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Abstract: Due to the advanced spatial data collection technologies, the locations of vehicles on
roads are now being collected nationwide, so there is a demand for applying a micro-level emission
calculation methods to estimate regional and national emissions. However, it is difficult to apply this
method due to the low data collection rate and the complicated calculation procedure. To solve these
problems, this study proposes a vehicle trajectory extraction method for estimating micro-level vehicle
emissions using massive GPS data. We extracted vehicle trajectories from the GPS data to estimate the
emission factors for each link at a specific time period. Vehicle trajectory data was divided into several
groups through a k-means clustering method, in which the ratios of each operating mode were used as
variables for clustering similar vehicle trajectories. The results showed that the proposed method has
an acceptable accuracy in estimating emissions. Furthermore, it was also confirmed that the estimated
emission factors appropriately reflected the driving characteristics of links. If the proposed method
were utilized to update the link-based micro-level emission factors using continuously accumulated
trajectory data for the road network, it would be possible to efficiently calculate the regional- or
national-level emissions only using traffic volume.

Keywords: vehicle GPS data; driving cycle; micro-level vehicle emission estimation; link emission
factors; MOVES

1. Introduction

Emissions from on-road mobile sources depend on the driving characteristics of the vehicles.
The emission calculation methods are largely divided into macro-level approaches that consider the
average speed of vehicles traveling along the roads as a driving characteristic and micro-level methods
that reflect the change in instantaneous speed of individual vehicles as a driving characteristic [1].
Since the data on average speed, distance traveled (or link length), and traffic volume on the road
section, which are necessary input data for calculating macroscopic emissions, is basically built
and managed in the traffic network data, it is relatively easy to calculate the total emissions of the
traffic network. For this reason, the macro-level emission estimation method has been generally
applied and utilized for calculating the emissions from on-road mobile sources in different regions
and countries [2–4]. However, in the macro-level emission estimation method using the average
speed as the deterministic variable, the amount of vehicle emissions may be under- or overestimated
because this method cannot capture the instantaneous changes in the vehicle driving speeds, such as
stop-and-go traffic situations [5,6]. For this reason, there have been many claims that the micro-level
emissions method should be applied in estimating regional and national emissions.
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A number of previous studies have mounted GPS equipment onto only experimental vehicles
to collect the vehicle trajectory data and estimate the vehicle emissions [7–9]. However, with the
advancement of electronic communication technology, vehicle trajectories are being continuously
collected nationwide by using vehicle navigation devices, digital tachographs (DTGs), and mobile
devices, which have become available for estimating vehicle emissions [10–12]. The collection of vehicle
trajectory data has become easier, and the range of spatio-temporal data collected has been expanded.
As a result, it is possible to estimate micro-level emissions from the collected vehicle trajectory data.

However, there are some practical difficulties associated with adopting the micro-level approach at
the regional and national levels. First, developing micro-level emission factors requires a large amount
of time and cost. For vehicles with various fuel types, fleet sizes, and model years, it is necessary to
conduct multiple driving tests, measure emissions under various operating conditions, and derive
emission factors suitable for the micro-level emission estimation method. A fast solution is to use
micro-level emission factor databases from other countries. In fact, the U.S. Environmental Protection
Agency’s (U.S. EPA) Motor Vehicle Emission Simulator (MOVES) [13] can estimate micro-level vehicle
emissions, and it has been applied in various studies from many countries [14–18] even though the
approach should be taken with caution because the classification method for vehicle types and emission
standards vary by country. The second problem is related to the acquisition of vehicle trajectory data,
which is required to calculate micro-level vehicle emissions. In the case of collecting the link average
speed of traffic flow, the average speed data can be easily collected from traffic information systems,
such as loop detectors. However, estimating vehicle emissions with micro-level emission models is
limited because it requires second-by-second vehicle trajectory data. It would be ideal to collect the
trajectories of all vehicles driving along the roads to estimate the emissions of local or national on-road
mobile sources on a micro-level basis, but that is highly impractical. Therefore, it would be useful to
apply vehicle emissions, which are estimated at a micro level, at the regional and national levels with
an easier and faster method.

This study proposes a representative vehicle trajectory extraction method for estimating micro-level
vehicle emissions with a limited amount of vehicle trajectory data, such as that from DTGs or mobile
devices. In the method, MOVES is used for analyzing vehicle emissions at a micro level, and vehicle
trajectory data is divided into several groups through a k-means clustering method, in which the
ratios of each operating mode (OpMode) in MOVES are used as cluster variables for clustering similar
vehicle trajectories.

The rest of this paper is organized as follows: Section 2 describes the uniqueness of the
representative vehicle trajectory extraction methodology used in this study, and Section 3 explains the
proposed network-level micro-level emission estimation procedure, representative vehicle trajectory
extraction method, and micro-level emission factor derived from this study. Section 4 presents the
results of applying the proposed method to navigation data collected in Bucheon, Gyeonggi-do in
Republic of Korea. Section 5 presents the effects of using the accumulated vehicle trajectory data on
the method. In Section 6, the implications learned from the analysis results and the limitations of this
study are discussed. The conclusions for this study are mentioned in Section 7.

