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Abstract: A multi-cluster cloud radio access network (C-RAN) is considered in this paper where the
remote radio heads (RRHs) form different clusters. A cluster includes RRHs that have the same radio
resource unit capacity. In addition, all RRHs are separated from the common pool of computational
resource units named baseband units. Each RRH accommodates calls whose arrival process can be
random, quasi-random, or even bursty. The latter is modeled according to the compound Poisson
process where calls arrive in the C-RAN in the form of batches whose size (in calls) is generally
distributed. An arriving call requires a radio and a computational resource unit so as to be accepted in
the C-RAN. If at least one of these units is not available, the call is blocked. To analyze the proposed
multi-cluster C-RAN we model it as a loss system, show that the steady-state probabilities have a
product form solution and propose an algorithm for the computation of congestion probabilities.
The accuracy of the proposed algorithm is verified via simulation.

Keywords: cloud-radio access; cluster; congestion; probability; Poisson; quasi-random; bursty;
product form

1. Introduction

The cloud radio access network (C-RAN) architecture consists of a number of base stations where
the remote radio heads (RRHs) are separated from the baseband units (BBUs) [1]. The RRHs are
grouped in different clusters according to their capacity in terms of radio resource units (RUs). On the
other hand, the BBUs form a common pool of computational RUs which can be connected to the
RRHs, with a high-capacity fronthaul, via the common public radio interface (CPRI) [2]. In addition,
we consider virtualized BBU computational resources (V-BBU) in order to benefit from network
function virtualization [1].

In this multi-cluster C-RAN architecture, we concentrate on call-level and study the main
performance measure which is call blocking probabilities (CBP). A new call simultaneously requires a
radio RU from the RRH that will serve that call and a computational RU from the V-BBU. If at least
one of these units is not available, the call is blocked and lost. Otherwise, the new call is accepted in
the RRH for an exponentially distributed service time. As far as the call arrival process is concerned,
we assume that the C-RAN accommodates random, quasi-random, and bursty traffic. Random traffic
refers to calls generated by an infinite number of mobile users (MUs) and is described via the classical
Poisson process. It is considered to be the simplest call arrival process in teletraffic modeling due to
the fact that it leads to efficient CBP formulas [3,4]. Quasi-random traffic is smoother than random
traffic since it refers to calls generated by a finite number of MUs. Finally, bursty traffic, which is
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considered to be a dominant part in 5G networks [5–7], is more peaked than random traffic and can be
well approximated via the compound Poisson process whose applications in loss/queueing systems
are numerous [8–13]. In the compound Poisson process, batches of calls arrive in the system according
to a Poisson process while their size (in number of calls) is generally distributed.

The springboard for the analysis of the proposed system is [14] where a loss model, named
single-class-multi-cluster (SC-MC) model has been proposed for the case of random traffic only.
The term ‘single-class’ refers to the fact that all new calls have the same requirements in terms of RUs.
The authors of [14] consider a multidimensional Markov chain for the description of the SC-MC loss
model. This chain is reversible, a fact that leads to the computation of the steady-state probabilities via
a product form solution (PFS). The latter leads to an accurate CBP calculation via recursive formulas or
via an evaluation method which requires the system’s state space enumeration/processing. Recently,
in [15], the SC-MC model has been extended to include the case of quasi-random traffic, only. We name
this model finite SC-MC (f-SC-MC) model.

In this paper, we generalize the SC-MC and the f-SC-MC models by assuming that RRHs may
serve random, quasi-random and bursty traffic. The proposed model is named generalized SC-MC
(g-SC-MC) model while our contribution can be summarized as follows: (1) we initially show that
the g-SC-MC model can be analytically described via a continuous time Markov chain and that the
steady-state probabilities have a PFS, (2) we determine the congestion probabilities via a brute force
(BF) evaluation method, (3) we propose a convolution algorithm for the efficient determination of
congestion probabilities in the multi-cluster C-RAN, and (4) we provide a comparison of the analytical
results of the g-SC-MC model with those obtained according to the models of [14,15] and verify the
accuracy of the proposed convolution algorithm via simulation.

Generally speaking, it is significant in network planning and dimensioning procedures to have
convolution algorithms or efficient recursive formulas for the determination of various performance
measures including congestion probabilities [16–36]. We focus on convolution algorithms which
are adopted in the literature both in PFS [37–39] and in non-PFS queueing/loss models [40–42].
The advantage of such algorithms is that they can incorporate various resource sharing policies
such as the bandwidth reservation policy, the complete sharing policy, as well as threshold-based
policies [43–46].

The organization of this paper is as follows: In Section 2, we present a short review of the SC-MC
model and provide a convolution algorithm for the CBP determination. In Section 3, we propose the
g-SC-MC model. In Section 3.1, we present a PFS for the determination of the steady-state probabilities
while in Sections 3.2 and 3.3 we propose a BF method and a convolution algorithm for the calculation
of congestion probabilities, respectively. In Section 4, we provide analytical and simulation results for
the congestion probabilities of the proposed g-SC-MC model and the SC-MC model of [14]. We present
our conclusion in Section 5. In Appendix A, we provide a short tutorial example of the necessary
congestion probabilities calculations for the proposed g-SC-MC model.

2. The SC-MC Model—A Review

Consider the multi-cluster C-RAN of Figure 1 where the V-BBU and the RRHs are separated.
In this network, Z classes of RRHs are considered. Class z (z = 1, . . . , Z) forms a cluster of RRHs that
includes a total number of Mz RRHs. A RRH of class z has a capacity of Cz radio RUs which serve the
Poisson arriving calls of the MUs. Similarly, the V-BBU consist of T computational RUs.

