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Abstract: Currently, there are no formalized methods for tuning non-integer order controllers. This is
due to the fact that implementing these systems requires using an approximation of the non-integer
order terms. The Oustaloup approximation method of the sα fractional derivative is intuitive and
widely adopted in the design of fractional-order PIλD controllers. It requires special considerations for
real-time implementations as it is prone to numerical instability. In this paper, for design and tuning
of fractional regulators, we propose two methods.The first method relies on Nyquist stability criterion
and stability margins. We base the second on parametric optimization via Simulated Annealing of
multiple performance indicators. We illustrate our methods with a case study of the PIλD controller
for the Magnetic Levitation System. We illustrate our methods’ efficiency with both simulations and
experimental verification in both nominal and disturbed operation.
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1. Introduction

The magnetic levitation system is a highly relevant area of control design. It is because these
systems have many varied uses such as in minimal friction bearings, high-speed maglev passenger
trains, levitation of wind tunnel models, vibration isolation of sensitive machinery, levitation of molten
metal in induction furnaces, and the levitation of metal slabs during manufacture, see [1]. Research
on this topic has led to the development of efficient magnetic bearings (see [2]) and flywheels for
space satellite low earth orbits, hybrid electric vehicles (see [3]), and many stationary applications.
An important direction of research in this area is also an active magnetic bearing, which was described
in their works by among others—Srinivas (see [4]), Uzhegov (see [5]), and Kandil (see [6]).

A very important area of the research about the active magnetic levitation system is control
structure. They are naturally unstable, so they require control. Many researchers considered this topic
(see [1]) and Joo and Seo (see [7]) designed linearizing feedback control for the magnetic levitation
system to PID controllers. The comparison of this approach with Takagi–Sugeno fuzzy control (see [8]).
Baranowski and Piątek (see [9]) presented a cascade variant of the linearizing feedback. Bloch (see [10])
discussed real-time neural feed-forward control. Piątek (see [11]) designed and implemented quick
linear control for active magnetic levitation systems based on FPGA circuits.

Research on the control of magnetic levitation using non-integer (fractional) systems was one
of the first attempts by Piłat (see [12], where a non-integer order PD controller was considered.
Tepljakov et al. (see [13,14]) described the problem of fractional-order PID controller design for a
model of a magnetic levitation system. The latest research focuses on the digital implementation of
non-integer controller for a real plant; this topic was considered by Chopade et al. [15], Rojas et al. [16]
and Ananthababu et al. [17]. Pandey et al. (see [18,19]) proposed an anti-windup fractional PID
controller for magnetic levitation. Roy et al. (see [20]) presented a comparative study between the
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Sliding Mode Controller and Fractional Order Sliding Mode Controller when applied to a magnetic
levitation system. Swain et al. (see [21]) presented real-time implementation of fractional order PID
controllers for a magnetic levitation.

Most of these results that are simulated based or experimental are hard to replicate or use not
precisely for fractional approximations, which makes the fractional part debatable.

Contributions of this paper are:

• we propose two different methods of controller parameter selection for the active magnetic
levitation system,

• and we provide experimental verification of both design methods.

This paper is organized as follows. Section 2 presents a brief introduction to the mathematical
model of the magnetic levitation laboratory system. In the next section, the authors present a
non-integer PID controller and proposed two methods of tuning these parameters. In Section 4,
the authors show an example of using a proposed method for construction of a PIλD controller for the
laboratory magnetic levitation system. The next section describes the implementation of the controller
in real-time systems. The results of the experiments are described in Section 6.

2. The Mathematical Model of the Magnetic Levitation Laboratory System

The magnetic levitation system (see Figure 1) consists of the electromagnet, the ferromagnetic
sphere (which we will be calling ”ball”), the current driver, and the position measurement system
consisting of the light source and the light sensor.

Figure 1. Laboratory magnetic levitation system used in experiments. The system is offered by
INTECO [22]. The light sensor measures the degree under which the light source is covered. The
electromagnet is driven by a current driver.