2. Literature Review

To apply the micro-level emission estimation method to on-road mobile sources, it would be
ideal to collect the trajectories of all vehicles running on the road and put the data into the micro-level
emission calculation program. However, doing so is highly impractical, and even if it were not,
it would be inefficient because it takes a large amount of time to calculate the micro-level emissions
from all driving vehicles in the transportation network. To overcome this limitation, the U.S. EPA
has developed MOVES [13], and several studies have incorporated vehicle trajectories (called driving
cycles) into MOVES, which represent driving characteristics by vehicle type, road type, and level of
service (LOS) [19–22]. However, it is not suitable to use the MOVES driving cycle in countries other
than the United States because the road geometry, vehicle type composition ratio, and driver’s driving
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characteristics that determine the driving characteristics of a vehicle vary among countries [23,24].
Therefore, some studies conducted in countries other than the United States have applied MOVES
with adjusted base emission rates to analyze vehicle emissions in those countries [19–21].

Another solution is to collect vehicle trajectory data from on-road mobile sources in the target area
to be analyzed. The individual vehicle trajectories used in most studies were collected from a GPS device
installed in a driving vehicle [7–9] or extracted from a microscopic traffic simulation model [25,26].
The vehicle trajectory data is collected or extracted from several vehicle types, including cars, trucks,
and buses. Therefore, distinguishing the data by vehicle type is crucial for calculating vehicle
emissions. Several studies have applied cluster analysis methods [27,28] to extract representative
vehicle trajectories. Moreover, variables used to distinguish similar types of vehicle trajectories
have included average speed, average acceleration, average deceleration, time proportion of idling
mode/cruising mode/acceleration mode/deceleration mode/creeping mode, frequency of vehicle stops,
mean length of driving period, average number of acceleration–deceleration changes, and root mean
squared acceleration, which are aggregates representing the corresponding characteristics [29].

Previous studies associated with cluster analysis were performed to classify the vehicle trajectories
into the representative driving cycles by vehicle type and road type. This study utilizes cluster analysis
to assemble the vehicle trajectories of the same vehicle type on the same road section at the same time
intervals into several similar vehicle trajectory groups and then uses the representative patterns of each
group for estimating the corresponding highway link-based vehicle emissions. This process is expected
to reflect the various driving situations that can occur in the same context. If aggregated characteristics,
such as average speed and maximum acceleration, are used as variables for clustering, these measures
cannot be used for micro-level emission estimation. Thus, the MOVES OpMode distribution, which can
be used immediately for estimating micro-level vehicle emissions in MOVES, is applied as a variable
for cluster analysis.

3. Methods

3.1. Micro-Level Emission Estimation Method Using Individual Vehicle Trajectory Data

3.1.1. Micro-Level Emission Factor

The MOVES’s micro-level emission estimation methodology is applied to calculating emissions
with trajectories of individual vehicles collected from vehicle navigation, odometer (i.e., DTG),
and mobile devices. The MOVES database stores the basic emission factors for each pollutant at
OpMode by each vehicle type, which is subdivided by fuel use, size, year of manufacture, and vehicle
age. MOVES provides the result of calculating the emissions according to various conditions, such as
the vehicle type composition ratio, fuel compound characteristics, and temperature and humidity on
the road section.

In this study, the base emission rates for each vehicle type from the MOVES database are applied
to calculate the basic emission factors at the OpModes of passenger cars, trucks, and buses, as shown
in Appendixes A–C. In order to make these tables, the ratios of each subdivided vehicle type (size, fuel,
vehicle age) of the target year 2017 in Bucheon, Gyeonggi-do, which is an analysis target area collected
from the Korea vehicle registration information, are used as weighted values. CO, NOx, PM10, PM2.5,
and CO2 are selected as the pollutants to be estimated, and the unit of the emission factors is g/sec. The
emissions are calculated in this study without considering the adjustment for climatic conditions.

3.1.2. MOVES OpMode

Location information in the vehicle trajectory of an individual vehicle was collected from vehicle
navigation and DTG data. After the speed per second is calculated with the distance from the change
in vehicle location per second, the acceleration per second can be calculated. Then, the vehicle-specific
power (VSP) per second is calculated with Equation (1), which is an equation for MOVES VSP [30].
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The terms A, B, and C have different values for each vehicle type, and a suitable value for the
corresponding vehicle type among the values presented in MOVES should be found and applied.
Next, OpMode per second is found among 23 OpModes according to the VSP range and speed range
(see Appendixes A–C):

PV,t =
Avt + Bv2

t + Cv3
t + mvt(at + gsinθt)

m
(1)

where PV,t: VSP (kW/ton) for vehicle V at time t, t: time (s), vt: speed (m/s2), at: acceleration (m/s2),
m: weight (ton), A: rolling resistance (KWsec/m), B: rotating term (KWsec2/m2), C: aerodynamic drag
term (KWsec3/m3), g: acceleration due to gravity (9.81 m/s2) and θt: road grade (degrees).

After finding the emissions per second corresponding to the OpModes from the emission factor
table of the corresponding vehicle type, the emissions from the vehicle are calculated through the
aggregation process. When it is necessary to aggregate the emissions by road section on the traffic
network, the location information per second can be utilized to match the link ID suitable for the node
ID and link ID of the traffic network, and the emissions for each link can be calculated.

3.2. Extraction of Representative OpMode Distribution and Estimation of Micro-Level Emission Factors

3.2.1. Concept

Emissions from individual vehicles can be estimated with vehicle trajectory data collected from
GPS devices by the method described in Section 3.1. The problem is that the total amount of emissions
cannot be calculated because it is not possible to collect the driving trajectory data from all vehicles in
the target area. One way to consider is to make the extracted vehicle trajectories from the results of
the microscopic traffic simulation network model, which can replace the actual vehicle trajectories.
However, it has several disadvantages. First, it is not easy to calibrate a traffic simulation network
model to make it similar to the actual traffic network. Second, if the target area is changed, the method
can be applied only after establishing a new simulation network for that area. Furthermore, even if this
method enables all the vehicle trajectories of the entire network to be acquired, calculating emissions
from all vehicles in a large network using the micro-level emission estimation method would require a
lot of time.