Let λz be the rate of Poisson arriving calls in a class z RRH. A call is accepted for a generally
distributed service time with meanµ−1 in a RRH if a radio RU (from that RRH) as well as a computational
RU are available when the call arrives in the system. Otherwise, call blocking occurs. The corresponding
offered traffic-load in a class z RRH is given by αz = λz/µ (in erl).
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Figure 1. Multi-cluster C-RAN in the case of random traffic (SC-MC model). 
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Figure 1. Multi-cluster C-RAN in the case of random traffic (SC-MC model).

Consider the m-th RRH of class z (z = 1, . . . , Z and m = 1, . . . , Mz) and let
nz,m be the calls under service in that particular RRH. Then, the steady-state vector
n =

(
n1,1, . . . , n1,M1 , . . . , nz,1, . . . , nz,Mz , . . . , nZ,1, . . . , nZ,MZ

)
expresses the number of calls serviced

in the RRHs of the Z classes while P(n) is the corresponding steady-state probability distribution.
The latter has the following PFS [14]

P(n) = G−1

 Z∏
z = 1

Mz∏
m = 1

α
nz,m
z /nz,m!

, (1)

where G =
∑

n∈Ω

(
Z∏

z = 1

Mz∏
m = 1

α
nz,m
z /nz,m!

)
and Ω is the system’s state space described as follows

Ω =

{
n : 0 ≤ nz,1, . . . , nz,Mz ≤ Cz, 0 ≤

Z∑
z = 1

Mz∑
m = 1

nz,m ≤ T
}

.

Based on (1), we compute the total CBP of calls in a class z RRH, Bz,tot, as

Bz,tot = Bc + Bz,r, (2)

where Bc refers to the blocking caused due to insufficient computational RUs while Bz,r expresses the
blocking caused solely due to unavailability of radio RUs.

According to [14], the case of simultaneous blocking due to both insufficient radio and
computational RUs is classified as Bc. In that sense, the sets Ac and Az,r that include the blocking states
of Bc and Bz,r, respectively, are mutually exclusive, i.e., Ac ∩Az,r = ∅. We also keep this distinction in
the proposed g-SC-MC model.

The values of Bz,tot can be accurately (compared to simulation) calculated either via a BF method
(helpful only in small multi-cluster C-RAN examples since it requires enumeration/processing of the
system’s state space Ω) or via a recursive method [14]. Some minor corrections in the CBP formulas
of [14] have been presented in [15].

Alternatively, the values of Bz,tot together with the occupancy distribution of the computational
RUs can be efficiently determined via the following convolution algorithm [15]:

Step 1

For each of the Mz RRHs that belong to class z (z = 1, . . . , Z and m = 1, . . . , Mz) determine the
occupancy distribution qz,m( j), where j = 1, . . . , Cz, via
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qz,m( j) =
α

j
z

j!
qz,m(0). (3)

The normalization of qz,m( j) can be achieved via the constant Gz,m =
∑Cz

j = 0 qz,m( j) and in that
case the normalized values become q′z,m( j) = qz,m( j)/Gz,m.

Step 2

Compute the aggregated occupancy distribution Q(−(z,1)) of all RRHs, excluding the (z, 1) RRH,
via the formula

Q(−(z,1)) = q′1,1 ∗ . . . ∗ q′1,M1
∗ . . . ∗ q′z,2 ∗ . . . ∗ q′z,Mz

∗ . . . ∗ q′Z,1 ∗ . . . ∗ q′Z,MZ
, (4)

where the first part of (4) (q′1,1 ∗ . . . ∗ q′1,M1
) refers to the M1 RRHs of the first class, the second part

(q′z,2 ∗ . . . ∗ q′z,Mz
) refers to the Mz − 1 RRHs of the zth class (the (z, 1) RRH is excluded) and the last part

(q′Z,1 ∗ . . . ∗ q′Z,MZ
) refers to the MZ RRHs of the Zth class while

q′z,u ∗ q′z,w =


q′z,u(0) · q′z,w(0),

1∑
x = 0

q′z,u(x) · q′z,w(1− x),

. . . ,
T∑

x = 0
q′z,u(x) · q′z,w(T − x)

. (5)

Since the resulting distribution may not be normalized, it is recommended to apply the
normalization constant Gz,u,w in the results of (5).

Step 3

Compute Bz,tot based on the results of the previous step

Bz,tot = Bz,r + Bc = G−1

q′z,1(Cz)
T−Cz−1∑

r = 0

Q′
(−(z,1))

(r) + q(T)

, (6)

where q′z,1(Cz) expresses the unavailability of radio RUs in the (z, 1) RRH (computed in step 1),
Q′

(−(z,1))
(r) express the normalized values of Q

(−(z,1))
(r) and q(T) expresses the un-normalized probability

of unavailable computational RUs, obtained via q(T) =
T∑

r = 0
Q′
(−(z,1))

(r)q′z,1(T − r) while G is the

(normalization) constant of the operation Q′
(−(z,1))

∗ q′z,1 calculated in (5).
Note that (14) refers to the Bz,tot of any RRH that belongs to class z since all RRHs of that class

have offered traffic-load az and capacity Cz.
Based on the presented algorithm, we compute the computational RUs’ occupancy distribution

according to the formulas

q′(0) = G−1
(
Q

(−(z,1))
(0)q′z,1(0)

)
, j = 0

q′( j) = G−1

 j∑
r = 0

Q
(−(z,1))

(r)q′z,1( j− r)

, j = 1, . . . , T
(7)

where G expresses the normalization constant of Q
(−(z,1))

∗ q′z,1.