The mathematical description of the system will be based on Newton’s second law, where x1(t)
is the ball position, measured as the distance from the electromagnet, x3(t) is the electromagnet coil
current, and x2(t) is the ball velocity. Ball speed can by calculated from value of force generated by the
electromagnet, m is the mass of the ball, and g is the gravitational acceleration. The velocity of ball is
given by formula (see [1,23]):

ẋ2(t) = −
a

2mb
exp

(
−

x1(t)
b

)
x2

3 + g (1)

where a and b are positive constants. Parameters a and b were determined by analysis of a series of
steady state points of the system with a closed stabilizing feedback loop. The exponential function was
fitted into these points through a least squares minimization. For details, see [23].

The coil current in the system usually is influenced by many factors like changes in inductance,
velocity, and others. However, our system includes a current driver, which has its own feedback loop.
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This solution is very popular (see [24]) because it leads to either lower order or simpler model structure.
In an optimal situation, the driver should allow full current control; however, in real situations,
it introduces its own dynamics. For the system considered, these dynamics can be sufficiently modeled
by a first order dynamical system given by the following equation:

ẋ3(t) =
1
Ts
(ksu(t)− is − x3(t)) (2)

where u(t) is the control voltage, ks is the gain of current controller, Ts is the time constant of the
current driver, and is is the zero error of current driver.

Let us introduce state space vector x given by

x = [x1 x2 x3]
T (3)

which can be used to formulate the model of the system as the following system of first order
differential equations: 

ẋ1(t) = x2(t)

ẋ2(t) = −
a

2mb
exp

(
−

x1(t)
b

)
x2

3(t) + g

ẋ3(t) =

exp

(
x1(t)

p

)
Ts

(ksu(t)− is − x3(t))

(4)

All variables and parameters used in the model are described in Table 1. We use exponential
approximation for the electromagnetic strength formula. A detailed discussion of such choice can be
found in [25].

Table 1. Variables used in the mathematical description of a laboratory magnetic levitation system.

Variable Name Descritpion Value

x1(t) ball position x1(0) = 0.009 m

x2(t) ball velocity x2(0) = 0
m
s

x3(t) coil current x3(0) = 0.1008 A
u(t) control voltage u(0) = 0
m ball mass 0.0571 kg

g gravitational
acceleration 9.81

m
s2

ks
gain of

current driver 2.5165 A

Ts
time constant of

the linear current driver 0.031 s

is
zero error of

current driver 0.1 A

a, b, p positive constants
identified for the plant.

a = 0.017521 H
b = 0.0058231 m
p = 0.045626 m

It is a known fact that the linear controller can operate properly in the neighborhood of a chosen
steady state. Performance of classical PID can be strongly improved, if the appropriate reference control
value corresponding to a reference value is added to the generated control signal. The authors tested
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this solution with different types of non-integer PID controllers, see [26–28]. The constant value added
to the control signal we can calculate by formula:

ur =
− is + x3r

Ks
(5)

where

x3r =

√√√√ gmb
a

exp

(
x1r

b

)
(6)

and x1r is the desired position of the ball.
The control loop of the described system was presented in Figure 2.

Figure 2. Control loop schema for laboratory magnetic levitation with PIλD controller. In the diagram,
we can see how to connect a regulator of a non-integer order and constant control value to laboratory
magnetic levitation systems.

3. Method of Tuning of a Non-Integer Order PID Controller

One of the major tasks in the implementation’s field of the fractional PID controller is the
formulation rules of tuning them. In this section, first we describe the concept of the PID controller
with a fractional integrator, and then we propose two approaches of tuning it. The first one relies on
introducing a fractional integral to a stabilizing PD controller and studying stability margins via the
Nyquist criterion. The second one uses simulated annealing and multiple performance indicators.
Both approaches are support methods requiring appropriate selection by the user.

3.1. Non-Integer PIλD Controller

Podlubny (see [29]) proposed a generalization of the PID controller, namely the PIλDµ controller,
involving an integrator of order λ and a differentiator of order µ. As can be observed, when λ = 1 and
µ = 1, we obtain a classical PID controller, similar to when λ = 0 and µ = 1 give PD, λ = 0 and µ = 0
give P, λ = 1 and µ = 0 give PI. All these classical types of PID are the particular cases of the fractional
PIλDµ. However, the PIλDµ is more flexible.

