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Abstract: The acceleration architecture of transposed convolution layers is essential since transposed
convolution operations, as critical components in the generative model of generative adversarial
networks, are computationally intensive inherently. In addition, the pre-processing of inserting
and padding with zeros for input feature maps causes many ineffective operations. Most of the
already known FPGA (Field Programmable Gate Array) based architectures for convolution layers
cannot tackle these issues. In this paper, we firstly propose a novel dataflow exploration through
splitting the filters and its corresponding input feature maps into four sets and then applying the
Winograd algorithm for fast processing with a high efficiency. Secondly, we present an underlying
FPGA-based accelerator architecture that features owning processing units, with embedded parallel,
pipelined, and buffered processing flow. At last, a parallelism-aware memory partition technique and
the hardware-based design space are explored coordinating, respectively, for the required parallel
operations and optimal design parameters. Experiments of several state-of-the-art GANs by our
methods achieve an average performance of 639.2 GOPS on Xilinx ZCU102 and 162.5 GOPS on Xilinx
VC706. In reference to a conventional optimized accelerator baseline, this work demonstrates an 8.6×
(up to 11.7×) increase in processing performance, compared to below 2.2× improvement by the prior
studies in the literature.

Keywords: generative adversarial networks (GANs); transposed convolution; Winograd; FPGA;
acceleration architecture; processing units

1. Introduction

With the wide application of deep neural networks [1], several convolution operation-based
generative adversarial networks (GANs) [2–4] have emerged to accomplish computer vision-related
tasks such as image generation/synthesis [5–8] and 3D object modeling [9,10]. We have also
observed that transposed convolution, a specific-domain convolution kernel, is the primary operation
involved in the generator component of GANs, while convolution is involved in another component
of GANs called discriminator. Abundant prior acceleration works for convolution operation in
several CNN models were presented based on field programmable gate arrays (FPGAs) [11–16].
More recently, increasing the performance of transposed convolution has been considered in a few
works [17–21]. Transposed convolutions are always implemented by the way of the conventional
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convolution form directly. Unfortunately, such an equivalent convolution-based dataflow causes more
than 70% ineffective operations. GNA [17] and Zhang’s work [18] solved the issue by designing
a distinct computing strategy, so-called “Input-Oriented Mapping (IOM) method”, to eliminate
expanding the sparsity of matrix at the origin. Referring to Eyerss [22] who focused on the common
convolution, the authors of [19–21] concerned removing all the invalid operations in the sparse matrix
multiplication.

By a different method from the works mentioned above, the fast Winograd algorithm is explored
in this work for efficiently deploying the transposed convolution layers of GANs on FPGAs. The fast
Winograd algorithm provides an efficient means of transforming 2D convolution operation into
element-wise multiplication manipulation (EWMM) operation to reduce the computational complexity.
In Winograd domain, multiplications of the elements in a constant transformation matrix are
transformed to addition and shift operations, while implementing the addition and shift operations
by logic units such as look-up-tables (LUTs) and flip-flops (FFs) on the FPGA should incur a lower
computational cost. Several reported implementations [23,24] have demonstrated higher performance
through deploying the Winograd-transformed common convolutional layers on FPGAs. To the best of
our knowledge, this is the work to target extending the fast Winograd algorithm to the implementation
of the transposed convolution layers of GANs on FPGAs.

This paper makes the following contributions:

• We present a novel dataflow exploration, so-called Wino-transCONV, which eliminates all
the computations involving 0 values and then implements the transposed convolution
operation through adding the DECOMPOSITION and REARRANGEMENT stages in a regular
Winograd-transformed convolution dataflow. This dataflow optimization allows a significant
reduction in computational complexity.

• We propose a custom architecture for implementing transposed convolution layers efficiently
by mapping the multiple-stage Wino-transCONV dataflow to FPGA device with pre- and
post-processing in place. The design structures include the processing unit and Buffer operating
in a combined pipelined and parallel fashion.

• We devise the memory parallelism-aware partition to achieve efficient data access in the paper.
Meanwhile, the optimal hardware-based design space is also explored by analyzing the efficiency
in resource allocations and the performance in computational executions.

• Several state-of-the-art GANs are verified on Xilinx FPGA devices by employing the proposed
approaches in this paper.

The rest of this paper is organized as follows. Section 2 provides a brief description of some
concepts regarding the fast Winograd algorithm and transposed convolution.The dataflow exploration
is also highlighted in this section. Section 3 presents the custom architecture design optimized and
implemented on FPGAs. Section 4 discusses the experimental verification results. Section 5 concludes
this paper.

2. Dataflow Exploration

2.1. Transposed Convolution Dataflow Basics

The generator component of GANs features taking noise as input and generating samples, which
involves a vast amount of transposed convolution operations. Figure 1 illustrates a representative
data processing flow with regard to the Generative model of a GAN used for large-scale scene
understanding challenge (LSUN) scene modeling [4]. Four layers of transposed convolutions (alias for
fractionally-strided convolutions) are connected in series to convert the random noise representations
into a high-resolution image. This paper is interested in exploring how to resource-efficiently boost the
processing capabilities of implementing transposed convolution layers on FPGAs.
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Figure 1. DCGAN: An actual GAN generator for LSUN scene modeling.

Similar to a general convolutional layer, a transposed convolution layer carries out the feature
generation by applying N groups of the filters (each of the groups owning C×K×K filters) to C channels
of the two-dimensional input feature maps (inFM, C×W×H) and then outputting N channels of the
two-dimensional output feature maps (outFM, N×2W×2H), as shown in Figure 2. As detailed in
Figure 3, transposed convolution can be mapped into the conventional convolution dataflow, after the
inFM is inserted and padded with zeros where appropriate to obtain the expanded input feature map
(EX-inFM).

Figure 2. Data processing flow of transposed convolution layer.

Figure 3. An illustration of the data transformation flow through inserting and padding with zeros.
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2.2. Winograd Transformation Basics

As shown in the equation below, the 2D convolution can be transformed in the fast Winograd
algorithm [25].

OUT = AT ·
[
(G · F ·GT)� (BT · IN · B)

]
·A (1)

Suppose that: IN has a size of n×n (n = m + r - 1); OUT has a size of m×m; F has a size of r×r;
and “�” symbolizes an Element-Wise Matrix Multiplication (EWMM).

Both transformation matrices, G and B, are applied to, respectively, convert the weight filter (F)
and the input feature map (IN) to the Winograd domain first. Then, in the Winograd domain, the two
results are multiplied befor their outcome is further converted back by the third transformation matrix,
A, to obtain the output feature map OUT. In one example case, in which m = 2 and r = 3, the Winograd
transformation matrices AT , BT , and G are defined as follows:

BT =


1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1

 , G =


1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

 , AT =

[
1 1 1 0
0 1 −1 −1

]
(2)

2.3. Wino-transCONV Dataflow Exploration

As discussed above, our purpose is to remove void operations and reduce computational
complexity. Foremost, we present DECOMPOSITION processing to eliminate void operations.
As exhibited in Figure 4, there exist four (2×2) computing patterns for a 5×5 sized filter sliding
up, down, left, and right over a 6×6 sized tile-window of the EX-inFM for operations. Specifically,
the upper-left computing pattern in Figure 5 correspondingly generates the green-colored grids (also
denoted with “×”) for the outFM, as depicted in Figures 5a and 6. For the three other computing
patterns, the same principle is applied to generate pink, blue and orange colored grids as, respectively,
shown in Figure 5b–d. Those 25 grids ( f0∼4,0∼4) belonging to the filter window are divided into and
distributed across the four sub-filters with the irregular numbers of non-zero values (9+6+6+4). Figure 5
illustrates the detailed evolution dissolving a transposed convolution into four equivalent convolutions
during the DECOMPOSITION process. More clearly, we pick the non-zero values of the filter and then
squeeze the sparse matrix to the dense matrix. This way, one transposed convolution processing task
over the 5×5 sized filters can be distributed into the four common convolution subroutines operated
with smaller 3×3 sized filters.

Subsequently, the standard Winograd algorithm is possibly applied to implement the four general
convolutions subroutines to reduce computational cost. It is noted that Figure 5 demonstrates the
effectiveness of the offered data compression pre-processing for exploring the application of fast
Winograd algorithm, when the filter is taken on the route of picking and squeezing for the minimum
operations with inFM*. This matches the fact that, for an effective transformation, those conventional
convolutions with the core size not exceeding 3×3 [23,24] are required by the execution of the fast
Winograd algorithm.

Eventually, the four intermediate outputs in Figure 6 are alternately rearranged into the final
outFM as necessary for the post-processing shown in Figure 5.



Electronics 2020, 9, 286 5 of 21

Figure 4. An illustration of picking the effective filter values in alignment to the non-zero grids in
inFM.

Figure 5. An illustration to the data operations in dissolving a transposed convolution into four
equivalent convolutions during the DECOMPOSITION processing.
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Figure 6. The data REARRANGEMENT process.

An overview of the provided Wino-transCONV dataflow is exhibited in Figure 7. With the exception
of the standard fast Winograd algorithm (S2–S4), the two new stages, namely DECOMPOSITION (S1)
and REARRANGEMENT (S5), are involved in this paper. A detailed explanation for DECOMPOSITION
is given above (cf. Figures 4 and 5). Particularly during the processing of S1, the complete filter
window with a size of K×K, which slides over the (n+1)×(n+1) sized tile-window of inFM, is split into
four effective sub-filter windows. Next, each of those four effective sub-filter windows is operated
on its corresponding sub-inFM window pattern. The processing of S5 is relatively simple, as four
m ×m sized intermediate output patterns are produced after S4 and alternately rearranged into one
2 m×2 m sized outFM. According to the standard fast Winograd algorithm, S2 implements matrix
transformations for both the input feature map and the filter, while S3 implements EWMMs and S4
implements matrix transformations for the output feature map.

Figure 7. An algorithmic chart for the proposed Wino-transCONV dataflow.
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The computational complexity of Wino-transCONV dataflow can be measured via the amount of
the multiplication operands required to occupy the DSP resources on an FPGA device. For quantitative
estimation, the following equations are derived:

MultDirect−CONV = (2H − 1)× (2W − 1)× K× K (3)

and
MultDirect−CONV−e f f = H ×W × K× K (4)

Here, MultDirect−CONV represents the number of multipliers needed for the convolution
descendent from a direct transformation of the transposed convolution [4] when a K×K sized filter is
applied on a W×H sized inFM. MultDirect−CONV−e f f corresponds to the number of multipliers needed
after a further removal of all the invalid operations [17–21].

For our Wino-transCONV dataflow, the number of multipliers required may be determined as
follows simultaneously.

MultWino−transCONV = 4 ·
⌊

H − (n−m) + 2
m

⌋
·
⌊

W − (n−m) + 2
m

⌋
· n2 (5)

Table 1 lists some comparison analysis results for the computing resource usage deemed among
different acceleration platforms. In the table, the terms mult, add, and total_equiv_add denote the
respective numbers of multiplications, additions, and total equivalent additions thus calculated.
Without loss of generality, an L bit-width (fixed point) multiplication can be equivalently dissolved into
L times the same bit-width additions. In this analysis, L = 16 is assumed. In Table 1, the Wino-transCONV
dataflow results in the minimized multiplications through being replaced with reasonably increased
additions. Thus, we advantageously trade the DSP resources with the LUT-plus-FF resources,
which should be abundantly available nowadays on FPGAs. In this way, it should deliver a higher
degree of implementation parallelism than the prior studies. In terms of the normalized factor,
the Wino-transCONV approach reduces the number of operations approximately by 70–80%, compared
to the Direct-CONV. It also requires fewer resources than Direct-CONV-eff by almost one third. Further
referring to Table 1, a close examination suggests that the transforming properties associated with the
Wino-transCONV should not be influenced by the size of inFM, although they exert the reduction effect
more prominently with 5 × 5 filters than 4 × 4 ones.
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Table 1. Computational resource usage analysis.

inFM Filter Methods Mum_of Operations Normalized
(W×H) (K×K) mult (*) add (+) total_equiv_add 1

8×8

5×5

Direct-CONV [4] 5625 5400 95,400 1
Direct-CONV-eff [17–21] 1600 1536 27,136 0.284

Wino-transCONV(m = 4) 576 10,048 19,264 0.201
Wino-transCONV(m = 2) 1024 4928 21,312 0.223

4×4

Direct-CONV [4] 3600 3375 60,975 1
Direct-CONV-eff [17–21] 1024 960 19,394 0.318

Wino-transCONV(m = 4) 576 10,048 19,264 0.315
Wino-transCONV(m = 2) 1024 4928 21,312 0.349

16×16

5×5

Direct-CONV [4] 24,025 23,064 407,464 1
Direct-CONV-eff [17–21] 6400 6144 108544 0.266

Wino-transCONV(m = 4) 2304 40,192 77,056 0.189
Wino-transCONV(m = 2) 4096 19,712 85,248 0.209

4×4

Direct-CONV [4] 15,376 14,415 260,431 1
Direct-CONV-eff [17–21] 4096 3840 77564 0.297

Wino-transCONV(m = 4) 2304 40,192 77,056 0.295
Wino-transCONV(m = 2) 4096 19,712 85,248 0.327

64×64

5×5

Direct-CONV [4] 403,225 387,096 6,838,696 1
Direct-CONV-eff [17–21] 102,400 98,304 1,736,704 0.253

Wino-transCONV(m = 4) 36,864 643,072 1,232,896 0.18
Wino-transCONV(m = 2) 65,536 315,392 1,363,968 0.199

4×4

Direct-CONV [4] 258064 241,935 4,370,959 1
Direct-CONV-eff [17–21] 65,536 61440 1,241,084 0.283

Wino-transCONV(m = 4) 36,864 643,072 1,232,896 0.282
Wino-transCONV(m = 2) 65,536 315,392 1,363,968 0.312

128×128

5×5

Direct-CONV [4] 1,625,625 1,560,600 27570600 1
Direct-CONV-eff [17–21] 409,600 393,216 6,946,816 0.251

Wino-transCONV(m = 4) 147,456 2,572,288 4,931,584 0.178
Wino-transCONV(m = 2) 262,144 1,261,568 5,455,872 0.197

4×4

Direct-CONV [4] 1040400 975,375 17,621,775 1
Direct-CONV-eff [17–21] 262,144 245,760 4,964,352 0.281

Wino-transCONV(m = 4) 147,456 2,572,288 4,931,584 0.279
Wino-transCONV(m = 2) 262,144 1,261,568 5,455,872 0.309

1 total_equiv_add = mult * L + add, where L = 16.

3. Design and Implementation

3.1. Architecture-Wise Optimization

Figure 8 illustrates the overall custom architecture design for the proposed dataflow exploration.
In the figure, numerous datasets are involved, including inFMs, filters, and outFMs, all in batches to
transport between on- and off-chip via, e.g., the AXI-Stream interface connection provided by the
FPGA device. To overlap the computation time and data transfer time, the double line buffer [23]
is adopted to realize ping-pang data exchange operations in this paper. A processing unit (PU) is
specifically designed to accommodate the execution procedure, as specified in Figure 8 for a common
transposed convolution operation. Then, Multiple PUs will be formed in an array to complete the
entire Wino-transCONV dataflow in parallel. A tile-window of the inFM would be taken from the
line buffer and then subsequently sent to a relevant PU along with a filter, while the PU generates
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the result to an outFM. As detailed in Figure 8, each of those PUs consists of a DECOMPOSITION
pre-processing module, a Winograd Processing Element (Wino-PE) module, and a REARRANGEMENT
post-processing module, all being mapped into DSPs or LUT-register resources on FPGA, as exhibited
in Figure 9.

Figure 8. An illustration of the Wino-transCONV design architecture.

To raise the processing capabilities at the architecture level, this paper investigates some possible
implementation strategies for optimally balancing various design conditions such as hardware
parallelism vs. network performance. We have observed that the transposed convolution in the
algorithm can tap into two kinds of concurrent executions, namely the parallel processing among FMs
and inside an FM [26]. Moreover, pipeline is regarded as an indispensable means that could possibly be
taken to lift up the performance of an accelerator system. The strategies of inter-PU parallelism, intra-PU
parallelism, and intra-PU pipeline are used for balancing the various conditions such as parallelism, peak
performance, and resource consumption as follows:
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• Inter-PU parallelism: In the design, each PU is accountable for processing the data from one of the
C channels of inFMs to one of the N channels of outFMs. Suppose that PC and PN denote parallel
undertakings of inFMs and outFMs, respectively. Therefore, there are in total (PC × PN) PUs to
execute their individual operations in parallel.

• Intra-PU parallelism: According to Figure 7, the function of Winograd processing inside a single
PU is responsible for sequentially processing four pairs of the decomposed data, i.e., (sub-inFMs
and sub-filters). Nevertheless, those four pairs can also be individually operated upon in parallel.
Thus, the operational speed is improved, although at the expense of additional DSP blocks
and programable logic resources being needed. It should be conceded that a single PU having
consumed excessive DSP blocks would in practice result in the reduction to the degree of inter-PU
parallelism, which must fall towards a smaller measure in terms of the number of (PC × PN). This
is because the total number of DSP resources available on an FPGA device is always capped.

• Intra-PU Pipeline: In a PU structure, Steps S–S4 can be effectively pipelined according to the
dataflow of Wino-transCONV given in Figure 7 except for S1 and S5. This is because the
DECOMPOSITION (S1) and the REARRANGEMENT (S5) for those four pairs of data (sub-inFMs
and sub-filters) cannot share one common set of hardware on a time division multiplexing basis.

Figure 9. The architecture-to-implementation mapping on FPGA for a PU.

3.2. Processing Unit Detail vs. Intra-PU Parallelism & Pipeline

Figure 10 describes a design structure for the PU. The programmable logic resources abundantly
available in FPGA are utilized to execute all the matrix transformations (in the Wino-PE module),
DECOMPOSITION processing, and REARRANGEMENT processing. The values of matrices (i.e., A,
B, and G) in matrix transformations are computed offline and they normally take simple constants
such as +1, −1, and 1/2, while both DECOMPOSITION and REARRANGEMENT only involve the
operations regarding data formatting.

Element-wise matrix multiplication in the Wino-PE is the only module that is performed by the
DSP blocks in the form of MAC units. Assuming it is denoted as the number of DSP (MAC) blocks
required to achieve such EWMM in a PU, necessitating for execution in parallel and, further, one DSP
block carries out fixed point multiplication in a bit-width of on FPGA device, to exercise the maximum
parallelism, ε = 4× n× n× (χ

/
η) DSP blocks would be required to operate, where χ symbolizes the

original bit-width dictated by the algorithm itself. In this work, χ and η are specifically chosen to be
the same and equal to 16 bits (considering an elementary DSP unit as 18b×25b multiplier embedded
in FPGA).

It is preliminarily emphasized with regard to the intra-PU parallelism and pipeline in Section 3.1
that, on the one hand, there exist six possible configurations of concurrency for a typical instance
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where n = 6, i.e., ε ⊆ {144, 72, 36, 18, 9, 3}. As exhibited in Table 2, the larger ε is, the fewer cycles are
required to complete the operations, which indicates that the latency becomes shorter over a single
PU. As a result, more EWMM operations would be conducted in concurrency, hitherto increasing the
overall processing throughput.

Figure 10. Design of processing unit.

Table 2. Concurrency vs. throughput for EWMM (in the case of the 6 × 6 sized tile-window).

(ε) 144 72 36 18 9 3

Cycles required to complete EWMM 1 2 4 8 16 48

On the other hand, the pipeline technique is applied in conjunction with a parallel strategy.
The timing diagrams for a single PU with four typical values are given in Figure 11. They demonstrate
a coherent parallel–pipeline scheme for executing all the necessary operations in PU. Actually, the actual
value of ε should have impact on the initiation interval and the interval latency (II and IL [27,28]) as far
as the pipeline design considered. IIPU and ILPU can be estimated referring to the above analysis:

I IPU =
4n2

ε
· I Is, ILPU =

(
4n2

ε
− 1
)

I Is + ILs (6)
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where IIS and ILS are the values of II and IL @ε = 4n2 supposing IIS = 1 cycles while ILS = 5 cycles in
Figure 11 for simplicity, which are denoted as the standard reference measure. IIS and ILS are further
utilized to explore the design space in Section 3.4.

Figure 11. Timing diagrams of four typical parallel implementations for S1–S5 operations in a PU.

The correlation regarding operational performance vs. ε is characterized on the Xilinx ZCU102
platform and evaluated with Xilinx Tool. As proposed in Figure 12, the processing performance in
terms of Giga Operations Per Second (GOPS) goes up linearly with ε, while the energy efficiency
denoted as GOPS/W somehow increases logarithmically with ε. This means that, although the
processing performance does proportionally increase with the number of DSP blocks working in
parallel, the pace to raise the energy efficiency by aligning more DSP blocks in concurrency may
gradually slow down with ε growing larger. The reason may be attributed to the fact that a high
degree of parallelism may cause lengthy and excessive interconnect wires on FPGA device and, in such
conditions, the ratio of the DSP over the whole implementation with regard to power consumption
would also gradually go up, typically from 1% (when ε = 3) to 40% (when ε = 144).
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Figure 12. Characterization of performance vs. ε for a PU design.

Based on inter-PU parallelism and intra-PU parallelism, the total number of DSP blocks required to
realize all the (PC × PN) PUs in an FPGA may be predicted by:

num_DSP = ε× PC × PN (7)

3.3. Memory Sharing—Access and Partition

To have memory availble to be accessed, a parallelism-aware partition technique is taken
into consideration. The on-chip data of inFMs, filters, and outFMs can be described as respective
multi-dimensional matrices (Mats).

In principle, the data in a relevant Mats are partitioned into a certain number of segments; thus,
they can be accessed in parallel to coordinate the parallel operations required. Table 3 gives the
partition explorations of the inFMs, outFMs, and filters, all of which are subject for possible concurrent
access in order to maximize the parallelism in the computation. Table 3a estimates the number of
segments in line for the parallel access as well as the size of such a segment for each dimension (dim) in
the Mat. In addition, it gives the total memory banks hence required and the volume of each memory
bank specified for a layer implementation. It is noted that the data belonging to one segment are the
minimum dataset necessarily arranged for serial access. More clearly, Figure 13 illustrates the process
of partitioning the memory requirements into a group of concurrently accessible memory segments.
The benefit of having this memory partition measure in place is to enable more parallel operations and
hence increase the processing performance as well as the energy efficiency.

Two specification examples of implementation are presented in Table 3b,c based on the Xilinx
FPGA device integrated into the ZCU102 board. Here, there are a total of 1824 18K BRAM banks
available for use. In line with our method, the numbers of BRAMs needed in the partition technique
are, for instance, 1728 and 1440, respectively, for realization of the second layers of DCGAN and
EB-GAN. In practice, to fully exploit the multi-port features offered by the BRAM in FPGA, it is
possible to have two data segments packed into one single BRAM bank through a true dual-port
arrangement, provided that such data segments were properly fitting. In comparison to Table 3b,c,
the total number of BRAM banks needed should hence be halved.
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Figure 13. An illustration of memory partition.

Table 3. Specifications of memory partition.

(Number of segments for parallel access)×(size
of the segment) Total number of the Data volume defined for

one memory block in
dim1 dim2 dim3 dim4 memory blocks required type (= 16 bits)

inFM (m+n+2)×(1) (n+1)×[W/(n+1)] (PC)×(C/ PC) – (m+n+2)×(n+1)×(PC) (1)×[W/(n+1)]×(C/ PC)

outFM (4m)×(1) (2m)×(2W/2m) (PN)×(N/
PN)

– (4m)×(2m)×(PN) (1)×(2W/2m)×(N/ PN)

filter (PC)×(C/ PC) (2PN)×(1) (K)×(1) (K)×(1) (PC)×(2 PN)×(K) ×(K) (C/ PC)×(1)×(1)×(1)

(a) General model

(Number of segments for parallel access)×(size
of the segment) Total number of the Data volume defined for

one memory block in
dim1 dim2 dim3 dim4 memory blocks required type (= 16 bits)

inFM (12)×(1) (7)×(1) (8)×(256) — (12)×(7)×(8) = 672
1728

(1)×(1)×(256)

outFM (16)×(1) (8)×(1) (2)×(512) — (16)×(8)×(2) = 256 (1)×(1)×(256)

filter (8)×(256) (4)×(1) (5)×(1) (5)×(1)(8)×(4)×(5)×(5)=800 (256)×(1)×(1)×(1)

(b) Instantiation for the second layer of DCGAN

(Number of segments for parallel access)×(size
of the segment) Total number of the Data volume defined for

one memory block in
dim1 dim2 dim3 dim4 memory blocks required type (= 16 bits)

inFM (12)×(1) (7)×(1) (8)×(512) - (12)×(7)×(8) = 672
1440

(1)×(1)×(512)

outFM (16)×(1) (8)×(1) (2)×(512) - (16)×(8)×(2) = 256 (1)×(1)×(512)

filter (8)×(512) (4)×(1) (4)×(1) (4)×(1)(8)×(4)×(4)×(4)=512 (512)×(1)×(1)×(1)

(c) Instantiation for the second layer of EB-GAN
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According to Table 3, we can estimate the number of BRAM banks required as follows:

num_BRAM = αin[PC × (m + n + 2)× (n + 1)]input
+ αout[2× PN × 2m× 2m]output

+ α f

[
2× PN × PC × K

2
]

f ilter

(8)

Here, αin, αout, and α f mean that α∗ BRAM banks are required if one single BRAM bank does not
have enough capacity to store the data for serial access (see Figure 13). αin,αout, and α f are expressed
as follow: 

αin =
i=2
∏
i=0

(size_o f _the_segment_in_inFM)dim i

/
V
L

αout =
i=2
∏
i=0

(size_o f _the_segment_in_outFM)dim i

/
V
L

α f ilter =
i=3
∏
i=0

(size_o f _the_segment_in_ f ilter)dim i

/
V
L

(9)

Specifically, V = 18K and L=16 in this paper.

3.4. Design Space Exploration

Among various FPGA devices, the density of their processing resources available, such as DSPs,
BRAMs, LUTs, and Flip-Flops, differs in combinations. The number of DSP blocks and BRAM banks
required is predicted in Sections 3.2 and 3.3, respectively. Notably, the bandwidth bottleneck emerges
when the data processing time is not well matched to that of the data transfer, hence compromising
the peak performance. In the design space specified by the FPGA device parameters, we need to find
ways of acquiring optimal solutions under the constraints of the algorithm parameters.

Balancing between the computation and the transfer times is considered in this paper as well,
especially when it is taken to process C channels of W×(n+1) inFMs and finally output 2W×2m outFMs,
as expressed in Equations (10)–(12).

Ti_trans f er =
16×(m+1)×W×C
AchievedBandwidth

To_trans f er =
16×2m×2W×N

AchievedBandwidth

Tf _trans f er =
16×C×N×K2

AchievedBandwidth

(10)

Ttrans f er = Ti_trans f er + To_trans f er + Tf _trans f er (11)

Here, Ti_trans f er, To_trans f er, and Tf _trans f er are the respective transferring times of the inFMs, outFMs,
and filters. Bandwidth is the device constraint provided by FPGA.

Tcomputer =

(⌈
W

m + 1

⌉
×
⌈

C
PC

⌉
×
⌈

N
PN

⌉
× I IPU + ILPU

)
× 1/

f req (12)

where IIPU and ILPU are characterized in Equation (6).
Our goal is to find the minimal Tcomputer under the premise of Tcomputer ≥ Ttrans f er since the peak

performance must match the bandwidth. {PC, PN , ε, m} are unknown parameters to be explored.
In Equation (6), IIS and ILS can be obtained via a few small-scale experiments. {W, C, N, K} are
parameters relevant to the transposed convolution while {freq, Achieved , and Bandwidth} are related to
the FPGA hardware. In this paper, Algorithm 1 is devised to explore the optimal solution of {PC, PN , ε,
m} based on the above analysis.
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Algorithm 1 : Design space exploration.

Require: T :{W C K N},
F :{ f req Achieved Bandwidth I Is ILs},
F :{Available DSP Available BRAM}

Ensure: {PC PN ε m}
function EXPLORE_MINTIME(T, F)

init Tmin = A Number Large Enough
init Optimization_parameter[ ] = {0, 0, 0, 0}
init ε_table[2][ ] = {{144, 72, 36, 18, 9, 3 }, {64, 32, 16, 8, 4, 2 }}
init m_map[2] = {4, 2}
for each index in {0, 1} do

m← m_map[index]
INbu f f er ← (m + n + 2)× (m + 1)
OUTbu f f er ← 8(m×m)

FILTERbu f f er ← 2(K× K)
for each εi in ε_table[index] do

PCPN ← b Available DSPBlocks
εi

c
for each pair of {PC,PN} in results of Factorization(PCPN) do

if PC × INbu f f er + PN ×OUTbu f f er + PC × PN × FILTERbu f f er

<= Available BRAM then
Tcomputer ← Equation (6)(12)
Ttrans f er ← Equation (10)(11)
if Tcomputer <= Ttrans f er then

Tcomputer ← Ttrans f er

end if
Ttotal_computer ← Tcomputer × d H

m+1e
if Ttotal_computer < Tmin then

Tmin ← Ttotal_computer

Optimization_parameter ← {PC PN ε m}
end if

end if
end for

end for
end for
return Optimization_parameter

end function

4. Experiment Verification

4.1. Experimental Cases for GANs

The design configurations for some of its transposed convolution layers regarding seven typical
GAN models are listed in Table 4. In the table, the label #num denotes an order of the layer in the network.
For networks such as DCGAN [4], Disco-GAN [5], Art-GAN [6], GP-GAN [7], and EB-GAN [8], they are
mainly applied for the purpose of synthesizing images, while the others such as 3D-ED-GAN [9] and
3D-GAN [10] fulfill the tasks of generating 3D object.
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Table 4. Design configurations of GANs.

GANs Transposed Convolution Layers GANs Transposed Convolution Layers

#num input filters #num input filters

DCGAN [4]

#2 4×4×1024 5×5×1024×512

GP-GAN [7]

#2 4×4×512 4×4×512×256

#3 8×8×512 5×5×512×256 #3 8×8×256 4×4×256×128

#4 16×16×256 5×5×256×128 #4 16×16×128 4×4×128×64

#5 32×32×128 5×5×128×3 #5 32×32×64 4×4×64×3

Disco-GAN [5]

#2 4×4×1024 4×4×1024×512 #2 4×4×4×512 4×4×4×512×256

#3 8×8×512 4×4×512×256 3D-GAN [10] #3 8×8×8×256 4×4×4×256×128

#4 16×16×256 4×4×256×128 3D-ED-GAN [9] #4 16×16×16×128 4×4×4×128×64

#6 32×32×128 4×4×128×3 #5 32×32×32×64 4×4×4×64×1

Art-GAN [6]

#2 4×4×512 4×4×512×256 #2 4×4×2048 4×4×2048×1024

#3 8×8×256 4×4×256×128 #3 8×8×1024 4×4×1024×512

#4 16×16×128 4×4×128×128 EB-GAN [8] #4 16×16×512 4×4×512×256

#6 16×16×128 4×4×128×3 (256×256 model #5 32×32×256 4×4×256×128

on IMAGENET) #6 64×64×128 4×4×128×64
#7 128×128×64 4×4×64×64

4.2. Experimental Setup

To evaluate our design approach, those state-of-the-art transposed convolution layers of GANs
were tested on the Xilinx FPGA platform with Vivado HLS (v2018.2). HLS provides abundant
optimization directives for pipeline, parallelism, and memory partition by adding #pragma to the
C/C++ code. The RTL representation of the design in terms of the Verilog HDL code can be exported
as a Vivado’s IP core after running C Synthesis and C/RTL Co-simulation. Finally, the Vivado Tool
synthesizes the exported RTL codes and records the design specifics in the report file. In addition,
the XPower analyzer tool integrated into Vivado performs the power estimation. Two Xilinx devices
were adopted in this experiment: XCZU9EG and XC7Z045. They were integrated into the ZCU102
board and ZC706 board, respectively, together with the ARM core, and offer high-speed serial
connectivity taking advantage of integrated AXI IP.

We implemented the networks in Table 4 using our techniques. Table 5 delivers the parameters
for FPGA devices in our implementations.

Table 5. Parameters for devices.

Device (ε) m PC × PN

XCZU9EG 144 4 16

XC7Z045 144 4 4

4.3. Experimental Results

In this subsection, our experimental results are reported. We adopt the previous view [18] about
the computation means of GOP of transposed convolution. Therefore, the processing capability of our
implementation is defined by Equation (13):

GOPS =
2× C×W × H × N × K2

Tprepare + Ttotal_computer
(13)

where Tprepare denotes the time of loading the first (n+1) rows of inFMs and the first batch of filters into
on-chip BRAM banks.
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Table 6 shows the experimental results in terms of performance and power as well as resource
utilization. We also provide avg GOPS and avg DSP Efficiency. In Table 7, we compare the prior
implementations, showing that our accelerator yields 15× (up to 21×) increase in DSP efficiency
over prior work [18]. Actually, neither the work of Zhang [18] nor GNA [17] implements real-life
GAN models. Moreover, GNA’s partial study on transposed convolution layers focuses on the
bit-width flexibility optimization based on TSMC 28nm ASIC. The meanings of GOPS given by Lu [23]
and Zhang [13] differ from ours since they implemented the general convolutional neural network
called AlexNet [29].

Table 6. Performance and resource report.

GAN Models Layers Performance (GOPS) GAN Models Layers Performance (GOPS)

ZCU102 ZC706 ZCU102 ZC706

DCGAN [4]

#2 717.2 223.7 #2 406.8 136.6
#3 915.9 243.4 3D-GAN [10] #3 536.4 151.3
#4 1058.7 254.3 3D-ED-GAN [9] #4 627.9 159.1
#5 320.2 133.8 #5 213.7 87.5

avg 851.8 236.9 avg 482.4 142.8

Disco-GAN [5]

#2 544.9 152.1 #2 654.9 161.1
#3 651.8 161.2 #3 727.1 166.3
#4 719.4 165.5 EB-GAN [8] #4 768.5 168.5
#6 252.1 94.5 (256×256 model #5 789.1 169.6

avg 616.1 157.6 on IMAGENET) #6 795.9 170.2

Art-GAN [6]

#2 406.8 136.6 #7 805 170.5
#3 536.4 151.3 avg 759.9 168.2

#4 627.9 159.1 Freq (MHz) 200 167

#6 213.7 87.5 LUT Utilization (%) 97 90

avg 486.9 145.4 DSP Utilization (%) 91.4 67

GP-GAN [7]

#2 406.8 136.6 BRAM Utilization (%) 90 57

#3 536.4 151.3 Performance (GOPS) 639.2*(avg) 162.5*(avg)

#4 627.9 159.1 DSP Efficiency (GOPS/DSP) 0.254](avg) 0.181](avg)

#5 213.7 87.5 Power (W) 15.6 5.8

avg 486.9 145.4 Energy Efficiency (GOPS/W) 40.9 27.9

Table 7. Comparison to prior implementations.

Models Works Device Precision DSP Freq GOPS GOPS/DSP
AlexNet [21] [13] VX485T float 2800 100 61.62 0.022

(Convolution) [23] ZC706 16 fixed 900 167 271.8 0.224

ASIC 8 fixed 409.6
GAN [17] (TSMC 16×8 fixed 200 204.8

Transposed 28 nm) 16 fixed 102.4
Convolution [18] 7Z020 12 fixed 220 100 2.6 0.012

Ours ZCU102 16 fixed 2520 200 639.2 * 0.245 ]

Ours ZC706 16 fixed 900 167 162.5 * 0.181 ]

* Our avg GOPS = The total GOP of GANs in Table 4/The total time occupation
] Our avg GOP/DSP = The total GOP of GANs in Table 4 /the total time occupation/DSPs

To further compare with prior work that implements real-life GAN models, we directly mapped
the transposed convolution to general convolution utilizing the optimized FPGA-based conventional
accelerator as the baseline, which is the same as that employed by FlexiGAN-FPGA [20]. Figure 14
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records the speedup (GOPS) with our work and prior work [20] vs. Conv-baseline separately. We
produce 8.6× (up to 11.7×) improvement in processing throughput over the Conv-baseline.

Figure 14. Comparison between our work and the prior work [20] on the speedup ratio against Conv-Baseline.

5. Conclusions

To address the two issues of having ineffective operations and being computationally intensive
inherently when implementing transposed convolution layers of GANs on FPGAs, we present the
novel Wino-transCONV dataflow as well as its corresponding hardware architecture design. In this
work, the distinct memory partition technique and the hardware-based design space are also explored.
Our final implementations of seven state-of-the-art GANs achieve an overall performance of 639.2
GOPS on the Xilinx ZCU102 platform and 162.5 GOPS on the VC706 platform. The experiment results
also show that our accelerator design yields 21× improvement in DSP efficiency over other prior
works. In addition, in comparison to the best-known work, which delivers 2.2× higher performance
than the optimized conventional accelerator baseline, the proposed design achieves 8.6× (up to 11.7×)
increase in processing throughput over the Conv-baseline.
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