3. Proposed g-SC-MC Model

3.1. Description of the Analytical Model

In the proposed g-SC-MC model, we consider again a multi-cluster C-RAN which consists of
the V-BBU (T computational RUs) and Z classes of RRHs. Class z (z = 1, . . . , Z) consists of a cluster
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of RRHs that includes a total number of Mz RRHs whose capacity is Cz radio RUs. Let the number
of Mz RRHs be composed of Mz,inf RRHs that serve random traffic, Mz,fin RRHs that accommodate
quasi-random traffic and Mz,cP RRHs that accommodate compound Poisson traffic, i.e., Mz,inf + Mz,fin

+ Mz,cP = Mz.
In the case of random traffic, let λz,P be the rate of Poisson arriving calls in the (z, m) RRH (m = 1,

. . . , Mz,inf and z = 1, . . . , Z). The corresponding offered traffic-load will be αz,P = λz,P/µ. In the
case of quasi-random traffic, let λz,m,F = (Nz,m − nz,m)vz,m,F be the call arrival rate in the (z, m) RRH
(m = Mz,inf + 1, . . . , Mz,inf + Mz,fin and z = 1, . . . , Z) where Nz,m denotes the population of MUs that
can generate traffic in the (z, m) RRH, nz,m refers to the in-service calls in that RRH and vz,m,F expresses
the call arrival rate per idle MU. In the case of the compound Poisson process, batches of calls arrive
in the (z, m) RRH (m = Mz,inf + Mz,fin + 1, . . . , Mz and z = 1, . . . , Z) according to a Poisson process,
with arrival rate λz,cP, while the batch size (in number of calls) is generally distributed. Calls that
belong to the same arriving batch are treated independently which means that some calls can be
accepted in the serving RRH while the rest calls will be blocked, depending on the availability of RUs.

As far as the call admission is concerned, a call is accepted for an exponentially distributed service
time with mean µ−1 in a RRH if a radio RU (from that RRH) as well as a computational RU are available
when the call arrives in the system. Otherwise, call blocking occurs.

Let the steady-state vector n =
(
n1,1, . . . , n1,M1 , . . . , nz,1, . . . , nz,Mz , . . . , nZ,1, . . . , nZ,MZ

)
express the

number of in-service calls in the RRHs of the Z classes, where M1 = M1,inf + M1,fin + M1,cP, Mz = Mz,inf

+ Mz,fin + Mz,cP and MZ = MZ,inf + MZ,fin + MZ,cP. The corresponding steady-state probability
distribution is denoted as Pgen(n). In order to analyze the g-SC-MC model, we show that Pgen(n) can
be described via a PFS. To this end, it should be shown that some form of local balance exists between
state n and state n+

z,m =
(
n1,1, . . . , nz,m + 1, . . . , nZ,MZ

)
. More specifically, consider the level L(z,m)

n that
separates state n+

z,m from state n. This level is crossed if one of the following three call-arrival cases
occurs: (i) an arriving call that follows a Poisson process requests service from the (z, m) RRH (where
m = 1, . . . , Mz,inf), (ii) an arriving call that follows a quasi-random process requests service from the
(z, m) RRH (where m = Mz,inf + 1, . . . , Mz,inf + Mz,fin), (iii) calls of an arriving batch requests service
from the (z, m) RRH (where m = Mz,inf + Mz,fin + 1, . . . , Mz). An additional call-departure case exists
when an in-service call departs from the serving RRH after its service is completed. In what follows,
we focus on each of the three call-arrival cases and the corresponding call-departure case.

In the first case, we have a Poisson arriving call of rate λz,P in the (z, m) RRH (m = 1, . . . , Mz,inf

and z = 1, . . . , Z). We can express the upward probability flow across L(z,m)
n as

f (up)
(
L(z,m)

n

)
= λz,PPgen(n). (8)

The downward probability flow across L(z,m)
n takes place when a call departs from the (z, m) RRH

and can be expressed as

f (down)
(
L(z,m)

n

)
= (nz,m + 1)µPgen

(
n+

z,m

)
. (9)

Based on (8) and (9), we have the following local balance equation for L(z,m)
n

λz,PPgen(n) = (nz,m + 1)µPgen
(
n+

z,m

)
. (10)

In the second case, we have an arriving call, generated from a finite number of MUs, in the (z, m)
RRH (m = Mz,inf + 1, . . . , Mz,inf + Mz,fin and z = 1, . . . , Z). We can express the upward probability flow

across L(z,m)
n as

f (up)
(
L(z,m)

n

)
= λz,m,FPgen(n) = (Nz,m − nz,m)vz,m,FPgen(n). (11)
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The corresponding downward probability flow across L(z,m)
n can be expressed via (9). Based on

(11) and (9), we have the following local balance equation for L(z,m)
n

(Nz,m − nz,m)vz,m,FPgen(n) = (nz,m + 1)µPgen
(
n+

z,m

)
. (12)

In the third case, we have an arriving batch of calls in the (z, m) RRH (m = Mz,inf + Mz,fin + 1, . . . ,

Mz and z = 1, . . . , Z). We can express the upward probability flow across L(z,m)
n as

f (up)
(
L(z,m)

n

)
=

nz,m∑
ω = 0

Pgen
(
n−ωz,m

)
λz,cP

∞∑
r = ω+1

Sr, (13)

where n−ωz,m =
(
n1,1, . . . , nz,m −ω, . . . , nZ,MZ

)
, Pgen

(
n−ωz,m

)
is the steady-state probability and Sr is the

probability that the arriving batch contains r calls.
The corresponding downward probability flow across L(z,m)

n can be expressed via (9). Based on
(13) and (9), we have the following local balance equation for L(z,m)

n

nz,m∑
ω = 0

Pgen
(
n−ωz,m

)
λz,cP

∞∑
r = ω+1

Sr = (nz,m + 1)µPgen
(
n+

z,m

)
. (14)

Equations (10), (12), and (14) can be satisfied via the following PFS

Pgen(n) = G−1

 Z∏
z = 1

Mz,inf∏
m = 1

α
nz,m
z,P

nz,m!