For laboratory active magnetic levitation systems, we used controllers by structured PIλD. In the
time domain, the equation for this controller’s output has the form:

u(t) = Kpe(t) + Ki
C
0 D−λ

t e(t) + Kd ė(t) (7)

where C
0 D−λ

t is the Caputo derivative of order −λ with respect to time, which is equivalent to the
fractional integral of order λ, and:
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• Kp is proportional gain
• Ki is integral gain
• Kd is derivative gain
• e(t) is control deviation in time t
• λ > 0

In addition, the transfer function formula is given by the equation:

G(s) = Kp + Kis−λ + Kds (8)

3.2. Analytic Tuning Method with Nyquist Stability Criterion

This section describes the analytically procedure for determining the settings of the PIλDµ.
They base the developed procedure on the Nyquist characteristic. The procedure of determining the
PIλDµ controller settings can be performed by the following steps:

1. Determine the system work point.
2. If the system is nonlinear, calculate the linearized system of the work point.
3. Determine the stability region for the integer part of the controller. For example, if you want to

create a controller PIDµ, you must calculate the stability region of a PI controller.
4. Use a Nyquist criterion to determine the order of a non-integer order part of the regulator and

this gain for a reasonable stability margin.

The advantage of this method is that we have an analytical description of the properties of the
system—on the basis of which we can easily determine the stability area, gain, and phase margin.
The most important disadvantage of this approach is that, for more complex systems, it can be difficult
or not applicable.

3.3. Tuning by Simulated Annealing

Simulated annealing is a probabilistic technique for approximating the global optimum of a
function. This algorithm uses a meta-heuristic to approximate global optimization in a large search
space for an optimization problem—for problems where finding an approximate global optimum is
more important than finding a precise local optimum in a fixed amount of time.

The advantage of this method is the ability to define any quality index for optimization, and there
is no need to analytically determine the properties of the system. This method also allows the design
of the regulator to bend known control characteristics. The disadvantage is the time needed to perform
the optimization.

4. Design of the Controller for a Magnetic Levitation System

4.1. Construction PIλD for Magnetic Levitation Systems Using the Analytic Method

To perform the calculations and simulations, the following assumptions have been made:

• x1r = 10.8 mm.
• Regulator must work for frequency bound between 10−4 and 103 Hz.
• Order of approximation use for implemented non-integer elements must have value 5.

Based on assumptions, we can determine the work point of the system as:

xr = [x1r, 0, x3r]
T (9)

In the next step, we calculate the transfer function of the linearized system in the work point:

G(s) =
v exp(x1r/p)ks

Tss3 + exp(x1r/p)s2 − Tsns− n exp(x1r/p)
(10)
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where v, n have the form:

v = −2
a

bm
exp

(
− x1r

b

)
x2

3r (11)

n =
a

b2m
exp

(
− x1r

b

)
x2

3r (12)

Then, we designed a classical PD controller which will stabilize the system. The stability region
can by described by equation:

Kp <
n

ks p
(13)

Kd <
Tsn
ks p

exp(−x1r/p) (14)

Kd < Ts · Kp exp(−x1r/p) (15)

Finally, a stability analysis based on the Nyquist criterion was performed. The Nyquist plot of the
designed ideal (non-approximated) non-integer controller is presented in Figure 3 with a dashed line.
Fractional controller parameters for these systems have value: Kp = 100, Ki = 5, λ = 0.75 and Kd = 4.
As we can see, these parameters fully meet the assumptions.

Figure 3. Nyquist characteristics for a magnetic levitation system with the PIλD controller.
The controller parameters are Kp = 100, Ki = 5, λ = 0.75 and Kd = 4. The analytical characteristics
are marked by the black dashed line. The blue line represents the characteristic with the controller
approximated by the Oustaloup’s method with parameters: order 5 and frequency bound between
10−4 and 103. The cut-off frequency is marked in red on the chart for which the difference between the
analytical system and its approximation can be observed.

4.2. Tuning of PIλD Using Simulated Annealing

In this case, we can define the decision variables as: Kp, Ki, Kd, λ. The tests will be conducted for
the following quality indicator:

1. ISE:
T∫
0

e2(t)dt
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2. ITSE:
T∫
0

te2(t)dt

3. ISEDES:
T∫
0

(
e2(t) + ė2(t)

)
dt

4. IAE:
T∫
0
|e(t)|dt

where e(t) = wr − x1(t). We use all of these qualities’ indicators because have different properties.
ISE is one of the most used quality indicators. Since it is simple to use, it provides good results and in
many cases can be calculated analytically. Its disadvantage is that it favors large errors, which means
that, in the tuning process of the controller, errors at the beginning of the control process will have a
greater impact on this process.

