between the containers.

Virtual Da(ahase Shard

Network

Visualizations J
Distributed

Database Shard,

%?
1 ,

User Interface

Figure 4. Deployment mechanism.
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The database is distributed using shards which can be installed in separate containers. Duplicate
shards aid in mitigating data loss in case of container failure or reachability issues. Furthermore,
duplicate shards are searched in parallel during a search query to produce faster results.

3. Case Studies

In this section, we illustrate how we used InSight2 for situational awareness in three different
scenarios: real-time situational awareness, incident response, and anomaly detection. Network packets
are converted into Argus flow data which contain information extracted from the packet headers
as well as measurements computed for the packets associated with each flow including number of
bytes transmitted, start and end times, etc. The flow data are enriched using information available
from other sources—for example, the mapping of IP addresses to geolocations using MaxMind GeolP
databases [29]. The enriched flow data are stored in a searchable indexed database. Plug-in modules
add data analysis capabilities. Data are visualized using intuitive dashboards that combine different
metrics by common needs such as measurement and security. InSight2 is currently deployed at
Stanford University, Queen’s University, Canada, and the University of Tennessee, Knoxville with
plans underway for further deployments at additional universities and research institutes. The data
for the case studies discussed here were obtained from the deployment at Stanford University. There,
InSight? is connected to a 10 Gbps mirror port in one of the School of Engineering (SoE) primary
datacenters connecting over 200 physical servers and approximately 100 virtual machines, handling
both administrative applications and research computation. Up-stream connectivity to the campus
backbone is provided via 2 x 10 Gbps (Link Aggregation Control Protocol) LACP connection.

3.1. Real-Time Situational Awareness

Flow data are enriched in real time and the resulting visualizations are used for network situational
awareness. Dashboards group a set of web-based visualizations that show information about the status
of the network for current or past time periods. Each dashboard represents a particular aspect of the
network traffic. Figure 5 illustrates the first page seen when the web-based GUI is loaded. Sensitive
information such as IP addresses and country names are pixelated to preserve privacy. This dashboard
gives a high-level view of the network traffic using gauges that display average network bandwidth
utilization, packet loss, packet retransmissions, and producer-consumer ratio (PCR). Number of bytes
transmitted as a function of time is shown along with four histograms displaying the top fifteen IP
addresses and protocols for flows that originate from both source and destination. Tag clouds show
the top ten countries sorted by the amount of traffic generated, while the segmented pie-chart provides
organization name, project, and department information. Geographic heat-maps provide a geo-spatial
breakdown of flows. Figure 5 shows a second dashboard that gives a more detailed view of the
network traffic including connectivity between organizations, traffic heat-map, and composition by
country, average number of hops, TCP handshake times, average packet sizes, etc. The connectivity
map shows the top three organizations with the highest amount of traffic utilization and what other
top organizations they communicated with. This is useful to identify the “top talkers” in the network.
The sent and received traffic per country is plotted in a matrix on a time axis which allows for
understanding traffic breakdown per country in the given time-frame. PCR is plotted in more detail
on the time axis that visually shows the ingress and egress traffic ratio. TCP connection times, packet
drops, and packet retransmissions indicate potential network congestion. Other visualizations include
packet size and number of packets sent by country. Data enrichment capabilities and the ability to
manipulate the data in real time from within the web interface enable interactive visualizations that do
not require writing manual queries to the database.
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27,249 2,453,718 27,114,989
Unique Ces Uriqueps Records

Source Information

Destination Information

Figure 5. Network traffic overview dashboard.

Visualizations discussed in Figures 5 and 6 were built to understand the various aspects of
the particular traffic under inspection. Filters can be applied to limit the scope within that data.
For example, by applying outgoing port to port 80, the visualizations will adjust on-the-fly to show
only the flows with HTTP requests that are exiting the network. This allows for understanding how
the network handles web traffic as the flows are bi-directional. Furthermore, existing visualizations
can be modified. For example, the country can be replaced with city for more granular visualizations.
Finally, new dashboards can be created and saved to be re-used at any time.



Electronics 2020, 9, 1747 10 of 15

o e ettt o i |

Network Utilization by Country Flow Source Destination Ratio and Producer Consumer Ratio (PCR)

Network Utilization

Origin Country

Average Packet Size by Country Average Hops and Connection Setup Time

Origin Country

Average Hops

Packet Size (B)

Number of Packets Sent by Country

| Average Packet Size

Origin Country

Figure 6. Network performance dashboard.
An important factor when exploring flow data is having the ability to filter and sort data according

to one or more criteria, such as isolating all traffic to certain source or destination hosts or countries,
ports or protocols, flows of given sizes, Internet Service Providers (ISPs) with the most packet losses,

hosts that communicate with suspicious IP addresses, etc. This has been a core objective in the

development of InSight2. For example, all visualizations within a dashboard can be focused on traffic
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originating from the host currently generating the most traffic simply by selecting it via the dashboard.
More sophisticated and granular filtering is possible via the advanced controls in the dashboard.
This method allows for selecting traffic based on any one or more features associated with each flow
including augmented features added during enrichment. For example, the network operator can
create a filter that isolates all traffic to SSH traffic on port 22. In such cases, visualizations made
for displaying source and destination hosts are sorted by the number of flows in descending order.
Additionally, other sections of the dashboard will show where they are coming from geographically
and topologically along with other attributes such as whether they have been previously tagged as
malicious. A workflow such as this allows the network administrator to find potential threats that try
to infiltrate critical systems in the network, and learn more information about them.

Furthermore, in conjunction with numerical and categorical filters, geographic areas can be easily
isolated as well, either by clicking on countries in the tag cloud or by drawing a region of interest
on the global map. To filter information based on an organization, project, or department of interest,
the user simply clicks on the desired section on the segmented pie chart. The dashboards can be
customized by modifying, adding, removing, relocating, and resizing visualizations to meet the needs
of each deployment site.

3.2. Incident Response

We used flow data from Western Regional Collegiate Cyber Defense Competition 2019
(WRCCDC) [30] for visual analysis of the attacks and to find compromised hosts. Here, we discuss
the process of knowledge inference that can be used in incident response and decision-making from
the point of view of the participating Stanford University team. A simple forensic study workflow is
followed in order to find compromised IPs in the network as shown in Figure 7.

Identify critical services running in
the network and their port numbers
L2
Apply each port number to the destination
port number filter recursively
¥
Visual y of traffic
to these ports

Identify the red-team and blue-team
IPs from the resulting visualizations

Apply reverse-shell port to the destination port number
filter and red-team IPs to the destination IP address filter
v
Identify all resulting source blue-team IPs

as potentially compromised

Further gate these blue-t
IPs for Indicators of Compromise

Figure 7. A simple forensic study workflow.

The WRCCDC competition consisted of eight blue teams whose objective was to defend network
services such as web and email servers. The blue teams operated on subnets 10.47.x.0/24, where x
denotes team numbers 1 through 8. A red team operating on a wide network range of 10.128.0.0/9
attacked the blue team servers using various techniques. A service check engine predominantly
operating at 10.0.0.111 (and various other IPs) periodically checked the status of the blue team services
to see if attacks had successfully disabled their critical network applications. Archived network traces
are analyzed in this subsection using InSight2 to explore the attack sequence to demonstrate the
network forensics capability of the platform.