Mz,inf+Mz,fin∏
m = Mz,inf+1

(
Nz,m

nz,m

)
α

nz,m
z,m, idle

Mz∏
m = Mz,inf+Mz,fin+1

P(z,m)
nz,m

, (15)

where G =
∑

n∈Ω

 Z∏
z = 1

Mz,inf∏
m = 1

α
nz,m
z,P

nz,m!

Mz,inf+Mz,fin∏
m = Mz,inf+1

(
Nz,m

nz,m

)
α

nz,m
z,m, idle

Mz∏
m = Mz,inf+Mz,fin+1

P(z,m)
nz,m

, Ω is described as

Ω =

{
n : 0 ≤ nz,1, . . . , nz,Mz ≤ Cz, 0 ≤

Z∑
z = 1

Mz∑
m = 1

nz,m ≤ T
}

, αz,m,idle = vz,m,F/µ expresses the offered

traffic-load per idle MU, P(z,m)
nz,m =

nz,m∑
ω = 1

αz,cP
nz,m

P(z,m)
nz,m−ωŜω−1, αz,cP = λz,cP/µ and Ŝω =

∞∑
r = ω+1

Sr is the

complementary batch size distribution.
Having determined the values of Pgen(n) we can compute the total time congestion (TC)

probabilities in the (z, m) RRH (m = 1, . . . , Mz and z = 1, . . . , Z) either according to a BF method or
according to a convolution algorithm (presented in Sections 3.2 and 3.3, respectively) and based on
the formula

BTC
z,m,tot = BTC

c + BTC
z,m,r, (16)

where BTC
c and BTC

z,m,r refer to the unavailable computational RUs in the V-BBU and radio RUs in the
(z, m) RRH, respectively.

3.2. BF Method for the Computation of Congestion Probabilities

The determination of BTC
c can be based on the values of Pgen(n) according to the formula

BTC
c =

∑
n∈Ω=T

Pgen(n), (17)

where Ω=T =

{
n :

Z∑
z = 1

Mz∑
m = 1

nz,m = T
}

.
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On the same hand, the values of BTC
z,m,r can be computed (via (15)) via

BTC
z,m,r =

∑
n∈Ωz,m,Cz

<T

Pgen(n), (18)

where Ωz,m,Cz
<T =

{
Ωz,m,Cz ∩Ω<T

}
, Ωz,m,Cz =

{
n : nz,m = Cz

}
, Ω<T =

{
n :

Z∑
z = 1

Mz∑
m = 1

nz,m < T
}

.

It is evident that (17) and (18) can be quite complex since it is expected to enumerate and process
the state space Ω. Because of this, we adopt the convolution algorithm proposed in the next subsection.

3.3. Convolution Algorithm for the Computation of Congestion Probabilities

The PFS of the g-SC-MC model implies that a convolution algorithm can be applied for the
accurate and efficient determination of congestion probabilities. To this end, we propose the following
three-step convolution algorithm.

Step 1

(a) For each of the Mz,inf RRHs that accommodate random traffic and belong to class z (z = 1, . . . ,
Z and m = 1, . . . , Mz,inf) determine the occupancy distribution qgen,z,m( j), where j = 1, . . . , Cz, via

qgen,z,m( j) =
α

j
z,P

j!
qgen,z,m(0). (19)

(b) For each of the Mz,fin RRHs that accommodate quasi-random traffic and belong to class
z (z = 1, . . . , Z and m = Mz,inf + 1, . . . , Mz,inf + Mz,fin) determine the occupancy distribution qgen,z,m( j),
where j = 1, . . . , Cz, via

qgen,z,m( j) =

(
Nz,m

j

)
α

j
z,m, idleqgen,z,m(0). (20)

(c) For each of the Mz,cP RRHs that accommodate compound Poisson traffic and belong to class
z (z = 1, . . . , Z and m = Mz,inf + Mz,fin + 1, . . . , Mz) determine the occupancy distribution qgen,z,m( j),
where j = 1, . . . , Cz, according to the formula

qgen,z,m( j) =

j∑
l = 1

αz,cP

j
qgen,z,m( j− l)Ŝl−1. (21)

Note that qgen,z,m(0) = 1 while qgen,z,m(x) = 0 for x > C or x < 0. Furthermore, the normalization
of qgen,z,m( j) can be achieved via the constant Ggen,z,m =

∑Cz
j = 0 qgen,z,m( j) and in that case the

normalized values become q′gen,z,m( j) = qgen,z,m( j)/Ggen,z,m.

Step 2

Compute the aggregated occupancy distribution Qgen,(−(z,m)) of all RRHs, excluding the (z, m)
RRH, via the formula

Qgen,(−(z,m)) = q′gen,1,1 ∗ . . . ∗ q′gen,1,M1
∗ . . . ∗ q′gen,z,1 ∗ . . . ∗ q′gen,z,m−1 ∗ q′gen,z,m+1 ∗ . . . ∗ q′gen,z,Mz

∗ . . . ∗ q′gen,Z,1 ∗ . . . ∗ q′gen,Z,MZ
, (22)

where

q′gen,z,u ∗ q′gen,z,w =


q′gen,z,u(0) · q′gen,z,w(0),

1∑
x = 0

q′gen,z,u(x) · q′gen,z,w(1− x),

. . . ,
T∑

x = 0
q′gen,z,u(x) · q′gen,z,w(T − x)

. (23)

Since the resulting distribution may not be normalized, it is recommended to apply the
normalization constant Ggen,z,u,w in the results of (23).
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Step 3

Compute BTC
z,m,tot based on the results of Step 2

BTC
z,m,tot = BTC

z,m,r + BTC
c = G−1

gen

q′gen,z,m(Cz)
T−Cz−1∑

r = 0

Qgen,(−(z,m))
(r) +

T∑
x = 0

Qgen,(−(z,m))
(x)q′gen,z,m(T − x)

, (24)

where q′gen,z,m(Cz) expresses the unavailability of radio RUs in the (z, m) RRH (computed in the
first step), while the second summation expresses the un-normalized probability of unavailable
computational RUs and Ggen is the normalization constant of Q

gen,(−(z,m))
∗ q′gen,z,m computed via (23).