The ITSE quality indicator eliminates the problem of large fluctuations at the ends of the
optimization horizon by multiplying the square of the control error by time. It is possible because the
big value of errors at the beginning of the control process is leveled by multiplication by the small
value of time; the same thing happens at the ending phase of the control process when the small value
of errors are multiplied by the big value of time. This eliminates a significant influence of the error
from the initial control phase on the value of the quality indicator.

ISEDES takes into account the rate of change of the error value, which allows for taking into
account the dynamics in the optimization process. However, it has the same problems as quality
indicator number 1.

IAE is presented, which treats all error values in the same way. However, its major disadvantage
is that it can only be used in simulation environments because the analytical form of its solution does
not exist. For more details, see [26,27,30,31].

Optimization start points have the following values:

• Kp = 500
• Ki = 100
• Kd = 6
• λ = 0.5

Simulation initial value:

• x1 = 9 mm—since the system is inherently unstable, the starting point must be around the setpoint.
• x2 = 0 m/s—the sphere has no initial velocity.
• x3 = 0.1008—value determined by Formula (6).

The optimal PIλD settings for the system are collected in Table 2. Position states of the magnetic
levitation were shown in Figure 4. When analyzing the charts, we see that in all cases the system
stabilizes around the set value in less than 0.1 s. In all cases, you can see that there is a slight fix error.
In the case of quality indicators 1 and 2, there is also a noticeable overshoot in the initial phase of the
control process of magnetic levitation.

It is also visible in the values of the quality indicators collected in Table 2. Note that, for the
quality indicators 1 and 3, the values of the Kp, λ, and Kd parameters are similar. The highest values
were also obtained for the indicators defined in this way. On the other hand, for the indicators defined
with Formulas (2) and (4), the values of the λ and Kd parameters are similar. Additionally, it should be
mentioned that the value of λ is similar in all cases.

How can we see that the best result has been achieved when the quality indicator has form
IAE? It should be noted that all quality indexes values are very close to each other. For this reason,
the controller settings for the test in to laboratory system were selected values from IAE.
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Table 2. Result of tuning system using simulated annealing. The values of the λ parameter are similar
in all cases. The ITSE indicator sets the highest gain for proportional and integral parts of the regulator.
In contrast, the IAE indicator sets much lower gains on these parts, but similar gains on the derivatives.
It does not change the fact that the quality indicators assume values from a similar range. The ISE and
ISEDES indicators set a similar gain of proportional and derivative parts. On the other hand, ISEDES is
a weaker integrator gain and therefore gives the worst final value of the quality indicator.

Quality Indicator Kp Ki λ Kd Quality Value

ISE:
T∫
0

e2(t)dt 493.168 109.581 0.998 0.822 4.967× 10−2

ITSE:
T∫
0

te2(t)dt 523.684 181.68 0.959 2.606 2.116× 10−2

ISEDES:
T∫
0

(
e2(t) + ė2(t)

)
dt 499.257 74.654 0.982 0.875 7.209× 10−2

IAE:
T∫
0
|e(t)|dt 455.075 146.7518 0.951 2.947 2.94× 10−3

0 0.1 0.2 0.3 0.4 0.5
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(a) ISE:
T∫
0

e2(t)dt
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s
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(b) ITSE:
T∫
0

te2(t)dt

Figure 4. Cont.
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(c) ISEDES:
T∫
0

e2(t) + x2
2(t)dt
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(d) IAE:

T∫
0
|e(t)|dt

Figure 4. Result of the tuning system using simulated annealing for differing quality indicators. As
can be seen in the case of Figure 4a,c, the controller allows the system to slightly overshoot. In these
cases, the system also reaches the set point the fastest. In other cases, the system does not have any
overshoots and moves slower to the operating point. However, the process is therefore smoother.

