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Abstract: This paper proposes a sonar-based underwater object classification method for autonomous
underwater vehicles (AUVs) by reconstructing an object’s three-dimensional (3D) geometry. The point
cloud of underwater objects can be generated from sonar images captured while the AUV passes
over the object. Then, a neural network can predict the class given the generated point cloud.
By reconstructing the 3D shape of the object, the proposed method can classify the object accurately
through a straightforward training process. We verified the proposed method by performing
simulations and field experiments.
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1. Introduction

Object classification by autonomous underwater vehicles (AUVs) is necessary for various
underwater missions, such as terrain-based navigation [1,2], target detection [3], and surveillance [4].
Because sonar sensors are robust to turbidity and have a long sensing range, AUVs are commonly
equipped with a sonar sensor to perceive surrounding objects [5–7]. However, sonar sensors also
suffer from a low signal-to-noise ratio (SNR) and low resolution. Therefore, various algorithms that
can accurately classify objects even in noisy and low-resolution sonar data have been developed.

Such algorithms mainly represent sonar data as two-dimensional (2D) images and recognize
objects using image processing techniques. Reed et al. [8] classified mines based on the shapes of
shadows in sonar images. Kim et al. [9] proposed an object recognition method using Haar-like
features, focusing on the fact that objects appear as a pair of highlights and shadows in sonar images.
Recently, deep-learning-based algorithms have been introduced. Neural networks (NNs) extract and
pool features from a large amount of data through deep layers, so they can accurately classify and
detect target objects, such as docking stations [10], sea turtles [11], agent vehicles [12], and divers [13],
even in noisy sonar images.

However, 2D-sonar-image-based algorithms have a drawback. Owing to the imaging mechanism
of the sonar sensor, the shape of the object in the sonar image is affected greatly by the viewing
angle. Because it is difficult to predict the direction from which the AUV approaches underwater
objects, feature-based algorithms have limited accuracy. Furthermore, deep-learning-based algorithms
require a large number of sonar images for training. Because open-source sonar data are scarce,
underwater experiments should be conducted to capture training sonar images of objects according to
viewing angles, which would require significant time and cost.
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Therefore, methods to recognize objects using sonar images captured in multiple views have
been proposed. Myer et al. [14] reduced object classification uncertainty by finding additional views
that can increase the information of the object using the Markov Decision Process. Cho et al. [15]
classified objects via template matching using images simulated according to viewing angles.
Lee et al. [16] proposed an NN that classifies objects using eight sonar images taken at 45-degree
intervals while rotating around the objects. However, these multi-view-based methods still face
challenges. Considering all viewing angles along the roll, pitch, and yaw directions is difficult.
They can also be challenging to apply to AUVs, which commonly have limited batteries, or to situations
where rapid exploration is required.

To tackle the challenges of underwater object classification based on 2D sonar images, we herein
propose a method to classify underwater objects by reconstructing their three-dimensional (3D)
geometry. We generated 3D point clouds of underwater objects by extracting highlights from the sonar
images of the objects that an AUV captured during a single fly-by scan. Then, the NN classified the
objects using the restored 3D geometry.

The proposed method has the following advantages. First, the proposed method classifies objects
more accurately than using a single 2D sonar image. The proposed method restores lost elevation
information from consecutive sonar images and classifies the objects based on the reconstructed 3D
geometry of the objects. Therefore, the proposed method can distinguish objects that may appear similar
in 2D sonar images according to the viewing point. It is also robust to variation of highlight intensity
depending on the environment in which the sonar image is captured. Next, the training process is
straightforward. The training dataset for the proposed method can be synthesized directly from rough
3D models of objects, so additional underwater experiments to acquire training data, which require
a lot of time and cost, are unnecessary. Finally, it is suitable for AUVs, which generally have limited
operating times and computing power. The 3D geometry is reconstructed in a point cloud format—a set
of (x, y, z) coordinates—through a single scan by an AUV. Therefore, it does not require massive memory
for storing data or complex computation for path planning of the AUV.

Using the proposed method, the AUV can create a 3D map of the underwater terrain and
accurately recognize the map through classification. Additionally, the point cloud is a standardized data
format for various terrestrial algorithms. Therefore, the proposed method can be applied to various
AUV applications, such as simultaneous localization and mapping (SLAM), underwater investigation,
and target object detection.

The remainder of this paper is organized as follows: In Section 2, we explain the difficulties
of sonar-based underwater object classification. Section 3 describes the pipeline of the proposed
method. Section 4 illustrates the experiments designed to verify the proposed method and present the
experimental results. The paper ends with the conclusion in Section 5.