In addition to TC probabilities (which refer to the proportion of time the multi-cluster C-RAN
has no available RUs) we can also compute the call congestion (CC) probabilities (which refer to the
proportion of lost calls), BCC

z,m, for a new call in an RRH that accommodates quasi-random or compound
Poisson traffic. CC and TC probabilities coincide in the case of random traffic. To determine the CC
probabilities in the case of quasi-random traffic, we can adopt the convolution algorithm for a system
with Nz,m−1 sources. On the same hand, to determine the CC probabilities in the case of compound
Poisson traffic we can adopt the formula

BCC
z,m =

αz,cPŜ− nz,m

αz,cPŜ
, (25)

where Ŝ =
∞∑

l = 1
lŜl is the average batch size (in number of calls) and nz,m refers to the average number

of calls accommodated in the (z, m) RRH.
A popular batch size distribution is the geometric distribution which possesses the memoryless

property [4,47]. If this distribution is adopted and assuming that β is its parameter, then Ŝ = 1/(1− β).
The determination of nz,m can be based on the formula

nz,m =
1

Ggen

Cz∑
j = 1

ygen,z,m( j)q′gen,z,m( j)
T− j∑

r = 0

Qgen,(−(z,m))
(r), (26)

where Ggen is the normalization constant of the convolution operation Q
gen,(−(z,m))

∗ q′gen,z,m determined

via (23) and ygen,z,m( j) expresses the average number of calls that exist in state j of the (z, m) RRH.
The determination of ygen,z,m( j), for j = 1, . . . , Cz, can be based on the formula

ygen,z,m( j) =
αz,cP

q′gen,z,m( j)

j∑
l = 1

q′gen,z,m( j− l)Ŝl−1, (27)

Based on the convolution algorithm, we can also compute the computational RUs’ occupancy
distribution according to the formulas

q′gen(0) = Q
gen,(−(z,m))

(0)q′gen,z,m(0)/Ggen, j = 0

q′gen( j) =
j∑

r = 0
Q

gen,(−(z,m))
(r)q′gen,z,m( j− r)/Ggen, j = 1, . . . , T

(28)

Considering the computational complexity of (23) is in the order of O(T2) while the corresponding
complexity of (28) is in the order of O(MT2), where M = (M1, . . . , MZ).

4. Evaluation

In this section, we consider an example of a multi-cluster C-RAN and provide both simulation
and analytical results for the CC and TC probabilities in the case of the proposed g-SC-MC model



Electronics 2020, 9, 2120 9 of 18

and analytical results for the existing SC-MC model. The simulation tool adopted in our example is
SIMSCRIPT III [48] while all simulation results are mean values of seven runs. In every run, 200 million
calls are generated while the initial 5% of them are not taken into consideration in order to have a
warm-up period [49,50]. Regarding reliability ranges, they are less than two order of magnitudes and
therefore we do not present them in Figures 2–7.

The C-RAN example presented herein consists of two clusters (Z = 2). The first cluster consists
of M1 = 6 RRHs where the capacity per RRH is C1 = 10 radio RUs. The second cluster consists of
M2 = 3 RRHs where the capacity per RRH is C2 = 15 radio RUs. Regarding the computational RUs,
we consider that T = 80 RUs. Values of T that are much lower than T = M1C1 + M2C2 = 105 RUs
will result in quite high values for the congestion probabilities due to insufficient computational RUs
(BTC

c ) and therefore are not taken into consideration herein. In the case of the existing SC-MC model,
we assume that the offered traffic load (per RRH) in the first cluster is α1 = 4 erl and in the second
cluster α2 = 7 erl. In the case of the proposed g-SC-MC model, the traffic-load offered in the RRHs
of the first cluster is as follows: the first two RRHs accommodate random traffic with α1,P = 4 erl
(per RRH), RRHs numbered 3 to 4 accommodate quasi-random traffic with N1,3 = N1,4 = 50 sources
and α1,3,idle = α1,P/N1,3, α1,4,idle = α1,P/N1,4 while RRHs numbered 5 to 6 accommodate compound
Poisson traffic with α1,cP = 4 erl. Regarding the size distribution (in terms of calls) of the arriving
batches, we consider the geometric distribution with parameter β = 0.2. Similarly, the traffic-load
offered in the RRHs of the second cluster is as follows: the first RRH accommodates random traffic
with α2,P = 7 erl, the second RRH accommodates quasi-random traffic with N2,2 = 100 sources and
α2,2,idle = α2,P/N2,2 while the third RRH accommodates compound Poisson traffic with α2,cP = 7 erl
and a geometrically batch size distribution with β = 0.2.
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In the x-axis of Figures 2–7, the values of offered traffic-load increase in steps of 0.2 erl. Therefore,
for Figures 2–4 that refer to the first cluster, point 1 in the x-axis is 4 erl while point 11 is 6.0 erl. Similarly,
for Figures 5–7 that refer to the second cluster, point 1 in the axis is 7 erl while point 11 is 9.0 erl.