Figure 8 shows the initial dashboard created for the analysis which contains the top IP addresses
of both attackers and defenders before applying any filters. This visualization provides a starting
point for the analysis when determining which services were attacked. We can discern some details of
the attacks based on the destination port numbers and protocols. For example, port 3389 is used for
RDP (Remote Desktop Protocol) connections in Windows systems, port 5900 is used by VNC (Virtual
Network Computing), port 22 for SSH, port 80/443 for web services, etc. Analyzing the source and
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destination IP addresses associated with these ports, we observed ports 137 (NetBIOS) and 445 (SMB)
were under sustained attack by the red team. After a successful attack we see a connection initiated
from the victim to port 4444 back to the attacker. Being the default port for the Metasploit [31] reverse
shell, we can reasonably conclude the attacker has taken control of the target system and is engaged in
post-exploitation techniques. This is shown in the Figure 9, where the reverse shell traffic is filtered
to show the timeline, statistics of associated IP addresses and port numbers, as well as blue and red
team IPs.

1,605 5,513

Unigue Source IPs Unigue Destination IPs

7,480 9,766

Unique Source Ports Unique Destination Ports

Top Source IPs Top Destination IPs

Figure 8. Attack statistics before filtering.

2 1

Unique Source IPs Unique Destination IPs

ry 1

Unigue Source Ports Unigue Destination Ports

o

Top Source IPs Top Destination IPs

Figure 9. Attack statistics after filtering.
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This case study illustrates how security analysts and incident response teams can find the
end-points associated with network attacks, gauge what attacks are being launched, and isolate
the command and control traffic to and from the compromised host(s).

3.3. Anomaly Detection

Plug-in modules that extend the functionality of the system reuse the data ingestion, enrichment,
indexing and visualizing capabilities of InSight2 to do further analysis. With reference to Figure 2,
a plug-in module reads data from the Main Index, the Events Index, and/or the Summary Index and
writes its results to its own index. Dashboards tied with the analytics module visualize the output of
that index.

Flow analysis is critical to identify anomalies automatically [32,33]. To illustrate the modular
analytics capability of InSight2, we describe Markov chain prediction of network bandwidth utilization
to detect anomalies. A Markov chain is a probabilistic finite-state machine for which future transitions
depend only on the present state and not the states visited before reaching it. States here are defined
by a simple three-level discretization of the network bandwidth utilization: low, medium, and high.
The state transition matrix which makes up the Markov chain is inferred from observed transition
frequencies when going from each state to every other state. The expected number of transitions
needed before going from one state to another and the standard deviation associated therewith can
be calculated from the transition matrix. Analyzing the bandwidth utilization data of the Stanford
University for one week shows the daily mean time before high bandwidth usage is replaced by
low bandwidth usage is about six hours with a standard deviation of about 1.3 h. Once the module
was deployed on InSight2, we were able to detect a statistical anomaly where almost 16 h of high
bandwidth usage was reported as shown in Figure 10. This simple module demonstrates an example
of automating the analysis to detect anomalies.

Actual Du| latlpn of Large Transfer
|

| Statistically Unusal
—

7.40=991h

Figure 10. Network bandwidth utilization prediction.

Plug-in modules such as this can be developed and shared by the community of InSight2 users.
They are language agnostic since they query, process, and insert data to the ES database without
requiring any message passing between the core modules.

4. Conclusions

InSight?2 is open-source software [34] that aims to fulfill the need for a platform for real-time
situational awareness, incident response, and development and deployment of flow analytics in
large-scale networks. We discuss the novel software architecture that addresses the issues with current
solutions such as scalability, extendability, and flexibility. We discuss three case studies from one of
its deployments at Stanford University on real-time situational awareness, anomaly detection and
incident response using WRCCDC dataset. In these situations, we use real-time graphs to understand
its behavior under normal conditions, infer knowledge from visual analysis for incident response that
can be used to make decisions to improve the security, and detect abnormal behavior using automated
anomaly detection.

The intuitive web-based front-end allows analysts and researchers to explore the data quickly,
reducing the effort and time needed to monitor network traffic compared to querying databases
followed by manual visualization of each result. A novel system architecture is developed for efficient
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flow data enrichment leveraging modern multi-core CPUs. The modular architecture allows users to
develop their own extensions to the platform. Finally, a container-based installation mechanism allows
for ease of deployment and seamless maintenance of the software.
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