2. Problem Statement

Among various sonar sensors, we targeted a forward-scan sonar (FSS), which is widely used
because it provides a relatively high-resolution images of its forward scene.

We first analyzed the principle of the FSS. An FSS senses its forward environment by transmitting
acoustic beams and outputs it as a 2D image, as shown in Figure 1. The FSS consists of multiple acoustic
transmitters and receivers to scan between the azimuth angles θmin and θmax. For each azimuth angle θ,
a transmitter and receiver pair scans the range between rmin and rmax using an acoustic beam. Once a
transmitter emits an acoustic beam, the beam is reflected from the surface of the underwater terrain
and returned to the FSS. Then, its receiver measures the intensity of the returned beam according to
the time of flight (TOF). The TOF represents the distance between the FSS and the underwater terrain
from which the beam is reflected. The sonar image is constructed by mapping the measured intensity
according to the corresponding distance and azimuth angle.

Object classification using a 2D sonar image has several drawbacks from its distinct imaging
mechanism. First, the accuracy of the object classification can be seriously degraded according to
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the viewing point of the FSS, as shown in Figure 2. When the FSS projects the underwater scene, the
elevation angle information of the underwater scene is lost because the FSS maps all points that have
the same distance and azimuth from the sensor on an arc onto the same pixel, as in Figure 2a. As a
result, depending on the viewing point of the FSS, objects with different shapes could all appear the
same in the sonar image. For example, as shown in Figure 2b, a pipe, curved ladder, and curved shape
can appear identical in 2D sonar images; a sphere and hemisphere as well. Furthermore, the shape
and intensity of the same object change sharply depending on the viewing angle of the FSS and
the underwater condition of capturing. Additionally, various vision-based algorithms have been
developed on land, but such algorithms are hard to apply to a sonar image because the sonar imaging
mechanism is different from the optical camera. The NN-based method is also difficult to use because
the characteristics of sonar images are different from those of optical images, and there are not many
open-source sonar image datasets.

(a) Acoustic beam configuration of the forward-scan
sonar (FSS).

(b) Cross-sectional view of an acoustic beam.

Figure 1. Imaging mechanism of the FSS.

(a) Projection mechanism of the FSS with which elevation
information of the scene is lost.

(b) Shape ambiguity problem in a 2D sonar image due to the projection mechanism.

Figure 2. Difficulties in object classification using a 2D sonar image.
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This paper proposes a method to classify underwater objects by reconstructing the 3D geometry
of the objects to tackle these difficulties of the FSS. The 3D geometry of an object provides more shape
and dimension information compared to a 2D sonar image. It is also possible to generate base 3D
models for the classification target readily, and then the object can be classified by comparing the
restored 3D shape and the base 3D model at various viewing angles. The proposed method first
restores elevation information lost when an object is projected onto 2D sonar images, and reconstructs
the original 3D geometry of the object by analyzing consecutive sonar images while the AUV moves.
Then, the proposed method classifies the reconstructed object using an NN. As a result, the proposed
method can classify underwater objects more accurately through a more straightforward training
process than classification based on a single 2D sonar image.

3. 3D-Geometry-Reconstruction-Based Underwater Object Classification

3.1. Target Scenario

Figure 3 describes the pipeline of the proposed method for classifying underwater objects. In the
survey area, the AUV scans the seabed using the FSS while moving in a lawnmower trajectory, one of
the primary methods of investigation of the AUV [17]. In the lawnmower trajectory, the AUV passes
over the underwater objects covering the entire scan area. Then, by analyzing the captured sonar
images as the AUV passes over an object, the 3D geometry of the underwater scene is restored in a
point cloud. Because the sonar images have a low SNR and low resolution, the reconstructed point
cloud is also noisy and sparse. Clustering removes the noise and extracts only the point cloud of the
object. Finally, the NN predicts the class of the object from the extracted point cloud.

Figure 3. Pipeline of the proposed underwater object classification method.

The proposed method can handle various difficulties of the sonar sensor. We address the 3D
reconstruction of objects to classify underwater objects. Owing to the unique projection principle of the
sonar sensor, the appearance of the object in the sonar image is largely affected by the viewing point.
Sonar-image-based underwater object classification is problematic because it is nearly impossible to
predict the angle at which the AUV encounters an object in an unstructured environment. If the object
is restored in 3D, it is possible to classify the object more accurately by comparing the restored model
with the 3D ground truth of the target object in various aspects.