In Figure 2, we present both simulation and analytical results of the TC probabilities (BTC
1,m,r) for

the g-SC-MC model and the corresponding results (B1,r) for the SC-MC model, which refer to time
congestion due to unavailability of radio RUs. In Figure 3, we present simulation and analytical results
of the TC probabilities (BTC

c ) for the g-SC-MC model and the corresponding results (Bc) for the SC-MC
model, which refer to time congestion due to unavailability of computational RUs. Finally, in Figure 4,
we present simulation and analytical results of the CC probabilities (BCC

1,m) for the g-SC-MC model and

the corresponding results (B1,tot ≡ BCC
1 ) for the SC-MC model. According to Figures 2–4, we observe that:

(i) simulation and analytical results are quite close in the proposed g-SC-MC model, (ii) all congestion
probabilities increase as the offered traffic-load increases, (iii) the choice of T = 80 RUs results in an
increase of BTC

c and Bc especially for higher values of the offered traffic-load (in the case of T = M1C1 +

M2C2 = 105 RUs, both BTC
c and Bc can be considered negligible), and (iv) the existing SC-MC model

cannot capture the behavior of the proposed g-SC-MC model since the former accommodates only
random traffic and not bursty or quasi-random traffic. This failure is depicted even for a small value of
β. Higher values of β will increase the difference between the results obtained via the two models.

Similar conclusions are obtained in Figures 5–7 which refer to the congestion probabilities in the
RRHs of the second cluster. As a final comment, we mention that the accuracy of the analytical results
of the proposed model, compared to simulation, is not affected by an increase in the number of clusters.
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5. Conclusions

We proposed a loss model for the analysis and evaluation of a multi-cluster C-RAN that accommodates
random, quasi-random, and bursty traffic. New calls can be accepted in an RRH if their resource
requirements (a radio and a computational RU) can be met. If any of these two RUs is not available,
then call blocking occurs. We showed that the model has a PFS for the steady-state probabilities and
provided an efficient convolution algorithm for the computation of the main performance measures
such as congestion probabilities. The accuracy of the proposed algorithm was verified via simulation.
As a possible future extension of this work, we intend to study single or multi-cluster C-RAN that
accommodates calls: (i) whose RUs may fluctuate between a maximum and a minimum value during
this service time, forming the so called “elastic traffic” [51–55]; or (ii) whose requirements in terms of
RUs may be different during the call admission phase [56–58].
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Validation, I.-A.C. and I.D.M.; Writing—original draft preparation, all authors; Writing—review and editing,
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Appendix A

In this appendix, a tutorial example is presented that shows some intermediate results required for
the determination of congestion probabilities in the proposed g-SC-MC model. To this end, we consider
a multi-cluster C-RAN of T = 7 computational RUs and Z = 2 classes of RRHs. The first class consists
of M1 = 2 RRHs of C1 = 3 radio RUs. The second class consists of M2 = 1 RRH of C2 = 4 radio
RUs. Regarding the first class, arriving calls in the first RRH follow a Poisson process with rate
λ1,P = 1.0, while arriving calls in the second RRH follow a quasi-random process with N1,2 =10 and
v1,2,F =0.1. Regarding the second class, arriving calls in the RRH follow a compound Poisson process
with λ2,cP = 0.8 and β = 0.5. The service time of all calls is exponentially distributed with mean µ−1 = 1.0.
The state space of this example consists of 70 states (whose form is n = (n1,1, n1,2, n2,1)).

The application of the proposed convolution algorithm in this example is as follows:

Step 1

• For z = 1, m = 1 and j =1, . . . , 3 compute qgen,1,1( j) assuming that α1,P = 1.0:

j = 1→ qgen,1,1(1) =
α1

1,P
1! ⇒ qgen,1,1(1) = 1.0

j = 2→ qgen,1,1(2) =
α2

1,P
2! ⇒ qgen,1,1(2) = 0.5

j = 3→ qgen,1,1(3) =
α3

1,P
3! ⇒ qgen,1,1(3) = 0.1666

Ggen,1,1 = 2.6666

The corresponding normalized values of qgen,1,1( j) are the following:

q′gen,1,1(0) = 0.375, q′gen,1,1(1) = 0.375, q′gen,1,1(2) = 0.1875, q′gen,1,1(3) = 0.0625.
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• For z = 1, m = 2 and j = 1, . . . , 3 compute qgen,1,2( j) assuming that α1,2,F = 0.1:

j = 1→ qgen,1,2(1) =

 10
1

α1
1,2,F

1! ⇒ qgen,1,2(1) = 1.0

j = 2→ qgen,1,2(2) =

 10
2

α2
1,2,F

2! ⇒ qgen,1,2(2) = 0.45

j = 3→ qgen,1,2(3) =

 10
3

α3
1,2,F

3! ⇒ qgen,1,2(3) = 0.12
Ggen,1,2 = 2.57

The corresponding normalized values of qgen,1,2( j) are the following:

q′gen,1,2(0) = 0.389105, q′gen,1,2(1) = 0.389105, q′gen,1,2(2) = 0.175097, q′gen,1,2(3) = 0.046693.