Another alternative is to find representative vehicle trajectories on the target road section at the
analysis time interval for each vehicle type (passenger cars, trucks, buses), calculate emissions from
those vehicles’ trajectory data, and use the calculation results to estimate emissions from all vehicles
in the road section at the analysis time interval. Because the traffic volume for each vehicle type in
the analysis time interval of the target road can be obtained by using ITS equipment or the traffic
volume estimation model, the total emissions can be calculated by multiplying the traffic volume by
the emissions from the representative vehicle trajectories. This method has the advantage of higher
efficiency in calculating regional vehicle emissions because the calculated emissions based on the
representative vehicle trajectories from each road section can be used as emission factors (g/veh) for
each road section. On that basis, in this study, this method has been applied to extract the trajectory of
a vehicle, which has representative driving characteristics, from the vehicle trajectory data of some
vehicles that passed the corresponding road section at the corresponding time interval.

Several studies aimed at developing representative vehicle trajectories have been established.
For example, a representative link driving cycle by vehicle type, road type, and LOS has been developed
for MOVES. However, it is not appropriate to apply their driving cycles to estimate regional vehicle
emissions. The first reason is that the concept of the measurement link of the MOVES driving cycle is
different from the link in the transportation network of the node link system. The former is closer to the
travel route concept, while the latter refers to a road section whose length can vary and is shorter than
a travel route. The second reason is that the concept of driving cycle is different between the MOVES
driving cycles and the extracted representative link vehicle trajectories in this study. The MOVES
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driving cycles are developed to represent vehicle driving characteristics of various road types. On the
other hand, this study extracts the representative vehicle trajectories to reflect the various driving
situations that can appear in each link based on the driving data collected from each link. In other
words, the driving characteristics of the same vehicle type that runs on the same road at the same time
interval should have many similarities, as well as certain differences. For example, in the case of an
arterial road, there will be a difference in vehicle trajectories between a vehicle experiencing traffic
delay due to signals and one that is not. Thus, this study intends to classify vehicle trajectories into
several similar groups and use the center of each group as a representative vehicle trajectory.

Figure 1 is a diagram showing the procedure for estimating the micro-level link emission factors
required to calculate the emissions at the network level by using the collected vehicle trajectory data.
The following section explains each process in detail.

Figure 1. Process of Developing Link Emission Factors.

3.2.2. Calculate OpMode Distribution of Vehicle Trajectory

First, the vehicle trajectories of the same vehicle type on the same road section at the same
time interval are collected. The vehicle trajectory data includes link ID, vehicle ID, recording time,
and speed at each time point (in sec). Second, the VSP per second is calculated by the method described
in Section 3.1.2 for each vehicle trajectory, and OpModes per second are classified for each vehicle
trajectory. Then, the frequency for each of the 23 OpModes is calculated, and the ratios of each
OpMode are calculated and stored. Each vehicle trajectory has 23 new variables, which are the ratios
of each OpMode.
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3.2.3. Trajectory Clustering

Before performing cluster analysis, outliers are removed from the vehicle trajectory dataset to
filter out unusual driving cases that have not passed through the entire link or have stopped for a long
time. Cluster analysis is performed to assemble the data into several similar vehicle trajectory groups.
The k-means method is used to find the optimal number clusters and the center of each cluster. As a
variable for each cluster analysis, the ratio by OpMode, which can describe the characteristics of the
vehicle trajectory, is used. As in previous studies, aggregated characteristics, such as average speed
and maximum acceleration, could be used as variables for clustering, while the ratio for each OpMode
was selected as a cluster analysis variable. The main purpose is to utilize the value of the center of each
group, which is the OpMode distribution, for micro-level emission calculation. Another purpose is to
use the same scaled cluster variables. Using the values of the cluster center, the emissions of the cluster
center can be calculated. The weighted average of emissions of all vehicles is obtained by applying the
cluster size as a weight, which means the emissions per vehicle on the corresponding road section.
It can be used as a micro-level link emission factor.

3.2.4. Calculate Link Emission Factor

After cluster analysis, the OpMode distribution and cluster size of each cluster center are extracted,
which are used to calculate the emissions of all clusters by Equation (2):

Emissionspol =
∑k

1
((
∑opmode

Ropmode ∗ EFopmode, pol)k
∗ sizek ∗ meanTT), (2)

where (
∑opmode Ropmode ∗ EFopmode, pol)k : represents the emissions of cluster k, Ropmode is the ratio of each

OpMode, EFopmode, pol the OpMode emission factors by pollutants (pol, in g/sec), k is the cluster number,
sizek is the cluster size and meanTT is the average driving time of vehicle trajectories

Finally, as shown in Equation (3), by dividing the total emissions by the total number of vehicles
used in the cluster analysis, the micro-level link emission factor of the vehicle type is calculated by the
following:

micLEF pol = emissionspol/number of vehicles (3)

where micLEFpol : micro-level emission factor (g/veh).
According to the collected vehicle trajectory data, the data will be spatio-temporally expanded

and applied to the regional and national levels. A database of micro-level link emission factors for
a nationwide traffic network can be established. The procedure for estimating the micro-level link
emission factors should be performed by vehicle type and analysis time interval on each road section.
When a vehicle type-specific traffic volume database is provided, the emissions from all the vehicles
on the traffic network will be easily calculated by applying the database of micro-level link emission
factors for a nationwide traffic network.