For the classifier of the point cloud, we introduced an NN. The NN extracts and pools features
through deep layers to enable robust classification from noisy and sparse sonar data.

Furthermore, the proposed method has a straightforward training process. When applying
existing NN-based algorithms to underwater sonar sensors for their mission, the training step was
one of the main challenges. The shape of the target object in the sonar images had to be predicted in
advance, or a dataset consisting of many images had to be constructed through additional underwater
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experiments. On the other hand, because the proposed method classifies objects by restoring the
object to its original form, the training does not require sonar images. Instead, it is possible to directly
synthesize the training dataset from a 3D model of the object by reflecting the characteristics of the
sonar sensor. As a result, the proposed classifier is easy to implement.

We propose using a point cloud when reconstructing the object in 3D from sonar images. There are
several methods to represent the 3D model of an object, such as using voxels and meshes. The point
cloud is a set of points with coordinate values of (x, y, z); therefore, it does not consume much memory.
Therefore, the point cloud is a suitable data format for the AUV, which has limited computing power.
Additionally, the point cloud is a standardized format that is often used on land, so various terrestrial
algorithms could be applicable for underwater operation.

The generated point cloud and classified object information can be utilized for AUV operations
such as target detection and navigation. The remainder of this section explains the main elements of
the proposed method in more detail.

3.2. Reconstruction of the 3D Point Cloud of an Object Using FSS

For underwater object classification, the proposed method first reconstructed the 3D geometry of
an underwater object using a sonar sensor. By restoring the 3D geometry using a point cloud, the AUV
can accurately classify underwater objects without excessive memory overhead.

We could generate the 3D point cloud of underwater objects from a series of 2D sonar images.
Cho et al. [18] developed a method to specify the elevation angle of underwater terrain by analyzing
highlights in consecutively taken sonar images with an AUV, as shown in Figure 4. Although the FSS
can scan a region between rmin and rmax in a single capture, the FSS has a sweet spot in which the
strength of acoustic beams is concentrated and has the highest SNR. Therefore, when capturing an
object by using an FSS, it is common to place the object in the sweet spot and make the seabed appear
in the background, as shown in Figure 4a. On the other hand, Cho addressed an effect called highlight
extension to restore the elevation angle of the object. As shown in Figure 4b, if the FSS approaches the
object, the highlight extension effect occurs, in which the highlight of the object is observed before the
seabed, since the object protrudes from the seabed. If the FSS approaches the object more, the length
of the highlight extension increases until it reaches a critical position and does not change thereafter,
as shown in Figure 4c,d.

The point cloud of the object can be generated using this highlight extension effect. Figure 5 shows
the geometry between the FSS and the object at the critical position. Once the object reaches the critical
point, the elevation angle of the object is specified as t + s/2 by the tilt angle of FSS t and spreading
angle of beam s. Thus, the global coordinates of the highlight pixel of the object [xobj, yobj, zobj] can be
calculated as xobj

yobj
zobj

 =

x f ss
y f ss
z f ss

+ R

rc

√
1− sin2 θc − sin2(t + 1

2 s)
rc sin θc

rc sin (t + 1
2 s)

 , (1)

where [x f ss, y f ss, z f ss] denotes the position of the FSS, R is the coordinate transform matrix from the
FSS coordinate to the global coordinate, and rc and θc are the range and azimuth of the highlight pixel
for which the 3D coordinate is to be calculated. Here, [x f ss, y f ss, z f ss] and R can be measured using
navigational sensors of the AUV, and rc and θc can be calculated from the sonar image as[

rc

θc

]
=

[
rmin + (rmax − rmin)

m
M−1

θmin + (θmax − θmin)
n

N−1

]
, (2)

where the size of the sonar image is M by N, and (m, n) is the pixel coordinate of the highlight. Then,
the point cloud of the object can be generated by accumulating the calculated coordinates of the
extended highlights while scanning the object by utilizing the mobility of the AUV.
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(a) Common situation of observing an object. (b) Highlight extension begins to occur.

(c) Critical position. (d) After critical position.

Figure 4. Elevation angle restoration using the highlight extension effect as the FSS approaches
an object.

Figure 5. Calculation of an object’s coordinates using the highlight extension.

We pre-processed the point cloud for robust object classification. The pre-processing is to select
only the points that belong to the object from the generated point cloud, and it consists of seabed
removal and noise removal.

The points belonging to the seabed are removed first because the seabed is independent of the
shape of the object. The raw point cloud is generated by analyzing highlights from the consecutive
scene captured by the sonar image. The seabed itself also has highlights, so points corresponding to
the seabed are also generated. However, according to (1), the z-coordinate of the seabed is calculated
as near zero. We eliminated the seabed from the point cloud by filtering the points whose z values
were smaller than a small threshold value.