• For z = 2, m = 1 and j = 1, . . . , 4 compute qgen,2,1( j) assuming that α2,cP = 0.8 and

Ŝl−1 = βl−1 = 0.5l−1:

j = 1→ qgen,2,1(1) =
1∑

l = 1

α2,cP
1 qgen,2,1(1− l)βl−1 = 0.8

1 · 1 · 0.50
⇒ qgen,2,1(1) = 0.8

j = 2→ qgen,2,1(2) =
2∑

l = 1

α2,cP
2 qgen,2,1(2− l)βl−1 = 0.8

2 · 0.8 · 0.50 + 0.8
2 · 1 · 0.51

⇒ qgen,2,1(2) = 0.52

j = 3→ qgen,2,1(3) =
3∑

l = 1

α2,cP
3 qgen,2,1(3− l)βl−1 = 0.8

3 · 0.52 · 0.50 + 0.8
3 · 0.8 · 0.51 + 0.8

3 · 1 · 0.52

⇒ qgen,2,1(3) = 0.312

j = 4→ qgen,2,1(4) =
4∑

l = 1

α2,cP
4 qgen,2,1(4− l)βl−1 = 0.8

4 · 0.312 · 0.50 + 0.8
4 · 0.52 · 0.51 + 0.8

4 · 0.8 · 0.52

+ 0.8
4 · 1 · 0.53

⇒ qgen,2,1(4) = 0.1794
Ggen,2,1 = 2.8114

The corresponding normalized values of qgen,2,1( j) are the following:

q′gen,2,1(0) = 0.355695, q′gen,2,1(1) = 0.284556, q′gen,2,1(2) = 0.184961, q′gen,2,1(3) = 0.110977, q′gen,2,1(4) = 0.063812.

Step 2

Based on (23), compute the values of Qgen,(−(1,1)) = q′gen,1,2 ∗ q′gen,2,1:

j = 0→ Qgen,(−(1,1))(0) = q′gen,1,2(0) · q
′

gen,2,1(0) = 0.1384

j = 1→ Qgen,(−(1,1))(1) = q′gen,1,2(0) · q
′

gen,2,1(1) + q′gen,1,2(1) · q
′

gen,2,1(0) = 0.249125

j = 2→ Qgen,(−(1,1))(2) = 0.244973
j = 3→ Qgen,(−(1,1))(3) = 0.181584
j = 4→ Qgen,(−(1,1))(4) = 0.113684
j = 5→ Qgen,(−(1,1))(5) = 0.052897
j = 6→ Qgen,(−(1,1))(6) = 0.016355
j = 7→ Qgen,(−(1,1))(7) = 0.002980
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Similarly, we have:
j = 0→ Qgen,(−(1,2))(0) = 0.133386
j = 1→ Qgen,(−(1,2))(1) = 0.240094
j = 2→ Qgen,(−(1,2))(2) = 0.242762
j = 3→ Qgen,(−(1,2))(3) = 0.186562
j = 4→ Qgen,(−(1,2))(4) = 0.118011
j = 5→ Qgen,(−(1,2))(5) = 0.056298
j = 6→ Qgen,(−(1,2))(6) = 0.018901
j = 7→ Qgen,(−(1,2))(7) = 0.003988

and
j = 0→ Qgen,(−(2,1))(0) = 0.145914
j = 1→ Qgen,(−(2,1))(1) = 0.291829
j = 2→ Qgen,(−(2,1))(2) = 0.284533
j = 3→ Qgen,(−(2,1))(3) = 0.180447
j = 4→ Qgen,(−(2,1))(4) = 0.074660
j = 5→ Qgen,(−(2,1))(5) = 0.019698
j = 6→ Qgen,(−(2,1))(6) = 0.002918
j = 7→ Qgen,(−(2,1))(7) = 0.0

Finally, it is essential to compute the values of one of the following (convolution) operations:
Qgen,(−(1,1)) ∗ q′gen,1,1 ≡ qgen, Qgen,(−(1,2)) ∗ q′gen,1,2 ≡ qgen or Qgen,(−(2,1)) ∗ q′gen,2,1 ≡ qgen. These cases
result in the same values of qgen( j) ‘s (for j = 0, . . . , T). More specifically, assuming the operation
Qgen,(−(1,1)) ∗ q′gen,1,1 ≡ qgen, we obtain:

j = 0→ qgen(0) = Qgen,(−(1,1))(0) · q′gen,1,1(0) = 0.051901

j = 1→ qgen(1) =
1∑

x = 0
Qgen,(−(1,1))(x) · q′gen,1,1(1− x) = 0.145323

j = 2→ qgen(2) =
2∑

x = 0
Qgen,(−(1,1))(x) · q′gen,1,1(2− x) = 0.211237

j = 3→ qgen(3) = 0.215320
j = 4→ qgen(4) = 0.172228
j = 5→ qgen(5) = 0.111826
j = 6→ qgen(6) = 0.058634
j = 7→ qgen(7) = 0.024274

where Ggen = 0.990743.
Thus, the corresponding normalized values are:

q′gen(0) = 0.052386, q′gen(1) = 0.146681, q′gen(2) = 0.213211, q′gen(3) = 0.217332, q′gen(4) = 0.173837,
q′gen(5) = 0.112871, q′gen(6) = 0.059182, q′gen(7) = 0.024501.

Step 3

Based on the above, the TC probabilities due to lack of radio RUs in each RRH are:

BTC
1,1,r = G−1

gen

(
q′gen,1,1(3)

3∑
r = 0

Q
gen,(−(1,1))

(r)
)
=

0.0625(0.138403+0.249125+0.244973+0.181584)
0.990743 = 0.051356

BTC
1,2,r = G−1

gen

(
q′gen,1,2(3)

3∑
r = 0

Q
gen,(−(1,2))

(r)
)
=

0.046693(0.133386+0.240094+0.242762+0.186562)
0.990743 = 0.037835

BTC
2,1,r = G−1

gen

(
q′gen,2,1(4)

2∑
r = 0

Q
gen,(−(2,1))

(r)
)
=

0.063812(0.145914+0.291829+0.284533)
0.990743 = 0.046521



Electronics 2020, 9, 2120 16 of 18

As far the value of BTC
c is concerned, we have: BTC

c = q′gen(7) = 0.024501.
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18. Głąbowski, M.; Stasiak, M.; Wisniewski, A.; Zwierzykowski, P. Blocking probability calculation for cellular
systems with WCDMA radio interface servicing PCT1 and PCT2 multirate traffic. IEICE Trans. Commun.
2009, E92-B, 1156–1165.