4. Case Study

In the case analysis, emissions were estimated based on the method described in Section 3 by
using the navigation data collected from actual roads, and it was investigated whether such a method
produces accurate emission calculation results as intended. As the target roads, as shown in Figure 2,
one section of the highway (about 1 km long) and one section of the arterial road (about 600 m long) in
Bucheon, Gyeonggi-do in the Republic of Korea are selected to inspect whether the method reflects
the driving characteristics of uninterrupted flow and interrupted flow, respectively. The target road
sections are shown in Figure 2, and their attributes are described below.
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Figure 2. Study Area. (Map source: Google Maps).

• Selected freeway link

◦ Road name: Seoul Jeil Sunwhan Expressway
◦ Number of lanes: Four per direction
◦ Speed limit: 100 km/h

• Selected arterial link

◦ Road name: Sosaro
◦ Number of lanes: two per direction
◦ Speed limit: 60 km/h

4.1. Data Collection

The navigation data was acquired in December 2017, and among the data on 13 December
(Wednesday), the driving data on the morning peak hours (07:00–09:00), non-peak hours (13:00–15:00),
and afternoon peak hours (17:00–19:00) for the northbound and southbound parts of each road section
was extracted. Table 1 summarizes the number of vehicle trajectories collected for each analysis unit,
showing that the vehicle trajectories corresponding to approximately 2–7% of the traffic volume were
collected. After extracting the vehicle position in seconds from the navigation data, the data was
organized into vehicle-specific driving trajectory data to calculate the speed per second and acceleration
per second. Because most of the navigation data was provided from passenger cars, the analysis was
conducted by considering the passenger car as the vehicle type.

4.2. Cluster Analysis Results

Cluster analysis was performed for each of the 12 groups listed in Table 1, and Table 2 summarizes
the results. Among the collected vehicle trajectories, the data showing outliers in terms of the travel
time was removed before the cluster analysis. Most of the removed vehicle trajectories were from
vehicles that did not pass through all sections of the corresponding road. Table 2 shows the criteria for
outlier removal and the number of selected vehicle trajectories. The cluster analysis results reveal that
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the best number of clusters for highway data is 7 to 8 and the ratio of goodness of fit is about 0.6 to 0.8.
The results also show that the best number of clusters for the arterial road data is 6 to 8 and the ratio of
goodness of fit is about 0.8 to 0.9.

Table 1. Acquired vehicle trajectories.

Total Number
of Trajectories

Traffic Volume 4

(veh/hour)
Collecting

Ratio

Freeway
Link

North bound
AM peak 1 288 7128.5 2.0%
Off peak 2 430 7284.5 3.0%
PM peak 3 382 7527 2.5%

South bound
AM peak 364 4487 4.1%
Off peak 608 4062 7.5%
PM peak 508 4022.5 6.3%

Arterial
Links

North bound
AM peak 51 1375.5 1.9%
Off peak 83 1440.5 2.9%
PM peak 98 1635.5 3.0%

South bound
AM peak 50 1709 1.5%
Off peak 81 1268.5 3.2%
PM peak 98 1289 3.8%

1 07:00–09:00, 2 13:00–15:00, 3 17:00–19:00, 4 Estimated traffic volume provided by the Korean Traffic Database.

Table 2. Summary of trajectory clustering.

Freeway

Northbound Southbound
Time Period AMpeak offpeak PMpeak AMpeak offpeak PMpeak

Total trajectories 288 430 382 364 608 508
ATT, Average travel time (s) 111.84 138.16 90.86 234.8 163.77 176.55

Outlier upper limit (s) −82.5 −70.75 −80.5 −360.5 −88 −178
Outlier lower limit (s) 217.5 207.25 223.5 819.5 360 526
Selected trajectories 74 134 92 95 110 125

ATT (s) of selected trajectories 103.27 99.26 107.16 93.18 90.8 100.46
Best number of Clusters 7 7 8 8 7 8

Clustering Fitness 0.7944 0.7068 0.6906 0.7131 0.6563 0.6269

Arterial

Northbound Southbound
Time period AMpeak offpeak PMpeak AMpeak offpeak PMpeak

Total trajectories 51 83 98 50 81 98
ATT, Average travel time (s) 279.1 286.19 318.23 280.9 271.28 306.7

Outlier upper limit (s) −439.75 −45.88 −60.75 −449 −81 −67
Outlier lower limit (s) 998.75 388.38 621.25 983 378 597
Selected trajectories 22 23 21 19 20 21

ATT (s) of selected trajectories 515.05 193.7 240.29 525.21 185.8 243.43
Best number of Clusters 6 6 8 7 6 8

Clustering Fitness 0.9284 0.8407 0.8693 0.9502 0.8001 0.9033

4.3. Emission Estimation Results

The emissions of air pollutants (CO, NOx, PM10, PM2.5, and CO2) were estimated based on the
method described in Section 3. The estimated emissions were compared with the results obtained
by estimating emissions using each individual vehicle trajectory through the micro-level emission
estimation method of MOVES. As shown in Table 3, the difference in the emissions calculated by the
two methods is insignificant, at 1–4% for the highway and 1–6% for the arterial road. The results prove
that the proposed method has acceptable accuracy in estimating emissions.
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Table 3. Comparison of link emission estimation results.

Freeway Northbound

AMpeak offpeak PMpeak

A 1 B 2 R 3 A B R A B R
CO (g) 94.6 97.55 1.03 156.98 158.23 1.01 113.87 116.67 1.02

NOx (g) 4.46 4.624 1.04 8.128 8.248 1.01 5.868 6.091 1.04
PM2.5 (g) 0.0227 0.0236 1.04 0.0366 0.0369 1.01 0.0254 0.0261 1.03
PM10 (g) 0.0254 0.0265 1.04 0.0414 0.0417 1.01 0.0282 0.029 1.03
CO2 (g) 16,417.48 16,636.82 1.01 29,423.6 29,484.94 1.00 21,554.42 21,865.07 1.01

Freeway Southbound

AMpeak offpeak PMpeak

A B R A B R A B R
CO (g) 124.12 125.22 1.01 128.17 129.48 1.01 149.25 150.85 1.01

NOx (g) 5.994 6.047 1.01 6.943 7.05 1.02 7.957 8.107 1.02
PM2.5 (g) 0.0309 0.0313 1.01 0.0299 0.0302 1.01 0.0335 0.0339 1.01
PM10 (g) 0.0348 0.0352 1.01 0.0334 0.0337 1.01 0.0373 0.0378 1.01
CO2 (g) 20,139.64 20,127.88 1.00 23,156.19 23,252.67 1.00 28,295.29 28,363.63 1.00

Arterial Northbound

AMpeak offpeak PMpeak

A B R A B R A B R
CO (g) 53.48 56.78 1.06 27.45 28.52 1.04 29.06 30.12 1.04

NOx (g) 1.931 2.043 1.06 1.012 1.061 1.05 1.051 1.089 1.04
PM2.5 (g) 0.0153 0.0158 1.03 0.0067 0.0069 1.03 0.0075 0.0077 1.03
PM10 (g) 0.0223 0.0228 1.02 0.0089 0.0091 1.02 0.01 0.0102 1.02
CO2 (g) 13,893.62 14,425.56 1.04 6248.72 6437.99 1.03 6790.39 7006.47 1.03

Arterial Southbound

AMpeak offpeak PMpeak

A B R A B R A B R
CO (g) 47.46 48.7 1.03 24.04 24.32 1.01 29.91 30.25 1.01

NOx (g) 1.719 1.786 1.04 0.876 0.896 1.02 1.086 1.098 1.01
PM2.5 (g) 0.0137 0.0138 1.01 0.0058 0.0059 1.02 0.0077 0.0077 1.00
PM10 (g) 0.02 0.02 1.00 0.0076 0.0076 1.00 0.0104 0.0104 1.00
CO2 (g) 12,413 12,601.47 1.02 5398.06 5422.57 1.00 7041.24 7069.78 1.00

1 Estimating emissions using each individual vehicle trajectory through the micro-level emission estimation method
of MOVES, 2 Estimating emissions using emissions of cluster centers through the proposed method, 3 B/A.

4.4. Micro-Level Link Emission Factors

The micro-level link emission factors are calculated by emissions from vehicles in all clusters,
which are B columns in Table 3 by the number of vehicles (the number of vehicle trajectories),
and summarized in Table 4. These values are the micro-level emission factors of the passenger car at
the analysis time interval on the analysis link for each pollutant. As shown in Figure 3, plotting these
values through bar graphs can determine whether the estimated micro-level link emission factors can
appropriately reflect the emission characteristics of the link. The emission factors show the highest
trend in the morning peak hours and the lowest in the non-peak hours, indicating the change in
emissions according to time periods of the link. Even though the driving length of the highway
(about 1 km) is longer than that of the arterial road (about 600 m), the emissions are lower on the
highway, which indicates that the emission factors appropriately reflect the driving characteristics by
the road characteristics (uninterrupted flow and interrupted flow) of the link.
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Table 4. Estimated link emission factors (g/veh).

Freeway

Northbound Southbound
Time Period AMpeak offpeak PMpeak AMpeak offpeak PMpeak

CO 1.32 1.18 1.27 1.32 1.18 1.21
NOx 0.0625 0.0616 0.0662 0.0637 0.0641 0.0649

PM2.5 0.000319 0.000275 0.000284 0.000329 0.000275 0.000271
PM10 0.000358 0.000311 0.000315 0.000371 0.000306 0.000302
CO2 224.82 220.04 237.66 211.87 211.39 226.91

Arterial

Northbound Southbound
Time Period AMpeak offpeak PMpeak AMpeak offpeak PMpeak

CO 2.58 1.24 1.43 2.56 1.22 1.44
NOx 0.0929 0.0461 0.0519 0.0940 0.0448 0.0523

PM2.5 0.000718 0.000300 0.000367 0.000726 0.000295 0.000367
PM10 0.001036 0.000396 0.000486 0.001053 0.000380 0.000495
CO2 655.71 279.91 333.64 663.24 271.13 336.66

Figure 3. Estimated Link Emission Factors by Pollutant Type.

5. Effects on Clustering and Micro-Level Link Emission Factors by Using Accumulated
Vehicle Trajectories

This study has confirmed that the proposed method can be applied to estimate the total emissions
from vehicles traveling on a road section with the actual vehicle trajectory data through the case study.
Micro-level link emission factors for links were derived through the proposed emission estimation
process using vehicle trajectories collected from one day. This method may be applied by using
accumulated vehicle trajectory data collected over several days to increase the micro-level link emission
factors’ representativeness. Use of an accumulated dataset can offset the limitations of vehicle trajectory
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data, which have a low rate of acquisition, and enable the analysis time period to be divided into
shorter periods to increase detail.

To analyze the effect of using accumulated vehicle trajectory data, the vehicle trajectory data of
the freeway northbound link selected for the case study was additionally acquired. The trajectory data
of the vehicles traveling through the road section during the 2-h morning peak on weekdays (Tuesday,
Wednesday, and Thursday) in December 2017 was used. A total of 12 datasets were made by increasing
the number of data collection days from one day to 12 days. For example, the first dataset included one
day of data, the second dataset included an additional day of data, and so on. The proposed method
was applied to each of those datasets.

In this analysis, changing patterns in cluster analysis results and estimated micro-level emission
factors were investigated by accumulating daily data. Table 5 shows the number of remaining vehicle
trajectories after removing outliers among the vehicle trajectories collected on each date. Table 6
summarizes the cluster analysis results subject to daily accumulation of the data, which shows that
the number of vehicle trajectories used for cluster analysis increases as the daily data is accumulated,
reaching 1029 after the 12th day of accumulation. The average travel times of the vehicle trajectories
used for cluster analysis show a pattern that converges to about 101 s. The optimal number of clusters
is 7, and the ratio of goodness of fit is 0.7 or more.

Table 5. Vehicle trajectory selection results.

Days 12/5 12/6 12/7 12/12 12/13 12/14

Total trajectories 301 253 264 288 288 282
ATT, Average travel time (s) 102.41 104.87 125.31 134.15 111.84 106.4

Outlier upper limit (s) −66.25 −92.12 −66.5 −71.5 −82.5 −59
Outlier lower limit (s) 196.25 247.12 217.5 220.5 217.5 205
Selected trajectories 80 67 81 93 74 91

ATT (s) of selected trajectories 92.85 112.73 103.69 100.72 103.27 98.21

Days 12/19 12/20 12/21 12/26 12/27 12/28

Total trajectories 283 303 246 261 300 314
ATT, Average travel time (s) 114.8 93.67 87.94 98.64 95.41 92.2

Outlier upper limit (s) −59.88 −59.88 −74.5 −64 −71 −84.25
Outlier lower limit (s) 205.38 201.38 217.5 192 209 225.75
Selected trajectories 101 92 72 76 103 99

ATT (s) of selected trajectories 102.94 97.85 104.21 93.21 103.65 104.32

Table 6. Summary of trajectory clustering by increasing number of data collection days.

Days 1 day 2 days 3 days 4 days 5 days 6 days

Selected trajectories 80 147 228 321 395 486
ATT (s) of selected trajectories 92.85 101.91 102.54 102.02 102.25 101.49

Best number of clusters 7 7 7 7 7 7
Clustering Fitness 0.7195 0.7723 0.7474 0.7563 0.754 0.7379

Days 7 days 8 days 9 days 10 days 11 days 12 days

Selected trajectories 587 679 751 827 930 1029
ATT (s) of selected trajectories 101.74 101.22 101.5 100.74 101.06 101.38

Best number of Clusters 7 7 7 7 7 7
Clustering Fitness 0.7345 0.7343 0.729 0.7244 0.7254 0.7228

Figure 4 is a diagram comparing the OpMode distributions of seven cluster centers derived from
each dataset. It can be observed that the shapes of the OpMode distribution of the seven cluster centers
are similar after Day 4. This graph offers useful information for determining how many days are
required to accumulate vehicle trajectories for estimating micro-level link emission factors.
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Figure 4. OpMode Distributions of Cluster Centers.

Table 7 summarizes the micro-level emission factors for each pollutant estimated by adding the
number of data collection days. The bar graphs plotted in Figure 5 show that the micro-level emission
factors tend to converge as the number of days of data accumulation increases. It means that the
estimated micro-level link emission factors’ representativeness increases as the data is accumulated.
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Table 7. Estimated link emission factors (g/veh) by adding number of data collection days.

Days 1 day 2 days 3 days 4 days 5 days 6 days

CO 1.398625 1.360816 1.32943 1.321153 1.320658 1.326461
NOx 0.0661 0.064524 0.062522 0.062414 0.06243 0.062914

PM2.5 0.000356 0.000335 0.000325 0.000323 0.000322 0.000324
PM10 0.000403 0.000379 0.000368 0.000366 0.000364 0.000366
CO2 213.4434 224.6081 223.2107 222.4063 222.8595 222.4115

Days 7 days 8 days 9 days 10 days 11 days 12 days

CO 1.323799 1.326966 1.322703 1.33162 1.326516 1.317891
NOx 0.062833 0.062929 0.062848 0.063204 0.063115 0.062888

PM2.5 0.000323 0.000324 0.000323 0.000326 0.000324 0.000321
PM10 0.000365 0.000367 0.000365 0.000368 0.000366 0.000363
CO2 222.6467 222.0059 222.3667 221.6501 222.0375 222.2886

Figure 5. Changes in Estimated Link Emission Factors by Increasing Number of Data Collection Days.

6. Discussion

The applicability of the developed methodology was examined by using the navigation data
collected according to each of the three (morning peak hours, non-peak hours, afternoon peak hours)
analysis time intervals on one highway section (1 km) and one arterial road section (600 m). The results
of the analysis confirmed that the error rate showed a difference in the range of 1–4% for the highway
section and 1–6% for the arterial road section when the link emissions were calculated using the
proposed method. Moreover, the results indicated that the estimated micro-level link emission factors
reflect the driving characteristics of the link according to the traffic conditions for each time period
and the driving characteristics for each road characteristic (uninterrupted flow and interrupted flow).
Additionally, the analysis results through the same method while accumulating the vehicle trajectory
data showed that clustering analysis produced similar cluster centers after 4-day data accumulation and
link emission factors were converged to certain values representing the vehicle travel characteristics on
the corresponding road at the corresponding time period by adding the number of data collection days.
The number of days to reach convergence on the target road in this study was about four, while it is
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expected to increase in road sections having fewer collected vehicle trajectories. These results mean
that the proposed method can offset the limitations of vehicle trajectory data with a small number
of samples. Furthermore, this approach enables the analysis time period to be shorter and thus the
micro-level emission calculation of the entire network to be analyzed in more detail.

In this study, because navigation data was used, the results were limited to the case of passenger
cars. Therefore, it is necessary to acquire the vehicle trajectories of a commercial vehicle, such as a
truck or bus, from DTG data to check whether the applicability is the same. In addition, considering
that the link length of the traffic network varies, it is also necessary to vary the collected link length to
check whether there are any points to be supplemented in the analysis method. Moreover, it is also
required to confirm the basis for judgment as to how many days for data accumulation and analysis
would enable representative link micro-level emission factors to be developed.

7. Conclusions

Several problems must be addressed to apply the micro-level emission estimation method at the
regional or national level by using the vehicle trajectory data collected through GPS data. The biggest
problem is that it is not possible to collect the vehicle trajectory data of all vehicles running on the traffic
network. The second problem is related to the task of extracting necessary data from the collected
vehicle trajectory, which requires a considerable amount of data processing and operation time in
calculating the micro-level emissions of individual vehicles and aggregating results by road section.

This study proposed a countermeasure to solve these problems. In this study, a micro-level
emission estimation method using the massive vehicle trajectory data collected from vehicle navigation,
DTG, and mobile devices was developed, which can be applicable at the regional or national level.
The vehicle trajectories from collected GPS data were classified as link ID and time period to estimate
the emissions and emission factors for each link at a specific time period. Vehicle trajectories for a
link at a time period were divided into several groups through cluster analysis, in which the ratios of
each OpMode used in MOVES were used as cluster variables for clustering similar vehicle trajectories.
The choice of cluster variables is the biggest difference from the other methods for clustering vehicle
trajectories. The derived values of each cluster center from clustering analysis, the OpMode distribution,
can be used for calculating micro-level emissions. The center of each cluster denotes the representative
vehicle trajectory for each cluster. The emissions of the cluster center can be calculated easily by using
the values of the cluster center. The weighted averages of emissions of all vehicles are obtained by
applying the cluster size as a weight, which represents the emissions per vehicle on the corresponding
road section. They can be used as micro-level link emission factors to estimate emissions of regional-
or national-level traffic networks. When vehicle type-specific traffic volume is provided, the emissions
from all the vehicles on the traffic network will be easily calculated by multiplying by the micro-level
link emission factors. This is the main purpose of developing the proposed method.

The proposed method is not free from computational difficulty because the operating distribution
of each vehicle trajectory must be calculated to estimate link-based micro-level emission factors.
Moreover, more data must be collected and analyzed in order to increase the representativeness.
This requires more storage space and computing power. Fortunately, not only can the calculation
procedures of the proposed method be automated but also high-performance machines can be utilized
for the calculation. Thus, it is expected that the issues of storage space and computing power related to
the proposed method can be addressed.

The confirmation procedure explained in the previous section is still required. However, if the
proposed method were automated to accumulate data, such as navigation data, DTG data, and mobile
data, for each traffic network link and update the link-based micro-level emission factors, only having
traffic volume by vehicle type at the analysis time period would enable local or nationwide micro-level
emission estimation to be performed efficiently.
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Appendix A

Table A1. Calculated Emission Rates (g/s) by OpMode for a Passenger Car in Gyeonggi-Do, Korea.

Operating Mode Operating Mode Description CO NOX PM2.5 PM10 CO2

0 Braking 0.002161 0.000115 0.000002 0.000002 0.884684

1 Idling 0.000954 0.000072 0.000001 0.000002 0.816689

11 VSP < 0

1 ≤ Speed < 25

0.005995 0.000169 0.000001 0.000002 1.307695

12 0 ≤ VSP < 3 0.009848 0.000298 0.000002 0.000002 1.821388

13 3 ≤ VSP < 6 0.010114 0.000661 0.000002 0.000002 2.537854

14 6 ≤ VSP < 9 0.0146 0.001173 0.000002 0.000002 3.206731

15 9 ≤ VSP < 12 0.020065 0.001875 0.000002 0.000003 3.832276

16 12 ≤ VSP 0.031874 0.0034 0.000007 0.000008 4.674586

21 VSP < 0

25 ≤ Speed < 50

0.00833 0.000373 0.000003 0.000003 1.79065

22 0 ≤ VSP < 3 0.010655 0.000526 0.000003 0.000004 2.048499

23 3 ≤ VSP < 6 0.013619 0.00079 0.000003 0.000003 2.500449

24 6 ≤ VSP < 9 0.020059 0.001339 0.000003 0.000003 3.203335

25 9 ≤ VSP < 12 0.022456 0.00187 0.000004 0.000004 4.285691

27 12 ≤ VSP < 18 0.034629 0.003022 0.000006 0.000006 5.646284

28 18 ≤ VSP < 24 0.072006 0.005967 0.000018 0.000019 7.557838

29 24 ≤ VSP < 30 0.152696 0.00988 0.000087 0.000094 10.39979

30 30 ≤ VSP 0.523226 0.012622 0.000166 0.00018 13.05113

33 VSP < 6

50 ≤ Speed

0.006355 0.000653 0.000004 0.000004 2.564789

35 6 ≤ VSP < 12 0.011256 0.00182 0.000005 0.000006 4.115463

37 12 ≤ VSP < 18 0.016235 0.002606 0.000005 0.000005 5.353319

38 18 ≤ VSP < 24 0.066225 0.005082 0.00001 0.000011 6.972214

39 24 ≤ VSP < 30 0.073859 0.007304 0.000023 0.000025 9.269841

40 30 ≤ VSP 0.206546 0.009329 0.000027 0.000029 11.81478

Appendix B

Table A2. Calculated Emission Rates (g/s) by OpMode for a Truck in Gyeonggi-Do, Korea.

Operating Mode Operating Mode Description CO NOX PM2.5 PM10 CO2

0 Braking 0.005157 0.001119 0.000011 0.000012 1.666371

1 Idling 0.004261 0.000736 0.000014 0.000015 1.235385

11 VSP < 0

1 ≤ Speed < 25

0.010469 0.000899 0.000017 0.000018 1.838659

12 0 ≤ VSP < 3 0.017583 0.002737 0.000026 0.000028 2.656532

13 3 ≤ VSP < 6 0.020172 0.00494 0.000114 0.000124 4.279017

14 6 ≤ VSP < 9 0.028832 0.007317 0.000177 0.000193 5.839649

15 9 ≤ VSP < 12 0.038281 0.009744 0.000279 0.000304 7.304234

16 12 ≤ VSP 0.055333 0.014565 0.000318 0.000346 9.664224
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Table A2. Cont.

Operating Mode Operating Mode Description CO NOX PM2.5 PM10 CO2

21 VSP < 0

25 ≤ Speed < 50

0.014596 0.001274 0.00001 0.000011 2.289468

22 0 ≤ VSP < 3 0.019214 0.00355 0.000028 0.000031 3.151216

23 3 ≤ VSP < 6 0.025321 0.005591 0.000084 0.000091 4.485333

24 6 ≤ VSP < 9 0.033635 0.008536 0.000191 0.000208 6.13888

25 9 ≤ VSP < 12 0.039856 0.011277 0.00026 0.000282 7.872075

27 12 ≤ VSP < 18 0.055945 0.016247 0.000336 0.000365 10.90358

28 18 ≤ VSP < 24 0.099616 0.025651 0.000481 0.000523 14.60375

29 24 ≤ VSP < 30 0.218662 0.038046 0.000673 0.000732 19.44426

30 30 ≤ VSP 0.785452 0.047597 0.000983 0.001068 22.31806

33 VSP < 6

50 ≤ Speed

0.014684 0.003405 0.000055 0.00006 4.14084

35 6 ≤ VSP < 12 0.026154 0.010734 0.000166 0.000181 7.277741

37 12 ≤ VSP < 18 0.036623 0.01593 0.000212 0.000231 10.34293

38 18 ≤ VSP < 24 0.092717 0.025211 0.000265 0.000288 13.41121

39 24 ≤ VSP < 30 0.119214 0.034967 0.000353 0.000383 17.01697

40 30 ≤ VSP 0.31603 0.042564 0.000407 0.000442 21.822

Appendix C

Table A3. Calculated Emission Rates (g/s) by OpMode for a Bus in Gyeonggi-Do, Korea.

Operating Mode Operating Mode Description CO NOX PM2.5 PM10 CO2

0 Braking 0.007783 0.010314 0.000114 0.000123 3.681011

1 Idling 0.00391 0.006301 0.000155 0.000168 2.005807

11 VSP < 0

1 ≤ Speed < 25

0.012418 0.00613 0.000174 0.000189 2.707361

12 0 ≤ VSP < 3 0.020119 0.023276 0.000245 0.000266 7.356385

13 3 ≤ VSP < 6 0.053127 0.043837 0.001007 0.001094 14.87026

14 6 ≤ VSP < 9 0.081189 0.062972 0.00167 0.001815 22.47855

15 9 ≤ VSP < 12 0.110298 0.077616 0.002593 0.002819 29.30343

16 12 ≤ VSP 0.152142 0.105329 0.002968 0.003226 40.76052

21 VSP < 0

25 ≤ Speed < 50

0.015794 0.004861 0.000075 0.000082 2.545149

22 0 ≤ VSP < 3 0.026166 0.027358 0.000221 0.00024 9.294441

23 3 ≤ VSP < 6 0.082666 0.046367 0.000703 0.000764 16.8997

24 6 ≤ VSP < 9 0.092526 0.066794 0.001734 0.001885 23.33269

25 9 ≤ VSP < 12 0.124529 0.084568 0.002144 0.00233 30.56697

27 12 ≤ VSP < 18 0.16993 0.115507 0.002604 0.002831 42.55378

28 18 ≤ VSP < 24 0.230723 0.148917 0.003083 0.003351 59.52028

29 24 ≤ VSP < 30 0.304292 0.191851 0.003466 0.003767 76.57897

30 30 ≤ VSP 0.415553 0.234549 0.004119 0.004477 93.48057

33 VSP < 6

50 ≤ Speed

0.033908 0.028366 0.000531 0.000577 9.532979

35 6 ≤ VSP < 12 0.071659 0.077374 0.001637 0.00178 26.14048

37 12 ≤ VSP < 18 0.110222 0.123471 0.001924 0.002091 41.36648

38 18 ≤ VSP < 24 0.148665 0.163963 0.002131 0.002316 57.82597

39 24 ≤ VSP < 30 0.191404 0.211028 0.002395 0.002604 74.32924

40 30 ≤ VSP 0.2482 0.257894 0.0025 0.002718 90.92918
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