Next, noise points that do not belong to the scanning target object are removed. Because the SNR
of the sonar image is low, there is much noise in the point cloud generated from the sonar images.
Additionally, even if the points with small z values are filtered, there may be natural features such as
rocks and seaweed that have height. These points should be recognized as noise and removed.
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To remove noise, we used density-based spatial clustering of applications with noise
(DBSCAN) [19]. DBSCAN is a clustering algorithm that groups points based on whether there
are enough neighboring points within a certain radius. The noise of the point cloud occurs from several
highlight noise pixels of the sonar image, so points that do not have enough neighboring points could
be considered as noise.

This method can generate point clouds of underwater objects in real time with less computation.
Classically, 3D reconstruction from 2D images uses stereo vision. Stereo vision compares multiple
images to find common areas or features, so it requires more memory and computation. On the other
hand, this method generates the point cloud by calculating the height of an object slice that intersects
the scan line whose elevation angle is t + s/2 while an AUV passes over the object. This approach
does not require extraction of features, remembering previous images, or complicated path planning
for AUVs. Therefore, this method is suitable for AUVs that operate in an unstructured environment
and have limited computing power and batteries.

3.3. Object Classification Based on a Point Cloud Using PointNet

We introduced an NN to classify underwater objects with the generated point cloud of an object.
As performance of GPUs has recently improved, NNs have been actively developed and exhibit an
outstanding performance in object classification. Furthermore, a well-trained NN is robust to noise
and environmental variation [20].

A point cloud is more advantageous than voxel or mesh in terms of memory [21], especially when
reconstructing and storing a relatively small object in 3D using a sonar sensor with a large field of
view and low resolution; however, it is difficult to extract meaningful information, since it is an
unordered and unstructured set. An NN for classifying objects from a point cloud should have the
following characteristics. First is the permutation invariance. Because a point cloud is a set of points
that comprise an object, the NN should output the same result regardless of the order of those points.
Second is the rigid motion invariance. The essential information of the point cloud is the overall
shape and the distances among points. Therefore, transformations of the entire point cloud, such as
translation or rotation, should not change the result.

From the NNs with these characteristics, we adopted PointNet [22]. Figure 6 illustrates the
PointNet pipeline. The (x, y, z) coordinate values of n points are input to the NN. For each point,
PointNet extracts the local features of 1024 channels through multi-layer perceptrons (MLPs). Then,
by applying max pooling to the extracted local features, a global feature vector representing the 3D
shape of the point cloud is created. Finally, using this global feature vector, the NN can classify objects
by predicting the score for each class through two fully connected layers.

Figure 6. Architecture of the neural network (NN) in the proposed method. The number in parentheses
means the number of nodes in the layer.

In this pipeline, MLPs extracted local features independently for each point. Additionally, the max
pooling operation is a symmetric function satisfying f (x1, x2) = f (x2, x1), and is not affected by the
input order. Therefore, PointNet satisfies order invariance.

Furthermore, PointNet applies transformations to the input point cloud and local features to meet
the rigid motion invariance. The input and local features are transformed into canonical space by
predicting the affine transformation matrix using mini-networks, which have an architecture analogous
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to the entire PointNet, and multiplying by the predicted matrix. These transformation steps can align
inputs and extracted features, so the point clouds are classified as the same objects even if points are
rotated and translated.

The PointNet is suitable for sonar-based underwater object classification. Because the sonar image
is noisy and has low resolution, the point cloud generated from the sonar image is also noisy and sparse.
However, PointNet can accurately classify sonar-based point clouds by extracting high-dimensional
features through multiple layers. Furthermore, the PointNet has a simple and unified architecture
consisting of few-layer MLPs, so the inference is calculated quickly and efficiently. Therefore, it is also
suitable for use with AUVs.

Using the PointNet, underwater objects are classified as follows: An AUV generates a point cloud
while the AUV passes over an underwater objects. For the input of PointNet, n points are randomly
sampled from the generated point cloud. These points are then normalized to fit inside a sphere
whose center is the origin and whose radius is one. Then, the object is classified by the inference of
the PointNet.

3.4. Training Point Cloud Synthesis

Finally, we addressed a method to construct data to train the proposed underwater object classifier.
A point cloud generated using a sonar sensor has two characteristics, which are different from those
of sampling points directly from the polygons of the 3D shape of an object. We analyzed these two
features for synthesized training point clouds from the 3D model of the object.

The first characteristic is the front slope, as in Figure 7. After the FSS reaches the critical point,
the elevation angle is specified as t + s/2. However, from the beginning of the highlight extension until
reaching the critical position, the frontmost and the uppermost point of the object, whose elevation
angle is not t + s/2, is approximated to the point of the front surface. This approximation of the
elevation angle causes the slope of the front face.

Figure 7. Front slope of the generated point cloud.

The front slope can be modeled by considering the displacement of the FSS in two consecutive
sonar images when generating the point cloud [23], as shown in Figure 8. The sonar image is originally
generated by projecting the points along the arc to the image plane, but it can be approximated that
the points are projected orthogonally to the center plane of the sonar beam when the beam angle is
sufficiently small. Then, if the FSS moves by ∆x f ss, the difference of ranges to the highlight pixel in
two consecutive sonar images ∆rc is approximated as

∆rc ≈ −∆x f ss cos t, (3)

where t is the tilt angle of the FSS. On the XZ plane of the FSS, the points of the front face in two
consecutive sonar images i and i + 1 are calculated as follows:[

xi
zi

]
=

[
x f ss,i + rc,i cos (t + 1

2 s)
z f ss,i + rc,i sin (t + 1

2 s)

]
,

[
xi+1
zi+1

]
=

[
x f ss,i+1 + rc,i+1 cos (t + 1

2 s)
z f ss,i+1 + rc,i+1 sin (t + 1

2 s)

]
. (4)
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Figure 8. Modeling of the front slope using navigational data of the autonomous underwater
vehicle (AUV).

Assuming that the FSS maintains altitude, ∆z f ss is negligible. Then, from (3) and (4), the front
slope is derived as

zi+1 − zi
xi+1 − xi

=
cos t sin (t + 1

2 s)
1− cos t cos (t + 1

2 s)
. (5)

As a result, the front slope could be estimated from the tilt angle of the sonar. The generated
point cloud can be corrected using the calculated slope. Alternatively, the network can be trained more
robustly by adding the modeled front slope.

Next, the generated point cloud has limited surface information. The proposed method scans
an object in a single direction to avoid overhead in the operation time of the AUV. Additionally,
elevation angles can be specified only for the points reaching the critical position. Therefore, the points
are reconstructed from the limited surfaces.

We proposed a method to detect the hidden surfaces that are not scanned according to the
movement of the FSS, as shown in Figure 9. When the 3D model of an object is given, polygons facing
the back based on the FSS are culled first. The scan direction vector −→v f ss of the FSS is specified as

−→v f ss = (cos ψ, sin ψ,− tan (t +
1
2

s)), (6)

by the heading of the AUV ψ, the tilt angle of the FSS t, and the beam spreading angle s. When the
normal vector of a polygon of the 3D model is

−→
N , if −→v f ss ·

−→
N ≥ 0, it means that the acoustic beam is

not reflected from the polygon. Therefore, we removed those polygons from the given model.

Figure 9. Hidden surface removal by analyzing the scan line of the FSS.
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Furthermore, points on the polygon could be generated when the polygon meets the scan line
whose elevation angle is t + s/2 from the FSS. Hidden surfaces blocked by other surfaces could be
removed by inspecting the collision between polygons and scan lines as the FSS moves.

We could construct a training dataset through the following process. When a 3D computer-aided
design (CAD) model of an object is given, we first set a scan direction and remove the hidden surfaces.
Then, points are randomly sampled from the remaining surface. By adding the estimated front slope
through shear transformation, we could synthesize realistic training point clouds of target objects.
In this way, because it is unnecessary to conduct actual underwater experiments to obtain the training
data, the training process of the proposed object classifier becomes straightforward.

4. Experiment

To evaluate the proposed method, we conducted two types of experiments: a simulation
experiment to verify whether the proposed method generates a 3D point cloud well for object
classification and a field experiment that applies the proposed method to the classification of
artificial reefs that have been installed in the sea. This section explains the data gathering, training,
and experimental setup to test the proposed method and presents the experimental results for
each experiment.

4.1. Simulation Experiment

A simulation experiment was conducted to verify the proposed point cloud generation and
classification method. Figure 10 shows the steps for the simulation experiment. First, PointNet was
trained using ModelNet40 [24]. ModelNet40 is an open-source dataset used as a benchmark for 3D
shape classification. It consists of 12,311 mostly human-made 3D CAD models from 40 common
categories, such as tables, chairs, and airplanes. We simulated the point clouds of these categories and
checked whether the pre-trained PointNet could classify the point clouds.

Figure 10. Design of the simulation experiment to verify the object classification using the sonar-based
point cloud generation.

4.1.1. Sonar Image Simulator

We used a sonar image simulator to generate the point cloud of the objects strictly according to
the proposed method. There are several open-source simulators, such as the UUV Simulator [25] and
Stonefish [26]. However, we developed a sonar simulator to customize well for the AUV and FSS in
use. The sonar image simulator can be implemented by emulating the imaging mechanism of the
sonar sensor analyzed in Figure 2a using ray tracing [27].
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First, for the ray tracing of an acoustic beam with a vertical beam spreading angle, K rays were
sampled between t− s/2 and t + s/2, where t is the tilt angle of the sonar sensor and s is the spreading
angle. Given the 3D-modeled shape of an object, the simulator calculates the point of collision −→pθ,k
between the transmitted acoustic wave and the object as

−→pθ,k =

−→
N · −→p1
−→
N · −→vθ,k

−→vθ,k, (7)

where
−→
N and −→p1 are a normal vector and a position vector of the collided polygon of the given 3D

model, respectively, and −→vθ,k denotes the unit direction vector of the sample ray.
The sonar image is determined according to the TOF and intensity of the beam reflected from the

collision point. Considering the transmission loss according to the distance of flight, material of the
object, and Lambert’s cosine law [28], the intensity of the returned beam is modeled as

Ipθ,k = w
z− z0

z + z0

I0

|−→pθ,k|2
cos2 α, (8)

where w is a constant for unit conversion, z and z0 are the acoustic impedances of the object and water,
respectively, I0 denotes the initial intensity of the beam, and α is the angle between the sample ray and
the collided polygon. The sonar image can be simulated by mapping the intensity to the corresponding
range and azimuth angle as follows:

I(r, θ) = ∑
k∈{−→pθ,k=r}

Ipθ,k , (9)

for rmin ≤ r ≤ rmax, θmin ≤ θ ≤ θmax.
Finally, we added speckle noise to make the sonar image more realistic. Speckle noise is a

typical noise of a sonar sensor caused by interference between acoustic beams and particles in water.
By modeling speckle noise [29], the sonar image is synthesized according to the following equation:

I f inal(r, θ) =

(√
I(r, θ) +

s(r,θ)

∑
i=1

ui(r, θ)

)2

+

(
s(r,θ)

∑
i=1

vi(r, θ)

)2

, (10)

for rmin ≤ r ≤ rmax, θmin ≤ θ ≤ θmax, where s(r, θ) is a random integer uniformly sampled within
a range [0, 10], which is determined experimentally to make the output image realistic, and ui and
vi are the real and imaginary parts of the acoustic beam phasors randomly sampled from the 2D
Gaussian distribution.

The sonar image simulator can calculate the 2D sonar image of the given object from desired
positions. We modeled four objects, such as bookshelves, doors, and stairs. Then, the sonar image
simulator synthesized consecutive sonar images with changing positions along a predefined trajectory.
Then, the proposed method generated point clouds from the simulated sonar images. For a precise
verification, we simulated sonar images along three predefined trajectories and changed the tilt angle
of the sonar simulator to 30◦ and 45◦ for each object.

4.1.2. Simulation Experiment Results

We confirmed the precision of the point cloud and the accuracy of the NN by classifying the
generated test point clouds with the pre-trained PointNet. The point clouds were reconstructed
using the proposed method from the simulated sonar images. Rotational transformations were also
applied to the reconstructed point clouds to check whether the NN could classify objects invariant to
rigid body transformation. In total, 82 test point clouds were generated. Then, using the test point
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clouds, the classification accuracy of the PointNet pre-trained with the terrestrial open-source dataset
was measured.

Figure 11 shows the restored point cloud using the proposed method. Four objects were modeled
in 3D using CAD, as shown in Figure 11a. The sonar simulator then synthesized consecutive sonar
images by assuming a situation in which the AUV passed over the object, as shown in Figure 11b.
Finally, the proposed method could restore the 3D point cloud of the objects, as shown in Figure 11c.
Although the generated point clouds were sparse due to the low resolution of the sonar images and had
undesired front slopes, the overall shape was reconstructed similarly to the original form of the object.

Figure 11. Point cloud generation results of the simulation. (a) Objects modeled in 3D. (b) Synthesized
sonar images while moving the FSS. (c) Generated point clouds of the objects.

Finally, we measured the classification accuracy of the proposed method. For the quantitative
results, the proposed method was evaluated using the precision and recall of classification. As a result,
the precision recorded 91.7%, and the recall recorded 89.0%. PointNet classifies objects based on 3D
geometry, so the high accuracy shows that the proposed method restores the essential 3D information
of the object well. The proposed method generates a point cloud with only a single-directional scan,
which is suitable for AUVs that have limited operating time. Therefore, the generated point cloud has
little information about the side or back faces. We verified that accurate object classification is possible
even for these point clouds, which only have limited information, with the capability of NN.

As proposed, more accurate classification can be made by reconstructing the object in 3D, as shown
in Figure 11. Owing to the image projection principle of the sonar sensor, some objects can appear
almost the same in the sonar images, as shown in Figure 11b. This characteristic of the sonar sensor
degrades the accuracy of the classifier using a single 2D sonar image. On the other hand, when the
objects are restored in 3D, a clear difference is revealed, as shown in Figure 11c, so the two objects
can be distinguished. Furthermore, the proposed method was robust to the viewing angle. To verify
whether the proposed method could classify objects robustly to the viewing points, we assumed six
different scanning paths with varying heading and tilt angles of the FSS when simulating sonar images
for each 3D models. We verified that the proposed method could classify objects with high precision,
even when the 3D point clouds were generated from different viewing points for the same object.

4.2. Field Experiment

For the testing of the proposed method, we also conducted a field experiment. The categories of
objects that exist underwater are different from the types commonly found on land. Among underwater
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objects, we tested whether the proposed method could classify various types of artificial reefs through
the field experiment.

4.2.1. Training of the Proposed Object Classifier

The NN of the proposed method was trained in advanced with a custom dataset consisting of
point clouds of the artificial reefs. The training dataset can be constructed by installing target objects
on the seabed, capturing sonar images through additional experiments, and generating point clouds of
the objects with the proposed method. However, because the training requires a large amount of data,
the experiments to acquire training data require considerable time and effort.

Instead, we could synthesize a point cloud for training in a short time using the proposed training
data synthesis method, which modeled the target object in 3D using CAD and transformed the model
to have the characteristics of a sonar-based point cloud. First, we modeled the 3D shapes of artificial
reefs, as shown in Figure 12a. We made a rough 3D model of three typical artificial reefs of the
East Sea in Korea with similar shapes and sizes using the photos and dimensions provided by the
manufacturer [30]. Then, we assumed 72 scanning directions with the heading angle rotating around
the object at 20-degree intervals and with the tilt angle changing from 20◦ to 45◦ for each model. As a
result, base point clouds were generated by the proposed training data synthesis method, as shown
in Figure 12b. The synthesized point clouds show characteristics such as the front slope and hidden
surfaces according to the scan direction, which appear when reconstructing a point cloud by scanning a
real object with a sonar sensor. To make the object classifier robust to the noise, we added 3D Gaussian
noise points of 5% to 15% of the total number of points to these base point clouds. Finally, to normalize
the point density and size of the point clouds as the input of the NN, 1024 points were randomly
sampled and scaled to fit a unit sphere with a radius of one, as shown in Figure 12c. In total, 1296 point
clouds were synthesized.

Figure 12. Synthesizing training point clouds from 3D-modeled objects (artificial reefs). (a) Rough 3D
models of the artificial reefs. (b) Point clouds synthesized from the 3D models. (c) Normalized and
noise-added point clouds for training.
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The NN of the proposed method was trained using these synthesized point clouds.
Among 1296 point clouds, we used 1096 point clouds for the training of the NN and the remaining
200 point clouds for validation data. The NN was trained for 205 epochs. The training took about an
hour using a single GPU Titan V.

4.2.2. Field Experiment Setup

Figure 13 illustrates the field experiment. An AUV equipped with an FSS was deployed into
the sea of Jangil-bay, Pohang, Republic of Korea, as shown in Figure 13a,b. The AUV ‘Cyclops’ [31]
was used as the AUV, and a dual-frequency identification sonar (DIDSON) [32] was used as the FSS;
their specifications are described in Tables 1 and 2, respectively. Through the investigation using the
AUV, we found the seafloor in which three types of artificial reefs had been installed, as shown in
Figure 13c. Four artificial reefs were found, with one type A, one type B, and two type Cs. As shown
in Figure 13d, the AUV scanned the seabed near the sea area where the artificial reefs were installed
with lawnmower trajectories. When the AUV moved in the lawnmower trajectory, it passed through
the artificial reefs lying on the seabed in any direction, so the point clouds of the artificial reefs were
generated. We checked whether the proposed method could classify various types of artificial reefs by
generating point clouds during the AUV’s operation.

(a) AUV ’Cyclops’ and dual-frequency identification sonar
(DIDSON).

(b) AUV in operation.

(c) Optical image of the field. (d) Trajectory of the AUV ’Cyclops’.

Figure 13. Field experiment for the artificial reef classification.
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Table 1. Specifications of the AUV ’Cyclops’.

Features Specifications

Dimension 0.9 m (width) × 1.5 m (length) × 0.9 m (height)
Weight 210 kg in air
Depth rating 100 m
Power source 600 Wh Li-Po battery × 2
Computing System PC-104 (Intel Atom @ 1.66 GHz) × 2
Propulsion 8 thrusters (2 for surge, 4 for sway, 2 for heave)
Max speed 2 knots

Sensors

Forward-Scan Sonar (1.8 MHz)
Doppler Velocity Logger (1.2 MHz)
Digital pressure transducer
Fiber-optic gyro

Table 2. Specifications of the DIDSON.

Features Specifications

Operating frequency 1.8 MHz

Field of view
0.42–46.25 m (in range)
−14.5–14.5◦ (in azimuth)
−7–7◦ (in elevation)

Beam spreading angle 14◦

Beam width 0.3◦

Max resolution 0.3◦

Image size 512 × 96
Frame rate 4–21 fps

4.2.3. Field Experiment Results

As the AUV scanned the seafloor with the FSS while moving in a lawnmower trajectory,
the proposed method first generated a 3D point cloud for the scanned area, as shown in Figure 14a.
Then, the point clouds of the artificial reefs could be extracted through clustering, as shown in
Figure 14b. Each point cloud consists of less than 3000 points. Managing these point clouds requires
less memory than even a single 2D sonar image. Therefore, the proposed method could handle
practical information about objects with small memory.

Then, we verified that the trained object classifier could distinguish the different types of
underwater artificial reefs based on the generated point clouds. A total of 80 test point clouds
were prepared by sampling 1024 points several times from all of the point clouds and applying rotation
transformation to the point clouds. For a quick test, the inference of the trained classifier was also
conducted using the GPU Titan V.
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(a) Reconstructed point cloud of the seabed through lawnmower scanning by the
AUV.

(b) Point clouds extracted by type of artificial reef through clustering.

Figure 14. Point clouds of artificial reefs generated in field experiments.

The precision and recall of the proposed method were also measured. The proposed method
recorded 92.3% precision and 90.0% recall. To compare the accuracy of the proposed method,
we built a convolutional neural network (CNN) for object recognition based on a single 2D image [33].
We trained the CNN using a simulated 2D sonar image of the target object; however, the CNN failed
to recognized objects given real sonar images captured in the field because there were differences of
illumination and characteristics of noises between simulated and real sonar images. On the other hand,
the proposed method, which was also trained using the synthesized training dataset, could classify
the objects. There were differences between the synthesized training point clouds and the point clouds
reconstructed from actual artificial reefs because we approximated the artificial reefs in the 3D model
and because bio-fouling occurred in the artificial reefs. Furthermore, as shown in type A of Figure 14b,
part of the artificial reef was not correctly reconstructed due to occlusion. Nevertheless, the proposed
method could classify the actual artificial reefs on the seabed. Because it is challenging to obtain base
data for training in an underwater environment, that it can classify objects using synthesized training
data by modeling the rough 3D shape of the target object is an advantage of the proposed method.
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5. Conclusions

This paper proposes an underwater object classification method for an AUV that reconstructs an
object into a 3D point cloud and predicts the class with an NN. The AUV could capture sonar images
during its mission and generate a point cloud of an underwater scene by analyzing the highlights of
the sonar image. Then, object point cloud candidates were obtained through clustering and removal.
Finally, the NN could classify the underwater objects by predicting the labels of the point clouds.

By restoring the 3D geometry of the object, the proposed method could classify the object
accurately utilizing the lost information, and it also simplified the training process. Furthermore,
the restoration of 3D geometry is made in a point cloud format through a single scan by an AUV, so it
requires less memory and time and is suitable for use by the AUV. Finally, the introduction of an NN
facilitated robust classification, even when using a low-resolution and noisy sonar sensor.

An AUV can construct a 3D map for an underwater scene and recognize objects in the map
using the proposed method. This information is expected to be applicable to various AUV operations,
such as terrain-based navigation and target object detection. Furthermore, because a point cloud is a
data format often used as an input to various terrestrial robot algorithms, the proposed method can
improve the utilization of the underwater sonar data.
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DIDSON dual-frequency identification sonar
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