19. Vardakas, J.; Moscholios, I.; Logothetis, M.; Stylianakis, V. An analytical approach for dynamic wavelength
allocation in WDM-TDMA PONs servicing ON-OFF traffic. IEEE/OSA J. Opt. Commun. Netw. 2011, 3,
347–358. [CrossRef]

20. Huang, Q.; Ko, K.; Iversen, V. A new convolution algorithm for loss probability analysis in multiservice
networks. Perf. Eval. 2011, 68, 76–87. [CrossRef]

21. Sobieraj, M.; Stasiak, M.; Weissenberg, J.; Zwierzykowski, P. Analytical model of the single threshold mechanism
with hysteresis for multi-service networks. IEICE Trans. Commun. 2012, E95-B, 120–132. [CrossRef]

22. Stasiak, M.; Parniewicz, D.; Zwierzykowski, P. Traffic engineering for multicast connections in multiservice
cellular network. IEEE Trans. Indust. Inf. 2013, 9, 262–270.

http://dx.doi.org/10.1109/COMST.2014.2355255
http://dx.doi.org/10.1007/s11276-018-1718-z
http://dx.doi.org/10.1109/JSAC.2018.2874148
http://dx.doi.org/10.1109/COMST.2018.2864779
http://dx.doi.org/10.1109/JIOT.2020.3000393
http://dx.doi.org/10.1016/j.comcom.2010.04.039
http://dx.doi.org/10.1016/j.jcss.2014.06.019
http://dx.doi.org/10.1049/iet-net.2017.0216
http://dx.doi.org/10.1109/MCOM.2018.1700960
http://dx.doi.org/10.1016/j.spa.2018.03.012
http://dx.doi.org/10.1109/TWC.2016.2567383
http://dx.doi.org/10.24138/jcomss.v16i2.1013
http://dx.doi.org/10.1093/ietcom/e90-b.7.1608
http://dx.doi.org/10.1093/ietcom/e91-b.1.151
http://dx.doi.org/10.1364/JOCN.3.000347
http://dx.doi.org/10.1016/j.peva.2010.09.007
http://dx.doi.org/10.1587/transcom.E95.B.120


Electronics 2020, 9, 2120 17 of 18

23. Moscholios, I.; Kallos, G.; Vassilakis, V.; Logothetis, M.; Koukias, M. Congestion probabilities in W-CDMA
networks supporting calls of finite sources. In Proceedings of the HETNETs, Ilkley, West Yorkshire, UK,
11–13 November 2013.

24. Hanczewski, S.; Stasiak, M.; Zwierzykowski, P. A new model of the soft handover mechanism in the UMTS
network. In Proceedings of the CSNDSP, Manchester, UK, 23–25 July 2014.

25. Hanczewski, S.; Stasiak, M.; Zwierzykowski, P. Modelling of the access part of a multi-service mobile network
with service priorities. EURASIP J. Wirel. Commun. Netw. 2015, 2015, 323. [CrossRef]

26. Moscholios, I.; Logothetis, M.; Vardakas, J.; Boucouvalas, A. Performance metrics of a multirate resource
sharing teletraffic model with finite sources under both the threshold and bandwidth reservation policies.
IET Netw. 2015, 4, 195–208. [CrossRef]

27. Casares-Giner, V. Some teletraffic issues in optical burst switching with burst segmentation. Electron. Lett.
2016, 52, 941–943. [CrossRef]

28. Moscholios, I.; Vassilakis, V.; Logothetis, M.; Boucouvalas, A. A probabilistic threshold-based bandwidth
sharing policy for wireless multirate loss networks. IEEE Wirel. Commun. Lett. 2016, 5, 304–307. [CrossRef]

29. Moscholios, I.; Vassilakis, V.; Logothetis, M.; Boucouvalas, A. State-dependent bandwidth sharing policies
for wireless multirate loss networks. IEEE Trans. Wirel. Commun. 2017, 16, 5481–5497. [CrossRef]

30. Moscholios, I.; Logothetis, M.; Shioda, S. Performance evaluation of multirate loss systems supporting
cooperative users with a probabilistic behaviour. IEICE Trans. Commun. 2017, E100-B, 1778–1788. [CrossRef]

31. Sagkriotis, S.; Pantelis, S.; Moscholios, I.; Vassilakis, V. Call blocking probabilities in a two-link multi rate loss
System for Poisson traffic. IET Netw. 2018, 7, 233–241. [CrossRef]

32. Hanczewski, S.; Horiushkina, A.; Stasiak, M.; Weissenberg, J. The analytical model of 5G networks.
In Proceedings of the IEICE ICTF, Bydgoszcz, Poland, 11–13 September 2019.

33. Chousainov, I.-A.; Moscholios, I.; Kaloxylos, A.; Logothetis, M. Performance evaluation of a C-RAN
supporting quasi-random traffic. In Proceedings of the IEEE Softcom, Split, Croatia, 19–21 September 2019.

34. Panagoulias, P.; Moscholios, I. Congestion probabilities in the X2 link of LTE networks. Telecommun. Syst.
2019, 71, 585–599. [CrossRef]
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54. Głąbowski, M.; Kaliszan, A.; Stasiak, M. Modelling overflow systems with distributed secondary resources.
Comput. Netw. 2016, 108, 171–183. [CrossRef]

55. Hanczewski, S.; Stasiak, M.; Weissenberg, J. Queueing model of a multi-service system with elastic and
adaptive traffic. Comput. Netw. 2018, 147, 146–161. [CrossRef]

56. Moscholios, I.; Logothetis, M.; Nikolaropoulos, P. Engset multi-rate state-dependent loss models. Perf. Eval.
2005, 59, 247–277. [CrossRef]
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