5. Realization Non-Integer Order PID Controller in a Real-Time Environment

5.1. Time Domain Oustaloup Approximation

The controller was implemented with the time domain Oustaloup method. This method was
based on the classical Oustaloup approximation method, where fractional-order operator G(s) = sα

can be approximated by (see [32]):

Gt(s) = K
N

∏
i=1

s + ω′i
s + ωi

(16)

where:

ω′i = ωminω
(2i−1−α)/N
u (17)

ωi = ωminω
(2i−1+α)/N
u (18)

K = ωα
max (19)

ωu =

√
ωmax

ωmin
(20)

The proposed approach is to realize every block of the transfer function (16) in the form of a state
space system. Those first order systems will then be collected in a single matrix resulting in full matrix
realization. This continuous system of differential equations will then be discretized. The time domain
approximation has formulas:

Ak = −ωk

Bk = ω′k −ωk

Ci = 1

Di = 1
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This can be written in vector matrix notation

ẋ =


A1 0 0 . . . 0
B2 A2 0 . . . 0
B3 B3 A3 . . . 0
...

...
...

. . .
...

BN BN . . . BN AN

 x +


KB1

KB2

KB3
...

KBN

 u

y =
[
1 1 . . . 1 1

]
x + Ku

(21)

or in brief
ẋ = Ax + Bu

y = Cx + Du
(22)

What can be immediately observed is that the matrix A is lower triangular. This is an extremely
important in the case of this problem, as all its eigenvalues (poles of transfer function (16) are on its
diagonal, so there is no need for eigenvalue products, which would lead to rounding errors. This is
why discretization of (21) should have a structure preserving property.

The implementation of the algorithm requires the discretization of the control system designed
in a continuous time domain. For preserving the stability attributes of the system in the discrete
time domain, as supposed, the Tustin method also known as the bilinear transform for triangular
matrix, has been chosen (see [33]). For more details about performance of time domain Oustaloup and
realization fractional systems in real-time systems, see [28,34–37].

5.2. SoftFrac

The SoftFrac package was used to implement the regulators. SoftFrac gives Matlab user
functionality to create a state-space system and transfer function fractional model of the non-integer
dynamic element sγ based on approximations: Oustaloup (see [32]), time domain Oustaloup (see [38]),
and LIRA (see [39]). The state-space fractional model class (ssf) inherits from standard state-space
model class (ss) and have all of the functionality of this class, while the transfer function fractional
model class (tsf) inherits from a transfer function model.

Because the SoftFrac library uses inheritance mechanism in implementation, the user can use
all functionalities of parent classes ssf and tsf. In particular, the user can use this realization for
Simulink simulation, system behavior analysis, and easy plotting of dynamic characteristics. In
addition, we have added to the classes a construction method for easy conversion between those types,
from ssf to tsf and vice versa.

6. Experiment Results

The controller performances for the magnetic levitation system has been investigated based on
results from tuning methods in the following experiments:

1. Introducing the ball into the magnetic field from below, near the working point by hand. Then,
we waited for the ball’s position to stabilize at the working point.

2. The experiment begins when the sphere is at the working point. It consists of knocking the sphere
out of position by means of strokes.

The laboratory magnetic levitation system consists of: electromagnet, ferromagnetic
sphere-position sensor, and current sensor power interface. The position measurement is done by the
light source and sensor.

We can see in Figure 5 that the distance is measured from electromagnet to ball. The position
measurement is based on the amount of light falling on the detector.
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Figure 5. Diagram of measuring the distance between the ball and the electromagnet, with marked
distance orientation and a distance measuring system.

The composition of the laboratory stand on which the experiments were carried out included:
PC, magnetic levitation plant (see [22]), and RT-DAC/PCI process board (see [40]) developed by
INTECO. The computer on which the experiments were conducted used the Matlab 2015b version
with the MATLAB/RT-CON real-time library installed. This computer used Windows 7 Professional,
64 GB RAM operating memory, and Intel Core I5 3.2 GHz.

RT-DAC/PCI I/O is a multifunction analog and digital I/O board dedicated to real-time data
acquisition and control. The board contains a Xilinx FPGA chip. These boards can be reconfigured to
introduce a new functionality of all inputs and outputs without any hardware modification. By default,
the configuration version board accepts signals from systems and generates PWM outputs, and is
equipped with the general purpose digital input/outputs (GPIO), A/D and D/A converters, timers,
counters, frequency meters, and chronometers. The boards can be applied:

• using one of ready-to-use configurations distributed with the boards,
• using a new customer-specified configuration.

