
electronics

Article

Improved KNN Algorithm for Fine-Grained
Classification of Encrypted Network Flow

Chencheng Ma 1,2 , Xuehui Du 1,2,* and Lifeng Cao 1,2

1 National Digital Switching System Engineering and Technological Research Center, Zhengzhou 450000,
China; machencheng07@foxmail.com (C.M.); caolf302@sina.com (L.C.)

2 Zhengzhou Science and Technology Institute, Zhengzhou 450000, China
* Correspondence: dxh37139@sina.com

Received: 8 January 2020; Accepted: 11 February 2020; Published: 13 February 2020
����������
�������

Abstract: The fine-grained classification of encrypted traffic is important for network security analysis.
Malicious attacks are usually encrypted and simulated as normal application or content traffic.
Supervised machine learning methods are widely used for traffic classification and show good
performances. However, they need a large amount of labeled data to train a model, while labeled
data is hard to obtain. Aiming at solving this problem, this paper proposes a method to train a model
based on the K-nearest neighbor (KNN) algorithm, which only needs a small amount of data. Due to
the fact that the importance of different traffic features varies, and traditional KNN does not highlight
the importance of different features, this study introduces the concept of feature weight and proposes
the weighted feature KNN (WKNN) algorithm. Furthermore, to obtain the optimal feature set and
the corresponding feature weight set, a feature selection and feature weight self-adaptive algorithm
for WKNN is proposed. In addition, a three-layer classification framework for encrypted network
flows is established. Based on the improved KNN and the framework, this study finally presents a
method for fine-grained classification of encrypted network flows, which can identify the encryption
status, application type and content type of encrypted network flows with high accuracies of 99.3%,
92.4%, and 97.0%, respectively.

Keywords: encrypted network flow classification; K-nearest neighbor algorithm; feature selection
and weighted; fine-grained analysis; small training set

1. Introduction

Traffic-classification technology plays an important role in network security defense mechanisms.
It is the basis for analyzing network traffic, detecting network anomalies, and balancing network
load [1]. However, while traffic encryption is often used to protect information transmission, it also
complicates the network traffic classification and analysis [2,3]. Nowadays, cyber attacks are usually
implemented through encrypted traffic [4], and most of them are simulated as normal-application [5]
or normal-content [6] network flows, which bypasses the network defense system and causes great
damage. Thus, the fine-grained classification including the analysis of application and content types of
encrypted traffic is an important research area [7].

Machine learning is a well-known method in the field of encrypted traffic classification [8]. But the
machine-learning method needs a great amount of labeled data to train a model in terms of achieving
fine-grained classification [9], and it is difficult to realize in an actual network for the reasons that
labeled data are hard to obtain [10] and the model should be updated periodically for coping with
concept drift [11,12].

Therefore, this study proposes a classification method using a model trained with a small amount
of labeled data, which can achieve fine-grained and accurate classification of encrypted network flows.
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The K-nearest neighbor (KNN) algorithm is widely used to train an accurate model based on a small
training set [13,14]. Traditional KNN determines the label of new data according to the labels of the
K-nearest data points. The point distance calculation is based on non-weighted feature values, which
is not appropriate enough to be implemented in the classification of network flows. For one thing, the
influences of different traffic features are different to the actual distinction of two data points [15], i.e.,
the essential features accurately describe the distinction while useless features mislead the classification
results. For another, the importance of a feature is different for different classification purposes. Thus,
features selection and feature weights setting are key parts of fine-grained classification of traffic based
on KNN.

This study aims to promote the performance of traffic classification by improving traditional
KNN. Considering the different effects of different features, this study introduces the concept of feature
weight and proposes a weighted feature KNN (WKNN) algorithm. To obtain the optimal feature
set and the corresponding feature weight set, a feature selection and feature weight self-adaptive
algorithm for WKNN (WKNN-Selfada) is proposed, which can be used to train a classification model
for encrypted traffic identification. WKNN-Selfada can adjust weights according to each misleading
sample, so it can fully learn the characteristics of the traffic just with a few training samples, which can
meet the requirements of a small training set.

Furthermore, a framework for fine-grained classification of encrypted network flows is built,
which analyzes three attributes of encrypted network flows, namely encryption status, encrypted
application type, and encrypted content type. Fine-grained and multi-attribute classification is the
basis of network management and network security analysis. Based on the framework, classification
of network flows can be more meticulous, which provides many network analysis work with basic
supports. For better understanding, we take a simple example. The framework can be used to analyze
whether a flow is abnormal not only according to the single attribute value of a flow, but also the
association between the attributes of the flow. For example, YouTube flow is normal flow in most
cases and file flow is a normal flow in most cases, but a YouTube and file flow is likely a malicious
flow, because the YouTube application usually produces streaming flows but hardly file flows. Thus,
if we detect a flow as a YouTube flow as well as a file flow, the flow will be probably an anomaly.
The framework we proposed can distinguish this type of abnormal flows based on the analysis of the
correlation between the attributes.

Finally, based on the improved KNN algorithm and the framework, a new method for fine-grained
classification of encrypted network flows (FCE-KNN) is proposed. This method implements the
WKNN-Selfada algorithm to train classification models and uses these models for real-time traffic
classification based on WKNN.

Th main contributions of this study are as follows:
(1) Aiming at solving the problem that different influences of features are not expressed accurately,

improved versions of the traditional KNN algorithm are developed, namely the weighted feature KNN
(WKNN) algorithm and the feature selection and feature weight self-adaptive algorithm for WKNN
(WKNN-Selfada).

(2) To meet the requirement of network security analysis, a three-layer framework for fine-grained
classification of an encrypted network flow is innovatively proposed, which can reinforce network
security by analyzing the correlation of the fine-grained attributes.

(3) In order to realize accurate and fine-grained classification, a fine-grained classification of
encrypted network flows based on the framework and the improved KNN algorithms (FCE-KNN) are
presented, which can identify the encryption status, application type and content type of encrypted
network flows.

The remainder of this paper is organized as follows. Section 2 reviews related studies on
traffic classification. Section 3 introduces the notion of feature weight and proposes the WKNN and
WKNN-Selfada algorithms. Section 4 discusses a fine-grained classification framework and proposes
a corresponding fine-grained classification method for encrypted network flows. Section 5 presents
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the results of experiments on the public dataset Information Security Centre of Excellence (ISCX)
VPN-nonVPN [16] (VPN: Virtual Private Network, one of the means of encrypting network traffic)
to compare the performance of FCE-KNN with that of state-of-the-art algorithms. Finally, Section 6
summarizes the main findings of the paper.

2. Related Work

This study categorizes traffic-classification techniques from the perspective of extracted traffic
features, as shown in Figure 1. The traffic-classification technology consists of static feature analysis
and dynamic feature analysis. Static feature analysis mainly includes port detection and packet
load detection, whereas dynamic feature analysis mainly includes statistical feature analysis and
behavior analysis. Statistical feature analysis includes machine-learning methods and general statistical
feature methods.

Figure 1. Categorization of traffic classification methods.

The port-detection technology implements traffic classification by detecting the port number
of packets, but it is not always useful owing to the abuse of the non-standardized port number.
Deep packet inspection (DPI) [17,18] and deep flow inspection (DFI) [19] implement analysis on packets
or flows through frequent item-mining and pattern-matching methods, but it is difficult to establish
matching rules for encrypted traffic. The behavior detection method [20–24] achieves high identification
accuracy of encrypted traffic only for some special applications or protocols. The methods based
on statistical features currently show relatively good performance for encrypted traffic classification,
and machine learning (ML) is the most popular and effective one among them.

From the perspective of basic ML methods, decision trees [25,26] showed good performance
in most cases, but over-fitting can easily occur, leading to poor classification in actual networks.
Cluster methods [27,28] could achieve traffic classification without labeled data, but it was difficult to
find a really useful and suitable clustering metrics. Bayesian methods [29,30] provided probability-based
predictions, but their performance was poor when there were correlations between features, as was
usually the case. Support vector machines (SVM) [31] had general adaptability to encrypted traffic
classification, but the algorithm had high complexity and was very time consuming. Although ensemble
learning [32,33] showed good performance, the model based on a weak learner lacked interpretability.
Neural networks [34–43] needed a large amount of data to train a model, which was difficultly to
realize in a condition of a small training set. Transfer learning [44] and active learning [45] addressed
the issues of model practicability and insufficient label data during training, respectively, but they
have not been adequately explored in studies on fine-grained classification. Various machine-learning
methods had been combined to build hybrid models [46–48] in progressive or parallel structures [49],
but most of the models were too complex for real-time classification. For the general statistical
feature methods, Dorfinger et al. [50] identified encrypted traffic according to the entropy of packet
data; however, some studies [1,29] have recently found that the entropy method cannot distinguish
between encrypted traffic and compressed traffic. Among them, KNN [51–53] is light and accurate,
and could train a high-performance model with a small amount of labeled data. But to some
extent, the non-weight distance calculation lacks adaptability to different tasks of encrypted traffic
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classification. Carela-Español et al. [54] used KD-Tree (k-dimension tree) to improve the efficiency
of KNN in traffic classification. Bar-Yanai et al. [55] combined KNN and K-means to improve the
efficiency for real-time traffic classification. However, These two methods did not solve the problem of
fine-grained classification.

From the perspective of methods including feature selection or feature weight training,
McGaughey et al. [56] used the fast orthogonal search algorithm for traffic feature selection.
Dong et al. [57] proposed a multi-objective adaptive feature selection algorithm for traffic classification
based on information gain rate and evolutionary computing. Saber et al. [58] achieved traffic feature
selection based on linear discriminant analysis. Manju et al. [59] ranked traffic features according to the
feature weights which were the number of times that each feature appears in the tree, and selected the
optimal feature subset based on the accuracies of the extreme gradient boosting model. Jamil et al. [60]
created several candidate feature subsets by different feature selection algorithms, and chose the best
subset according to the results of all the feature subsets’ evaluations based on the five ML algorithms.
The feature weighted or feature selection method based on KNN [61] has been studied comprehensively
in many areas, such as transportation system [62], anomaly detection [63,64], image identification [65]
and so on, except for the fine-grained classification of network traffic. Only Dong et al. [66] in 2017
presented a modified version of consistency-based method in combination with a layered KNN
classifier to evaluate the goodness of a feature subset.

3. Improvement of K-Nearest Neighbor (KNN) Algorithm

This section introduces the notion of feature weight, improves the distance calculation formula in
KNN, and proposes the weighted feature KNN (WKNN). Furthermore, this section also includes our
proposed feature selection and feature weight self-adaptive algorithm for WKNN (WKNN-Selfada),
considering how to choose the appropriate feature set and the optimal feature weight set.

3.1. Weighted-Feature KNN

KNN is a supervised machine learning algorithm that finds a similarity between two points
by calculating the distance between them. KNN first calculates the distances between each training
sample and the target point, and then selects the k-nearest samples to the target point. These k samples
jointly determine the class of the target point. The distance calculation of features is a direct means for
expressing the similarity of points, and KNN shows excellent performance in predicting the target
network flow.

Minkowski distance is one of the widely used distance metrics in traditional KNN, shown in
below. If traffic features have no scale and have the same data distribution, Minkowski distance can
express the actual distance between two points. In this paper, the exponent of the differences between
the feature values is set to 2, which is Euclidean distance, because square sum is beneficial to describe
the multi-dimension point distance. When the feature dimension of points is m, the formula for
calculating the point distance between training sample p = (x 1, . . . , xm) and test point q = (y 1, . . . , ym

)
is given by distance =

√∑m
j=1 (x j − y j

)2
. The shorter the distance between the two points, the greater

is the similarity between them. After calculating the distances of all point pairs, the k-nearest training
samples determine the class of the test point.

The distance calculation of traditional KNN is non-weighted, which means that it does not reflect
the different effects of different features in traffic classification. This paper introduces feature weight
and weighted feature-based point distance to improve the adaptation of the classification model to
encrypted traffic-classification tasks. We use data normalization to eliminate the data scales for the
implementation of Minkowski distance. Based on Euclidean distance, we make improvements on the
traditional KNN, and several definitions are shown below.
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Definition 1 (Feature weight). is the coefficient of the feature when calculating the distance between two
points. The weights of features are represented by a column vector,w = (w 1; . . . ; wm), where m is the dimension
of the features.

Feature weights reflect the importance of features during distance calculation. The larger the
feature weight, the greater is the influence of the feature on the traffic classification.

Definition 2 (Feature distance). is the square of the difference between two points’ feature of the dimension.
For points p = (x1, . . . , xm) and q = (y1, . . . , ym), the feature distances are calculated and represented by
f d = [(p − q) .]2 = ((x1 − y1)

2, . . . , (xm − ym)2), where [(p − q) .]2 means squaring each elements of the vector
(p− q). If there are several pairs of two points, the feature distances would be formed a matrix, represented by
FD, and f d(i) means the ith pair’s feature distances.

Definition 3 (Weighted feature-based point distance). is based on the Minkowski distance with the additional
introduction of the feature weight. For points p, q and the feature weights w, the weighted feature-based point

distance is given by distance =
√

f d·w =

√
[(p − q) .]2·w.

The weighted-feature KNN (WKNN) algorithm is proposed in this paper, shown in Algorithm 1.
The inputs of the algorithm are the training sample set, a matrix P, target point q, parameter k,
and feature weight w. The shape of the matrix P is (n, m), where n is the number of training points and
m is the feature dimension, and p(i) means the ith row of P. The outputs are the class prediction result
of the target point q, the weighted feature-based point distances between the k-nearest neighbors and
q, kDistances, the matrix of feature distances between each k-nearest neighbor and q, KFD, and the
classes of the k-nearest neighbors, kClass. Some of the outputs are used for Algorithm 2, which will be
described later.

Algorithm 1: WKNN

First, in lines 1–5, the algorithm calculates the feature distances between each training point p(i)

and q, and then calculates the corresponding weighted feature-based point distance, where distances[i]
means the ith pair’s weighted feature-based point distance and distances is an array.

Next, in lines 6–9, the algorithm calculates the information of the k-nearest neighbors. knnIndex is
the corresponding indexes of the k-nearest neighbors. kDistances is the weighted feature-based point
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distances of the k-nearest neighbors. KFD is the feature distances matrix of the k-nearest neighbors.
kClass is the labels of the k-nearest neighbors. argminK() is a function to get the indexes of the k smallest
elements from small to large, and class() is to get the label of the point.

Finally, in lines 10–14, it calculates the prediction scores. WKNN uses the reciprocal of each k
distance value as a weight to be added to the score of the corresponding class and output the class
with the highest score as the prediction result.

3.2. Feature Selection and Feature Weight Self-Adaptive Algorithm for Weighted Feature KNN (WKNN)

The selection of the feature set and the setting of the corresponding feature weights determine
whether the calculated point distance can accurately represent the similarity between two points.
To achieve more effective classification, a feature selection and feature weight self-adaptive algorithm
for WKNN (WKNN-Selfada) is proposed, which can adapt feature weights by itself based on training
data, instead of by manual setting. The algorithm learns the influence and updates the weights of
features by analyzing only one sample at a time, so it can fully learn and adapt well to the law of each
training sample and realize accurate classification just with a small training set.

The algorithm includes two parts, which runs two times and achieves a single part each time.
The first time of the algorithm adapts the feature weight of each feature in the candidate feature set
and selects the optimal feature set by comparing the weights with the feature selection threshold.
In the second time of the algorithm, after feature selection in the first time, the weights of the selected
features are retrained, because the new feature set is not the same with the original feature set and the
weights of the original features cannot express the actual influences and mutual relation of the newly
selected features. In the process of weight adjustment, the algorithm suggests that the feature with a
larger feature distance would play a greater role in distinguishing the two points with different classes
once misclassification. Therefore, when updating the weights, the weights of features with a large
feature distance are supposed to increase while those with a small feature distance are supposed to
decrease in order to increase the point distance between two points with different classes and reduce
the possibility of misclassification. Thus, the accuracy of identifying the class of the test point can be
improved further.

Unlike the traditional KNN algorithm, the improved algorithm presented in this paper involves
a training process. Therefore, not only to compare with the target point for distance calculation,
the training data needs to be divided for updating the weights. For clarity, the two training sets are
called the decision samples set and the weights update set.

As shown in Algorithm 2, there are several input parameters: trainData is the data used for
training, k is the k value of WKNN, nRound is the number of rounds for training, raDiv is the ratio
for dividing the training samples into the decision samples set and the weights update set, and δ
is an adjustment parameter used to calculate the feature selection threshold. It finally outputs the
indexes of the selected features and the corresponding feature weights. The algorithm runs two times
automatically by judging whether the value of δ is null. The first time is to select a feature set with no
null δ and the second is to train the feature weights for the new features with null δ.

First, in lines 1–3, WKNN-Selfada initializes the selected feature index set, selectedFeatureIndex,
as all feature indexes, i.e., {0, ..., m−1}. Then it uses the function DataProcessing() to extract the feature
values of the data according to the selected feature and initializes the feature weights, w, as values of
1/m, where m is the feature dimension.

Next, in lines 4–22, it loops several times at the value of nRound. At the beginning of each
round, the method starts with a data division function, dataDivide(), which proportionally divides
trainData into a decision samples set P and a weights-update set Q in the ratio raDiv. One training
round involves multiple instances of training, which is equal to the size of the weights-update set Q.
Line 7 implements the WKNN algorithm on decision sample set P and the weights-update sample q
and yields the class prediction named prediction, the weighted feature-based point distances of the
k-nearest decision samples, kDistances, the matrix of feature distances between each k-nearest decision
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samples and q, KFD, and the classes of the k-nearest decision samples, kClass. Then, it judges whether
the prediction class is true. If false, it then implements the feature weights-update, which judges in
sequence whether the class of each nearest k decision sample is equal to the true class of target point q.
If not, the algorithm starts to update the weights, as shown in lines 11–17. In the phase of weights
update, the process in the class of the ith k-nearest decision sample is different from the target sample,
which is described below.

Algorithm 2: WKNN-Selfada

• Step 1: obtain the ranks of each feature based on the feature distances k f d(i). For example, if

k f d(i) = (0 .9, 0.2, 0 .4), the ranks of the features are (3,1,2), where the ith element of rank means
the rank of the ith feature according to the feature distance from small to large.

• Step 2: obtain the parameter λ, which is the update ratio of the weights. It is set to the ratio of
the smallest weighted feature-based point distance in this loop, min(kDistances), to the weighted
feature-based point distance between this decision sample and the target sample, kDistances[i].
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• Step 3: calculate the denominator of the new weights, β. The denominator increment is given by

∆β = λ·
m(m+1)

2 , where λ is the update ratio and m is the dimension of the feature vector. Thus,
the new denominator is β← β+ ∆β .

• Step 4: calculate the molecular of the new weights, α. The molecular increments are given by
∆αi = λ·rank[i], where i is the feature index. Thus, the new molecular are αi ← αi + ∆αi , where
αi is the weight’s molecular of the ith feature.

• Step 5: calculate the new feature weights, w = (w 1; . . . ; wm)←
(
α1
β ; . . . ;αm

β

)
. The sum of all weights

equal to 1 under any situation.

The misclassified decision sample at a shorter distance from the test point produces a larger
update ratio λ, which means that it has a greater influence on the training process for feature weight
update. After additional rounds of processing the feature weight self-adaptively, each feature weight
converges to a certain value. In particular, if the influence of one feature is extremely low (or extremely
high), the weight will converge to 2/[m ·(m + 1)] (or 2/(m + 1)).

Then, in lines 23–31, the algorithm determines whether feature selecting is finished by judging
whether δ is null. As δ does not have a null value in the first iteration, the processing of feature selection
would be performed, i.e., lines 24–28. The algorithm selects the features by judging whether the
weight of each feature is smaller than the feature selection threshold, ranging from the 1st dimension
to the mth dimension in order. If so, the feature index corresponding to the weight is removed from
selectedFeatureIndex. The threshold is obtained by calculating the difference between the average
value of the weights, 1/m and δ times the standard deviation of the weights. Here, δ is an adjustable
parameter and std() is the standard deviation function. The basic idea behind the threshold design
is that the feature weights obey normal distribution, so values lower than the confidence intervals
are rare and have low influences on the classification. In statistics, once the mean and standard
deviation of the data are given, the δ can be determined based on the confidence level such as 95%,
and the confidence intervals can be calculated, so values lower than the intervals can be removed.
However, WKNN-Selfada does not use the notion of confidence level, but sets the δ and the threshold
by experimental verification instead. At the end of the first iteration, the algorithm sets the δ to null
and then begins the second iteration from line 2. In the second iteration, it calculates the new weights
of the new feature according to the selectedFeatureIndex, shown in lines 4–22. After finishing the weight
update, the algorithm ends up in the δ of null value, and outputs the feature indexes of the new feature
set, selectedFeatureIndex, and the corresponding new feature weights, w.

4. Fine-Grained Classification of Encrypted Network Flows

This section proposes a fine-grained classification framework for encrypted traffic classification,
which includes network flow division, flow feature extraction, fined-grained label designation, model
training, and real-time classification. Based on this framework and the improved KNN algorithms
presented in Section 3, a new method is proposed to realize fine-grained classification of encrypted
network flows.

4.1. Description of Classification Framework

The main idea of the framework for fine-grained classification of encrypted network flows is to
train three classifiers using the hierarchical features and classes of sample traffic data and use them to
predict the fine-grained labels of real-time network flows. The framework is shown in Figure 2.
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Figure 2. Framework of fine-grained real-time classification for encrypted network flows.

The framework consists of two parts: offline training and online classification. The offline part
selects the hierarchical features and trains the corresponding feature weights of the three-layer model
on the basis of the WKNN-Selfada algorithm after the processe of flow division and class extraction.
The online part divides the flows from real-time traffic, extracts the flow features, and calculates the
fine-grained classification result on the basis of the training model. The classification model calculates
the point distances using the WKNN algorithm.

The key aspect of the framework is the fine-grained three-layer classifier model. The first layer is
the traffic encryption status identification layer, which is the basis of the entire framework. It identifies
an encrypted flow through the feature set of the encryption status. The identified encrypted flow then
undergoes fine-grained analysis, i.e., it enters the second and third layers of the model. The second
layer is the application identification layer for encrypted flows. The feature set of application type
is used to identify the application to which the encrypted network flow belongs. The third layer is
the content type identification layer. The feature set of content type is used to identify the content
type (such as files, simple communication messages, audio and video communication, or multimedia
streams) transmitted by the encrypted application flow, which undergoes further fine-grained analysis
for the encrypted flow.

Combining with the analysis of the correlations of the fine-grained results and the secure rules,
a more effective network defense would be implemented. For example, a malicious flow simulated as
the YouTube flow, is detected as a YouTube and file flow by the framework. If we just analyze a single
attribute value of the flow, e.g., YouTube or file, the malicious flow would be regarded as normal flow,
which would cause damage to the network. However, if we analyze the correlations of the attributes
and match the secure rule such as “If a YouTube flow is a file flow, the flow is suspicious.”, the malicious
flow would attract the network manager’s attention and further be prevented from damage.

4.2. Design of Candidate Feature Set

The hierarchical feature set of the framework is based on the feature selection part of the
WKNN-Selfada algorithm, which selects features from the candidate feature set shown in Table 1. In the
field of traffic classification, traffic features can be classified as packet features and flow features. Packet
feature extraction is relatively simple and efficient, but its classification accuracy is low. Furthermore,
the analysis of flow features is complicated. However, as network flows can be regarded as basic
units of network behavior between pair-wise subjects, the analysis based on flow features is more
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comprehensive in the area of network traffic and it achieves higher classification accuracy. The definition
of network flow is as follows. In this paper, flow refers to bilateral flow unless otherwise specified.

Table 1. Description of candidate flow feature set.

Feature Calculation Formula

1 Minimum of packet inter-arrival time iat_min = min(iat[])
2 Maximum of packet inter-arrival time iat_max = max(iat[])
3 Mean of packet inter-arrival time iat_mean = mean(iat[])
4 Standard deviation of packet inter-arrival time iat_std = std(iat[])
5 Minimum of IP packet bytes byte_min = min(byte[])
6 Minimum of IP packet bytes byte_max = max(byte[])
7 Mean of IP packet bytes byte_mean = mean(byte[])
8 Standard deviation of IP packet bytes byte_std = std(byte[])

9 Number of IP packet bytes per second byte_psec =
∑n

i=1 byte[i]∑n
i=1 iat[i]

10 Number of packets per second pac_psec = n∑n
i=1 iat[i]

11 Minimum of forward packet inter-arrival time
fiat_min = min(fiat[]),
fiat =

{
iatsd[i]

∣∣∣d[i] == 0
}
[]

12 Maximum of forward packet inter-arrival time fiat_max = max(fiat[])
13 Mean of forward packet inter-arrival time fiat_mean = mean(fiat[])
14 Standard deviation of forward packet inter-arrival time fiat_std = std(fiat[])

15 Minimum of IP packet bytes of forward packets
fbyte_min = min(fbyte[]),
fbyte =

{
byte[i]

∣∣∣d[i] == 0
}
[]

16 Minimum of IP packet bytes of forward packets fbyte_max = max(fbyte[])
17 Mean of IP packet bytes of forward packets fbyte_mean = mean(fbyte[])
18 Standard deviation of IP packet bytes of forward packets fbyte_std = std(fbyte[])

19 Number of IP packet bytes of forward packets per second fbyte_psec =
∑n f p

i=1 f byte[i]∑n f p
i=1 f iat[i]

20 Number of forward packets per second fpac_psec =
n f p∑n f p

i=1 f iat[i]

21 Minimum of backward packet inter-arrival time
biat_min = min(biat[]),
biat =

{
iatsd[i]

∣∣∣d[i] == 1
}
[]

22 Maximum of backward packet inter-arrival time biat_max = max(biat[])
23 Mean of backward packet inter-arrival time biat_mean = mean(biat[])
24 Standard deviation of backward packet inter-arrival time biat_std = std(biat[])

25 Minimum of IP packet bytes of backward packets
bbyte_min = min(bbyte[]),
bbyte =

{
bbyte[i]

∣∣∣d[i] == 1
}
[]

26 Minimum of IP packet bytes of backward packets bbyte_max = max(bbyte[])
27 Mean of IP packet bytes of backward packets bbyte_mean = mean(bbyte[])
28 Standard deviation of IP packet bytes of backward packets bbyte_std = std(bbyte[])

29 Number of IP packet bytes of backward packets per second bbyte_psec =
∑nbp

i=1 bbyte[i]∑nbp
i=1 f iat[i]

30 Number of backward packets per second bpac_psec =
nbp∑nbp

i=1 f iat[i]

31 Number of forward packets for the first 10 packets n(10)
fp =

10∑
i=1

(1 if d[i]== 0 else 0)

32 Number of backward packets for the first 10 packets n(10)
bp =

10∑
i=1

(1 if d[i]== 1 else 0)

33 Number of forward packets for the first 60 packets n(60)
fp =

10∑
i=1

(1 if d[i]== 0 else 0)

34 Number of backward packets for the first 60 packets n(60)
bp =

10∑
i=1

(1 if d[i]== 1 else 0)

35 Ratio of the number of backward packets to forward
packets for the first 10 packets rp

(10) =
n(10)

bp

n(10)
fp

36 Ratio of the number of backward packets to forward
packets for the first 60 packets rp

(60) =
n(60)

bp

n(60)
fp
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Definition 4 (Network flow). Network flow is a set of packets with the same five-tuple (source IP, destination
IP, source port, destination port, transport protocol) in the same network in a certain period of time.

Definition 5 (Bilateral flow). Bilateral flow is a pair of flows having symmetrical source IP, source port,
destination IP, and destination port in the same network in a certain period of time.

In the previous studies, static features such as IP, port number, and TCP (Transmission Control
Protocol) flags were used as part of the feature set [67], which reduces the robustness of the classification
model. When the model is trained with the traffic of a certain network, it will not perform well
on another network or in another period of the network. Considering portability and robustness
for encrypted traffic classification, this study extracts only spatio-temporal statistical flow features,
including the interval of packets, bytes of packets, count of packets, ratio of packets, and velocity of flow,
instead of static features. These features are extracted from two directions of the entire flow (forward
and backward) and four statistical dimensions (minimum, maximum, mean, and standard deviation).
Table 1 shows that functions of min(), max(), mean() and std() are to obtain the minimum, maximum,
average and standard deviation value of the array, respectively. byte[] is an array of the number of
IP packet bytes, where byte[i] means the length of the ith IP packet bytes. iat[] is an array of interval
arrival time between the two adjacent packets, where iat[i] means the time interval between the ith
packet and the i+1th packet. iatsd[] is an array of the inter-arrival time of packets in the same direction.
d[] is an array of the directions of packets. n, n f p, nbp are the number of the all packets, forward packets
and backward packets in a flow, respectively, where the maximum is 60. Because the extracted flow
features are based on the first 60 packets of a flow at most, it decreases the calculation cost.

It is worth noting that when selecting the candidate feature set, this study adds the number and
the proportion of packets from different directions of the first 10 or 60 packets of one flow as features,
as indicated in features of 31–36. The first several packets of one flow always represent the important
interaction or negotiation between the two hosts, which indicates the key characteristics of the traffic.
Using these features can improve the accuracy of network traffic identification. The experiments in
this study also prove that these features play a significant role in application type and content type
identification for encrypted network flows.

4.3. Fine-Grained Classification Method

Based on the developed framework and the WKNN algorithm, this section proposes a fine-grained
classification method for encrypted traffic on the basis of the improved KNN algorithm (FCE-KNN),
which is shown in Algorithm 3. FCE-KNN includes two parts: model training and real-time
classification. Furthermore, several definitions related to the algorithm are given below.

Definition 6 (FCE flow label). The label of the network flow in each layer of the fine-grained framework is
called the FCE flow label. The ith layer label value of flow is Li( f low).

Definition 7 (FCE feature index). After training and selection, the feature indexes set used for real-time
classification in the framework are denoted by FI.

Lines 1–5 are the offline model training part of FCE-KNN, which is based on the WKNN-Selfada
algorithm. It sets the ratio of data division raDiv to 9, which means that the algorithm uses 90% of the
training samples as the decision-sample set and the remaining 10% as the weight-update set in each
training round. As the value of nRound does not exceed the ratio range from the size of the complete
set to the size of the weights update training set, the model can avoid overfitting as much as possible.
Overfitting is one of the main problems in machine learning. It means that the model completely learns
the characteristics of the training data, but cannot generalize the laws in other data. Because of the
right setting of nRound and raDiv, each training data would not be reused as a weight update sample
and the characteristics of each weight update sample would just be learned once. Thus, it avoids the
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over-learning situation that the model learns the characteristics of the same training data repeatedly,
which may lead to difficulties of model generalization. Data normalization is a useful means to process
data and is able to speed up the model training. In this paper, for a certain feature dimension, the new

feature value of the ith data is given by xi
′ =

xi−µ(x)
σ(x) , where xi is the old feature value; µ(x) is the mean;

σ(x) is the standard derivation; and x′i is the new feature value.

Algorithm 3: FCE-KNN

As shown in lines 3–5, the training part calculates the selected feature sets and feature weight sets
of the sub-classifier models on the basis of the WKNN-Selfada algorithm. As for the parameters, k1, k2,
k3; nRound1, nRound2, nRound3; and δ1, δ2, δ3 are the values of k, nRound and δ of the WKNN-Selfada
algorithm implemented in each layer classification task, respectively. Furthermore, trainFlows represents
the flow features of the training samples after data normalization, while enTrainFlows represents the
encrypted flow data of trainFlows. The sets of FI1, FI2 and FI3 are the selected feature index, while
w(1), w(2) and w(3) are the feature weight sets after training.

When the training phase ends, all the sample data will be used as the decision samples in the
online phase to calculate the point distance from the test point and determine its class.

Lines 6–22 are the real-time classification part of FCE-KNN, including real-time network flow
mapping, flow feature real-time update, and flow label calculation based on WKNN. The model first
extracts the five-tuple information, packet length, and timestamp of every online packet. The five-tuple
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is used to map the online packet to a certain flow, Flow(i), and the length of Flow(i) is increased by
1. The function featureUpdate() implements flow feature real-time update for Flow(i) on the basis
of the length of the packet, len(packet), and the timestamp, t(packet). As FCE-KNN extracts flow
features from only the first 60 packets of each flow, the algorithm first judges whether the packet
number of the flow reaches 60 in each instance. If the number does not exceed 60, the algorithm will
use len(packet) and t(packet) of the processing packet to implement the flow feature update. Then,
the algorithm will judge whether the packet number of the flow exceeds 60 or whether the flow
is over. If so, the algorithm enters the label calculation part, as shown in lines 13–20. In this part,
feature data normalization is the first operation to be implemented. Then, according to the selected
feature index sets, trainFlows1, entrainFlows2 and entrainFlows3 are extracted as the training data for
the different sub-models classification of the new flow, respectively. Similarly, Flow(i)

1 , Flow(i)
2 , Flow(i)

3
are the extracted features of the target data, respectively. The first sub-classifier is used to identify the
encryption status, i.e., L1(Flow(i)). If it is an encrypted flow, the second and third sub-classifiers are
used to identify the application type L2(Flow(i)) and content type L3(Flow(i)), respectively. Finally, the
algorithm outputs the fine-grained classification result. Note that if the classification result of the first
sub-classifier is non-encrypted, the algorithm will directly output this classification result.

5. Experiments and Evaluation

This section describes experiments based on the FCE-KNN method and compares the fine-grained
classification performance of FCE-KNN with that of other, similar algorithms.

5.1. Setup

The experimental platform was an MSI GT63 laptop with a six-core central processing unit (CPU,
Intel Core i7-8750; 2.2 GHz) and 16 GB RAM. Experiments were performed on the public dataset ISCX
VPN-nonVPN [16]. The public dataset used in this paper was captured in in-network routers, which
was a representative dataset of real-world traffic generated by ISCX. The data in the dataset were raw
traffic, without any preprocessing. The algorithms were implemented in Python.

The model needs to perform fine-grained analysis of application type and content type for
encrypted traffic, and only the ISCX VPN-nonVPN dataset can meet the experimental requirements
of this study on public datasets. Therefore, experiments were performed only on this dataset. The
size of the ISCX VPN-nonVPN dataset is 25 GB, of which 22.8 G is plaintext traffic and the remaining
2.4 GB is encrypted traffic generated using VPN. The dataset contains 280,540 flows, of which 18,468
are ciphertext flows and 262,072 are plaintext flows, including 14 types of applications, covering a wide
range of applications as well as multiple content types. Therefore, we used this dataset in our study.

To meet the experimental requirements, we added fine-grained classes for flows based on the
dataset, so that the dataset can be used in the experiments. After class adjustment, each flow contains
three classes (encryption status, application type, content type). The number of flows with different
classes was summarized in Table 2. