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Abstract: The intelligentization of unmanned surface vehicles (USVs) has recently attracted intensive
interest. Visual perception of the water scenes is critical for the autonomous navigation of USVs.
In this paper, an adaptive semantic segmentation method is proposed to recognize the water scenes.
A semantic segmentation network model is designed to classify each pixel of an image into water,
land or sky. The segmentation result is refined by the conditional random field (CRF) method. It is
further improved accordingly by referring to the superpixel map. A weight map is generated based
on the prediction confidence. The network trains itself with the refined pseudo label and the weight
map. A set of experiments were designed to evaluate the proposed method. The experimental results
show that the proposed method exhibits excellent performance with few-shot learning and is quite
adaptable to a new environment, very efficient for limited manual labeled data utilization.

Keywords: semantic segmentation; unmanned surface vehicles; visual perception; deep-learning

1. Introduction

Recently, research in the field and marine robotics has brought about the rapid development of
unmanned surface vehicles (USVs). The unmanned intelligent vessels are small-sized and can navigate
either programmatically or manually for specific tasks. They are portable and ready to deploy in
different environments. Compared with the larger counterparts, they also have the ability to navigate
at narrow rivers and relatively shallow waters. This broadens the USV application areas, such as
marine environmental monitoring, water rescue and geophysical exploration.

In order to more intelligently complete various tasks and save labor costs, the USVs should have
the ability of autonomous navigation with little manual intervention. In order to effectively respond to
a highly dynamic environment, the USV needs to sense the navigation situation in real-time and apply
proper route modifications to avoid a potentially dangerous situation. Nevertheless, environment
perception is the foundation to achieve all these above-mentioned requirements. Various sensors are
applied for the USV perception, such as camera [1] and radar [2,3]. Due to size limitations, such USVs
have a small load capacity and cannot be mounted many sensors. The power consumption is also
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restricted by the limited energy supply. The camera has the advantage of power saving and lightweight.
Furthermore, it can provide rich information about the surroundings. These make the camera an
important sensor for the USV perception. As a visual sensor, the video camera is an indispensable
sensor for USVs to respond to various environments. Although the image contains rich information, it is
still a challenging task to extract useful information from the raw pixel data for autonomous navigation.

For a visual perception system on the USV, water region detection from the image is one of the
most critical and challenging tasks [4]. It is of great importance in many applications, such as obstacle
avoidance, path planning and so on. During the navigation, much attention is paid to various water
activities. After the image segmentation and recognition of each region, the computing efficiency
can be improved by constraining the target search in the specific region. Most of the researchers
directly focus on water line detection and water target detection [5,6]. There are a few pieces of
research reports on the water region detection directly [7]. For the detection of water line, most existing
researches make use of the traditional vision algorithms based on the edge features and line detection
algorithms, assuming that the water line is a straight line for the undistorted image and a circle for the
omnidirectional image [8,9].

As these algorithms adopt the low-level manual designed features, they are vulnerable to noise in
the outdoor water environment. The water wave is one of the most influential factors. Regions in the
water wave have various edges and cause much noise for the water line detection. Water reflection
is another complex condition. In some cases, it is difficult for even humans to distinguish the water
reflection from the land scene according to the color and texture information. Furthermore, the water
reflection texture could be extremely complicated with the influence of the water wave. For water
object detection, researchers have previously only focused on where the object is located and what the
object is identified as in the image. For the autonomous navigation of USV, the information on the
water target is not enough to cope with complex tasks.

Recently, the overwhelming success of deep learning architectures has inspired a new approach
for researches on outdoor visual navigation [10,11]. In particular, convolutional neural networks
(CNN) have been effectively applied to many tasks, such as image segmentation, object detection
and video processing [12,13]. The deep learning network has an excellent performance in complex
tasks [11]. However, it is challenging to know what features the network learns and how the process
works. The common method to improve network performance is to train the network with a large
amount of precisely labeled data. Limited training data will result in a low-performance network.

As the navigation environment is complex and changing, the sampled data for network training
is quite limited to the vast different real scenes. How to use limited data for better performance is the
key problem we are facing now. Moreover, as the navigation environments are different in different
tasks, training the network for each task is heavily workloaded and inefficient. How to improve the
adaptability of the network to the new environment is another key problem that we have to solve.

In response to the questions mentioned above, we propose an adaptive semantic segmentation
algorithm for the USV. The water environment is divided into water, land and sky regions. The objects
on the water surface are also classified as the land region, which means the USV cannot pass
through these regions. A basic segmentation network is designed to classify each pixel. Then,
a self online-learning algorithm is proposed to improve the network automatically during navigation.
The network self-correct the error prediction based on the texture and color consistency in the superpixel,
which make it adaptive in the dynamic outdoor environment.

The main contribution of this paper is that an adaptive semantic segmentation algorithm is
proposed for USV navigation. Our framework has excellent performance with a small set of training
data. Our network can automatically train itself. Our segmentation network may have limited
performance in the beginning. After a few steps of self-training, the performance can be improved
gradually. This can reduce the work for large training data labeling. Our framework shows a good
adaptivity to the new dynamic environment. After a period of time, our model can be adapted to the
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new environment, which eliminates the need to label new training data and retrain the network for
each new task.

The article is arranged as follows: Section 2 reviews related work on the visual perception for the
USV; Section 3 details the proposed algorithm flow; Section 4 provides the experimental evaluation of
the algorithm and the paper is concluded in Section 5.

2. Related Work

In the past few years, a lot of research has been focused on sea–sky-line detection to detect the
edge of the water surface in the image [14,15]. In [16], images are binarized by the Otsu’s thresholding
method. Then, a Hough transform is used for line detection. The longest straight line is regarded as
the sea–sky line. Jiang et al. [17] analyze the histogram of the image and remove irrespective pixels
according to the pixel distribution for the sea–sky line detection. However, this method causes a loss
of some valuable information on the line. Based on the traditional Canny algorithm, Lu et al. [18]
proposed a modified edge detection algorithm. Liang et al. [19] applied a gradient method for the
sea–sky line detection, assuming that pixels with the peak value in the image gradient map are most
likely the sea–sky line points. In [20], the information of edge and color is used for the horizon line
detection in an image. According to the color transition in the sky region, a color-based detector is
designed for the horizon line detection. In the edge-based detector, the Canny algorithm is used
for edge detection and Hough transformation is used for line detection. Shen et al. [21] proposed a
hierarchical horizon detection algorithm. The major edges in the images are selected by the Canny
edge detection algorithm and Hough transform. An elastic fine-level adjustment is used for the precise
curvature horizon line. In [22], pixels with maximum or minimum gradient values are sampled along
each vertical line in the image gradient map. Then, a random sample consensus (RANSAC) was used
to fit the horizon line. After comparison experiments with Hough transform, generic line detection and
least square optimization, Yan et al. [23] found that RANSAC has the highest detection accuracy. As a
heavy dependence on the prior assumption, these water surface edge detection methods are vulnerable
to failure in the complex water scene. Sun and Li [24] proposed a coarse-to-fine method to detect the
maritime horizon line. They apply gradient features to build a line candidate pool and design hybrid
feature filter for the horizon line segments selection from the pool. Then, RANSAC is used to stitch the
fine line segments to detect the whole horizon line. To solve this problem, some researchers attempt to
utilize the unmanned aerial vehicle (UAV) to enhance the visual perception ability of the USV [25,26],
which increases the complexity of the unmanned system.

With the development of algorithms and the improvement of computer performance, artificial
intelligence has been used in various fields and has achieved remarkable results. Artificial intelligence
has already been used for environment perception and obstacle avoidance [10,11]. Jeong et al. [27]
proposed a horizon detection method that combined a multi-scale approach and a convolutional neural
network (CNN). They use CNN to verify the edge pixels in the complex maritime scenes. A researcher
also attempted to apply a semantic segmentation network for water line detection [28,29].

Instead of just focusing on detecting the edge of the water region, semantic segmentation provides
more information and is supposed to improve the scene recognition capability of the USV system.
The semantic segmentation based method is a method that classifies all pixels of the image. The full
convolution network (FCN) [30] laid the foundation for most modern segmentation architectures.
U-Net [31] further exploited the spatial details using dense skip connections. Later, inspired by global
image-level context prior to DCNNs [32], the pyramid pooling module of PSPNet [33] and atrous
spatial pyramid pooling (ASPP) of DeepLab [34] were employed to encode and utilize global context.
Other competitive fundamental segmentation architectures used the conditional random field (CRF)
algorithm [35] or recurrent neural networks [36]. However, the state-of-the-art semantic segmentation
is still heavily dependent on the manual label training data set. Training with large manual labeled
data is still required before the application of these methods.
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3. Proposed Method

This section details the proposed method is explained. Figure 1 shows the diagram of the
proposed algorithm.Electronics 2020, 9, 213 4 of 16 
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Figure 1. The diagram of the proposed method.

In order to employ our USV in a complex dynamic environment for various tasks, the perception
system is designed to satisfy the following requirements.

(1) Accurate and robust scene perception with each input new image;
(2) Adaptive ability during the navigation in the dynamic environment;
(3) Image is the only input.

A segmentation network model is created for the USV visual perception. The network is initialized
with small, manually labeled data. To improve the network prediction accuracy, the CRF algorithm is
introduced as a post-process. To further refine the network output, a superpixel map is generated from
the original image based on the texture and color similarity. Two criteria are designed to evaluate the
prediction confidence of each pixel. The refined network output is regarded as the pseudo label. In
order to improve the USV adaptive capacity, a self-training method is proposed to train the network
based on the pseudo label and the corresponding weight map.

3.1. Online Deep Learning Segmentation Network

(1) Segmentation network
We draw inspiration from the U-net architecture [31], which is applied for biomedical image

segmentation. We design an end-to-end encoder–decoder network for the water image segmentation.
Multiple feature maps in different layers are fully utilized, which improves network performance.
The encoder layers are based on the VGG [37] network. The VGG architecture consists of several
convolutional layers and fully connected layers. The fully connected layers are removed and the
convolutional layers are reserved as the feature extraction. The convolutional layers are divided
into five stages. The feature maps in the five stages are downsampled to feed into the next stage by
pooling operations. The VGG model that is trained with a large amount of data is set as the encoder
model, assuming that these convolutional layers have a good ability to extract the features of the input
image. The last layer of each stage is regarded as the feature maps and up-sample to feed into the
corresponding decoder network. Three other convolutional layers are added after the encoder layers
for the pixels classification.

(2) Segmentation pre-train
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Before the navigation, we expect that the intelligent USV can recognize the different sceneries
based on the texture information. The traditional methods extract a set of features identified by a
domain expert according to each application. Then a classifier, such as support vector machine (SVM),
is used to predict each region of the input image. Due to the complex variability of the texture, it is
hard to design an effective method to extract a valid feature from the complex various texture in the
dynamic scene. The traditional methods have limited performance in our application. Moreover, these
designed features focus on the local region information and neglect the global structure information of
the image.

These problems can be solved effectively by the deep convolutional neural network-based
algorithms. The convolutional layers can effectively and automatically learn both the low-level and
high-level features. Domain expertise is no longer needed for the hardcore feature extraction. Through
experiment analysis, we found that the neural networks learn not only the local feature but also
the global semantic relationship between different regions, which increases the robustness of the
engaged algorithm.

We use the basic segmentation network to realize the feature extraction and region prediction in
this work. As a widespread technique for the network initialization, the basic VGG network that is
trained on the ImageNet dataset is set as the encoder network of our architecture. In this step, the
network needs further training before it has the ability to segment images.

Before the USV is employed in a new scene that has different color and texture from the historical
application scene, several representative scene images are manually labeled into three categories, water,
land and sky. Then, we train the network to learn a generic notion of how to learn the features of
each category and recognize each region of the images. Stochastic gradient descent (SGD) is used to
optimize the network with momentum 0.9 for 50,000 iterations. The dataset is randomly augmented
by mirroring and zooming to improve the robustness of the feature extraction. After offline training,
the network can roughly segment the input image base on the learned feature.

(3) Segmentation result refinement
CRF is an effective way to refine the multi-class object segmentation by considering the relationship

with adjacent pixels [38]. Motivated by the work with a method that combined CNN and CRF [39], the
outputs of the segmentation network are improved by the CRF post-process. Let xi be the random
variable of pixel i, which represents the label and can take any value from a pre-defined set of labels
L = {l1, l2, · · ·}. Let X be the vector formed by the random variables x1, x2, · · · xN, where N is the number
of pixels in the image. Let I be input image data. The optimization of the CRF model is defined by the
energy function:

E(x) =
∑

i
ϕi(xi|I) +

∑
i, j
φi, j(xi, x j|I). (1)

The formula consists of two parts, the unary potentials ϕi(xi|I) and the pairwise potentials
φi, j(xi, x j|I). ϕi(xi|I) measure the inverse likelihood of the pixel i taking the label xi without considering
the smoothness and the consistency of the label assignments, which are obtained from the segmentation
network output. φi, j(xi, x j|I) measure the cost of assigning labels xi, x j to pixels i; j simultaneously,
which encourages assigning similar labels to adjacent pixels with similar properties. It is defined:

φi, j(xi, x j|I) = u(xi, x j)

ω1 exp

−‖pi − p j‖
2

2σ2
α

−
‖Ii − I j‖

2

2σ2
β

+ω2 exp

−‖pi − p j‖
2

2σ2
γ


 (2)

where pi and p j is the pixel position. u(xi, y j) represents the compatibility of the labels assigned to
variables xi and x j, where u

(
xi, x j

)
= 0 if xi = x j and 1 otherwise.

The first term depends on the neighboring information of the pixel positions and the pixel value
similarity. The second term only considers the pixel positions. The optimization process is to get the
minimum energy E(x) value, which can refine the local segmentation.
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3.2. Superpixel-Level Pseudo Label Generation

After the segmentation network prediction and the CRF refinement, the image is assigned with a
class label at the pixel level. A large number of experiment results indicated that pixels with great
prediction uncertainty or error prediction mainly locate near the edge of different regions, as is shown in
Figure 2. The second column in Figure 2 shows the three category prediction channels. Three prediction
values in each pixel are processed by the argmax function to obtain each category prediction probability.
Then, the three category prediction values are sorted to get three new prediction channels, shown in
the third column. The result in the bottom of the third column illustrates that the prediction has a high
probability for the corresponding category except for the pixels near the boundary. The prediction
results of the three classes are similar near the boundary, which indicates that the network cannot
distinguish the category of these pixels. In order to show the significant degree of different category
prediction results, we subtract the largest predicted value from the second-largest value to obtain the
prediction contrast map, shown in the fourth column.
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In order to solve the uncertain problem of the local region and boundary prediction, our attempt
is to improve the result by applying the superpixel based method. We proposed to cluster pixels with
similar characteristics into superpixels. It is assumed that the pixels in the superpixels should be
labeled as the same class. In our work, we improve the pseudo label at the superpixel level before
the next segmentation training. A graph-based segmentation technique [40] is used to obtain the
superpixels in this paper. At the beginning of the graph-based segmentation approach, each pixel
is set as a separate region for the initialization. Then, small regions are merged into a large region
recursively until certain criteria is met.

The superpixels are expressed as S = {s1, s2, · · · , sn}. Then we calculate the pixel number of water,
land and sky in each region. For the a superpixel si, the category number statistical result is expressed
as ni = {ni0, ni1, ni2}. ni0, ni1 and ni2 are the pixel number of water, land and sky respectively in si.
The class with the largest number of pixels in the region is regarded as the region category:

nis = max(ni0, ni1, ni2) (3)

Ci = c(nis) (4)

where nis is the largest number in ni. c(·) is a function, which is used to find the label corresponding to
the largest number in superpixel si. Ci is set as the label of si.

3.3. Degree of Confidence Evaluation

As the segmentation network is trained automatically without an external guide, we wish to
remove the influence of the pixels with error labels and train the network with the pixels with the
right label as much as possible. Therefore, two criteria are designed to evaluate the confidence degree
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of each pixel for the pseudo label. To improve the robustness of the online self-training process,
the segmentation network is trained according to these criteria.

(1) Prediction consistency in a region
Ideally, the water, land and sky region have discriminable color and texture features. Most of the

pixels in a superpixel should be label as the same class. Regions near the inconspicuous edge would
have pixels with various labels. These regions have a great probability of error label. Thus, we use the
pixel prediction consistency to judge the prediction confidence in a superpixel. The measurement in a
superpixel si is expressed as follows.

wic =
nis

ni0 + ni1 + ni2
. (5)

The prediction consistency measurement wic stands for the proportion of certain category pixels
with the largest number in a region.

(2) Prediction saliency of three categories
As the USV is navigation in the dynamic unknown environment, the trained segmentation

network may fail in the new environment. In this new environment, some pixels would have similar
prediction probabilities in each category, which makes it hard to measure the category of these pixels.
A good prediction is that a specific category prediction probability is near 1 and the other two category
prediction probability is near 0. Then, we design an evaluation method to measure the confidence of
each pixel prediction. The measurement is defined as:

wjps = 1−
p js

p jmax
(6)

where wjps represent the reliability of jth pixel prediction, p jmax is the largest value in the three class
prediction channel and p js is the second-largest value.

The greater the difference between the largest prediction value and the second-largest prediction
value, the more convincing the prediction is. For example, if a pixel is predicted as the water,
like Pj = [1, 0, 0], the largest prediction value pjmax is 1 and the second largest prediction value p js is 0.
Then, according to the formula, the reliability of the prediction is 1, which means the pixel is absolutely
the water. To the contrary, if the prediction of a pixel is Pj = [0.5, 0.5, 0.5], the largest prediction value
pjmax and the second-largest prediction value p js are the same, which means it is hard to distinguish
the category of the pixel. The reliability of the prediction is 0, which means the prediction is incredible.
Then, we calculate the mean prediction confidence of a superpixel si as:

wis =

∑
j=0 wjps

ni0 + ni1 + ni2
(7)

3.4. Online Training Segmentation Network

During the navigation of the USV, pseudo labels are fed into the network training for self-training.
The loss function for the training is defined as:

L = −
1
N

N∑
i=1

[yilogŷi + (1− yi) log (1− ŷi)] (8)

where y is the pseudo label and ŷ is the corresponding prediction of the network.
Considering the uncertainty of the pseudo label, pixels with high confidence have large weights

to train the network, which is to avoid network degradation during the training. The training weight
map is calculated according to the prediction consistency measurement wic and the prediction saliency
measurement wis.

w f = wic·wis (9)
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To remove the influence of the pixel with low confidence, the weight map is processed by an
activation function. The activation function is defined as:

f (x) =

0 f or 0 ≤ x ≤ 0.5

x f or 0.5 < x ≤ 1
, (10)

w f = f
(
w f

)
(11)

.
The loss function is modified as:

L = −
1
N

∑N

i=1
wi f [yilogŷi + (1− yi) log(1− ŷi)]. (12)

The advantage of this loss function is that it puts more weight on pixels with greater label
confidence and less weight on those unreliable pixels, hence reduces the degradation of the network
caused by the bad training samples.

4. Experimental Results

A set of experiments have been conducted to verify the performance of the proposed method. The
experiment data mainly come from the video captured by our USV navigating in East Lake located in
Wuhan, China. Our experimental USV and the navigation environment are shown in Figure 3. To
further evaluate the adaptive transferability of the proposed method to various new environments,
video data captured over the Yangtze River and sea are used in the experiment.
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Figure 3. Our team’s experimental unmanned surface vehicle (USV) at East Lake.

4.1. Evaluation of Online Learning

In order to clearly show the improvement of the network prediction during the process of the
pseudo label generating, the segmentation network is pre-trained with bad training data that is added
with some stochastic noise. Each region in the label mask is processed by the morphological operations
of dilation or erosion randomly. The edge error between each class region is a common problem in the
image labeling process. By the artificial expansion of the edge error, it is for the clear demonstration of
the region edge refinement in the pseudo generating. Random dot and line noise are also added to
demonstrate the local refinement in the pseudo generating. As shown in Figure 4, the first row is the
original image; the second row is the correct label; and the last row is the labels mixed with manually
added noise.
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The segmentation network is trained with the noise data. Then the trained segmentation network
is applied to predict the image of the East Lake. The prediction is refined by the pseudo label
generation process. As is shown in Figure 5, the first row is the original image. The second row is
the segmentation prediction by the trained segmentation network. The third row is the pseudo label
generation result. The experiment shows that our designed post-processing can effectively correct the
local error prediction.Electronics 2020, 9, 213 9 of 16 
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The metric method of Intersection over Union (IoU) is employed to better understand the
quantitative performance of the proposed method. The IoU metric is essentially a method to quantify
the percent overlap between the target mask and our prediction output. Namely, the metric measures
the number of pixels common between the target and prediction masks divided by the total number of
pixels present across both masks. In segmentation tasks, the IoU is preferred over accuracy as it is not
as affected by the class imbalance that is inherent in foreground and background segmentation tasks.
The IoU is calculated as follows:

IoU
(
Y, Y

)
=

TP
TP + FN + FP

where Y is the ground truth segmentation and Y is the segmentation prediction. TP is the successful
prediction number when the ground truth is positive. FN and FP are the failure prediction number
when the ground truths are negative and positive respectively.

Figure 6 shows the IoU result of each class. In this experiment, a short video is labeled as the
ground truth. The basic segmentation network trained with noise data is used to predict each image in
the video. The lines of water1, land1 and sky1 in the figure are the basic network IoU results of water,
land and sky region respectively in the time sequence. Then, the basic segmentation is regarded as
the initial network of the online learning network. The network is trained automatically and images
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are predicted at the same time. The line of water2, land2 and sky2 in the figure is the online learning
network IoU result of water, land and sky region respectively. By comparing the online training model
with the basic segmentation model, the performance of our proposed network is gradually improved
after the self-training. As the water region and the sky region take up a large part of the image, some
local failure predictions in these regions play a small role in the water and sky class final IoU result. On
the other hand, the land region accounts for a small part in the image and the local failure predictions
have a significant influence on the land IoU result. By calculating the mean percentage of the three
class quantity in the whole video, we found that the water region accounts for 40.23%, the land region
accounts for 16.87% and the sky region accounts for 42.90% of the images. During the navigation
of the USV, we pay more attention to the obstacle detection and avoid the obstacle in the local path
planning. Therefore, the improvement of the land region prediction plays an important role in the USV
environment perception. After continuous online learning, our proposed method could significantly
improve land prediction accuracy.Electronics 2020, 9, 213 10 of 16 
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4.2. Performance in Different Scenes

In this section, five groups of different experiments with different conditions were conducted to
verify the feasibility of the proposed algorithm in various complex environments. The experimental
conditions are selected according to the distance from the shore. As shown in Figure 7, each row is
an image sequence in a specific condition and each image is combined with the original image and
segmentation result. The offshore distance from the first row to the fifth row is from far to near.

In the first row, the image sequence was captured when the USV is far away from the land. There
is no reflection of the trees, mountains and buildings on the water surface. Besides, because the USV
was far away from the land, the scene on the land is very small in the image. In the second and third
rows, the image sequences were captured when the USV was closer to the bank than the first row. With
the land region increasing, the reflection on the water surface is more obvious. As the influence of
the reflection, the boundary between the water area and the land is not obvious in some local regions,
shown in the third row. In the fourth and fifth rows, the image sequences were captured near the
bank. As the bank is so close to the water area, these images are full of reflection. The trees on the land
projects on the water surface and the colors of the water area are the same as that of the trees because
of the illumination, which makes it difficult to distinguish the water region from the land region for
the traditional method.
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These experiments show that the proposed method exhibits excellent performance in different
conditions. To further evaluate the proposed method quantitatively, the five videos are manually
labeled as the ground truth. The mean IoU of each class is shown in Table 1.

Table 1. Intersection over Union (IoU) results in each video.

Experiment Class IOU
Water Land Sky

Video1 99.7% 94.8% 99.9%
Video2 99.3% 96.2% 99.9%
Video3 97.9% 97.0% 99.9%
Video4 98.9% 98.2% 99.9%
Video5 96.4% 97.1% 99.8%

4.3. Trained Model Transfer to a New Environment

The demand for USV continues to increase recently. The USV has to be adaptive to different tasks
in various environments. It is inefficient to train a specific model for each task. We expect that the
trained model can be adaptive to a new environment, which reduces a lot of work for manual data
labeling. In order to verify that the proposed method could be adaptive to new tasks, videos captured
at the Yangtze River and sea by the video camera and mobile phone camera are used in the experiment
based on the initial model trained by the images data captured in East Lake. The experiment result is
shown in Figure 8.
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Figure 8. Model transferred to a new environment.

The images in the first three rows were captured at the Yangtze River in different scenarios.
The scene of the first row is at the dock. The background features buildings in the second row and
the Yangtze River Bridge in the third row. The images in the last three rows were captured at sea.
The images in the fourth row were captured in the evening. The images in the fifth row were captured
near the island. The images in the last row were captured far away from the coast, in which the land is
small in the images.

We can see from the experiments that the performance of the network is continuously improved
during the online self-training. When the USV is driving into a new environment, although the network
shows poor performance at the beginning, it constantly corrects the error prediction for a period of
self-learning and is finally well adapted to the new environment. Table 2 shows the IoU result of
each video after online learning. These experiments prove that the proposed method has a good
transferability to different new environments. With this ability, our USV can be deployed to many new
tasks without further training. Large work is no longer needed to label new data before each new task.
Furthermore, the right predictions that are close to manual labeling can be selected as the ground truth
data to increase the ground truth database.
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Table 2. Performance in new environments.

Experiment Class IOU
Water Land Sky

Video1 95.6% 97.8% 99.7%
Video2 99.8% 98.9% 99.9%
Video3 99.9% 96.3% 93.0%
Video4 99.9% 76.5% 91.4%
Video5 99.9% 99.9% 99.9%
Video6 99.9% 80.4% 99.9%

4.4. Comparison to the State-Of-The-Art Methods

This section presents comparative evaluation results of the proposed algorithm and other
state-of-the-art methods (SegNet [41], ENet [42], ICNet [43], ContextNet [44], DeepLab-V2 [39] and
PSPNet [45]). The compared models and the proposed model are trained with the dataset captured
in the East Lake. In order to measure the self-learning ability of the models, we choose a set of data
to train these models. In this experiment, only fifteen images are chosen for training. For the test
experiment, we divide the database into three categories, namely, East Lake dataset, Yangtze River
dataset and the sea dataset. The East Lake dataset is used to validate the self-improvement during the
online learning of the proposed method. The Yangtze River dataset and the sea dataset is used to show
model transferability in a different environment. Then, each class IoU is calculated to test these models.

Table 3 shows the comparative results of different methods. Our proposed method outperforms
the other approaches in all the datasets. The performances of some reference models heavily depend
on the training data set. They have a good prediction only in the condition that they have learned from
large training data. When the models are used in the new environment, they have poor performance as
the texture and illumination are different from the training dataset. As shown in Table 3, these models
have a relatively good performance at the Yangtze River, because the texture at the Yangtze River is
similar to the texture at the East Lake. On the contrary, they have poor performance at sea, because the
texture at sea has a large difference from that at the East Lake. While our model has the ability to train
itself, its performance is limited in the beginning. Only after a few steps of self-training, our model can
be stably adaptive to the new environment.

Table 3. Comparative experimental results.

Experiment East Lake Yangtze River Sea
Water Land Sky Water Land Sky Water Land Sky

SegNet [41] 93.5% 80.7% 92.8% 71.2% 79.8% 90.7% 61.7% 66.1% 83.4%
ENet [42] 94.2% 81.5% 93.4% 73.6% 80.4% 91.2% 60.6% 68.3% 83.7%
ICNet [43] 95.9% 85.1% 95.9% 78.4% 83.8% 92.9% 63.4% 79.5% 86.0%

ContextNet [44] 94.6% 83.4% 94.1% 75.1% 82.7% 92.0% 62.8% 76.1% 84.2%
DeepLab-V2 [39] 96.0% 86.2% 96.5% 79.5% 86.4% 95.3% 65.0% 80.4% 89.4%

PSPNet [45] 97.3% 87.6% 97.0% 81.2% 90.6% 95.7% 67.2% 87.2% 89.2%

Ours 98.0% 95.9% 99.9% 97.8% 95.4% 99.7% 98.4% 95.3% 99.3%

5. Conclusions

In this paper, an adaptive semantic segmentation is proposed for the visual perception of the USV
autonomous navigation. The segmentation algorithm is based on the encoder–decoder convolutional
neural network. CRF as a post-process is added after the network to improve the network prediction
accuracy. In order to avoid the dependence on a large amount of manually labeled data for the network
performance, an online self-training method is put forward. The network is pre-trained with a small
labeled data and gradually improved by the self-training. A superpixel based refinement algorithm is
used to generate the pseudo label for self-training. Two uncertainty evaluation criteria that measure
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the confidence of each pixel prediction are designed to guide the network training by removing the
influence of the pixels with error labels and rewarding the training with the right label. A set of
experiments were conducted to test the proposed method in the river, lake and sea. These experiments
indicate that the proposed method can get rid of the dependence on a large number of training
data for high performance. Like other network models, our approach has limited performance after
training with small training data. It can be gradually improved after a few steps of self-training. These
experiments also show that the proposed method has an excellent adaptivity to a new environment,
very attractive for the applications in many different environments.
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