In this approach, the n = 5 order of the non-integer order integrator approximation has been
selected in the range ω ∈

[
10−4, 103] with sampling time of 0.001 second.

Experiments have been conducted to validate the robust properties of the designed controller.
The discrete Oustaloup approximation has been implemented in a real-time environment with the use
of a RT-DAC process board and a MATLAB/RT-CON real-time library.

6.1. Analytic Method

In Figure 6a, one can find the stabilization position process in point 10mm. As can be seen, PIλD
controller stabilizes the system position in 1.5 s.

The second experiment, presented in Figure 7a, shows the disturbance rejection for the controller.
The system has been disrupted at about 2.5 s, 3.7 s, and 5.0 s.
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Figure 6. (a) Ball position stabilization process with controller tuning by the analytic method, (b) ball
position stabilization process with controller tuning by the SA method. (a) shows the process of
stabilizing the position of the ball under the electromagnet with regulator tuning by the analytic
method. The regulation time is approx. 1.5 s. The maximum overshoot is approx. 6 mm. When the
working point is reached, vibrations are noticeable in its vicinity; (b) shows the process of stabilizing the
position of the ball under the electromagnet with controller tuning by the SA method. The regulation
time is approx. 2 s. There is no overshoot here. When the working point is reached, vibrations are
noticeable in its vicinity.
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Figure 7. (a) Ball position stabilization process with disturbance for the controller tuning by the analytic
method, (b) ball position stabilization process with disturbance for the controller tuning by the SA
method. (a) shows the behavior of the control system with controller tuning by the analytic method
for external disturbances. The ball in the vicinity of 2.5 s, 5 s, and 7s seconds is knocked out of the
working point by a manual interaction. In each case, we see that the control system eliminates the
disturbances. (b) shows the process of stabilizing the position of the ball under the electromagnet
with controller tuning by SA method. The regulation time is approx. 2 s. There is no overshoot here.
When the working point is reached, vibrations are noticeable in its vicinity.

6.2. Results of Tuning by Simulated Annealing

In Figure 6b, we see the stabilization position process for a regulator with settings from the tuning
process. As can be seen, this controller needs more time to stabilize the system position, about 8 s.



Electronics 2020, 9, 2135 13 of 15

The second experiment, presented in Figure 7a, shows the disturbance rejection for the controller.
The system has been disrupted at about 2.5 s, 5 s, and 7 s. It should be noted that the regulators in both
cases cancel the disturbance very well. This shows the high level of robustness of the regulators.

As shown in Figure 6, the regulator based on the SA method for the process of reaching the
operating point has less overshoot than the regulator based on the analytical parameter selection
criterion, while Figure 7 shows that both controls are designed to withstand disturbances in the
same range.

7. Conclusions

Control design for the magnetic levitation system, while known, is still useful as a benchmark
for both control quality and implementation purposes. The main issue that is known with
fractional controllers is the problem of infinite memory. Direct implementation of fractional integrals
(or derivatives) require either the summation of a series of signal samples with increasing length and
varying coefficients or computing convolution integrals with singular kernels on expanding intervals.
Both approaches are not practical, which is why approximations are required. In this paper, we have
shown that implementing fractional controllers in real-time unstable systems is possible through fixed
step realization based on time domain matrix representation. We have also studied the methods of
tuning such controllers.

Initial attractiveness of optimization based approaches is unfortunately unsubstantiated by
results. Minimizing the integral performance indicators can be realized by simulated annealing and,
for example, Simulink created nonlinear models. The controllers obtained this way are, however,
rather fragile, and problems with low frequency approximations of integrals lead to steady-state errors.

A more attractive approach is to use analytically based methods, such as the one we have
proposed. In typical cases of such designs, the open loop system is stable, so one can use Bode plots
for easy characterization. In the case of unstable systems like magnetic levitation, it is not possible.
Here, we propose a different approach—designing a stabilizing integer order PD controller, and then
introducing fractional integrals using a Nyquist criterion to keep stability margins. Such controller
will of course have worse dynamics but should be able to compensate for incorrect identification and
disturbance issues.

We are aware that our approach is not fully polished; however, it leads to a direct way for adopting
fractional controllers by engineers—especially in the issue of robustness. While complicated equations
of H∞ designs might be difficult to adapt, frequency response shaping with fractional elements is
much easier to understand.
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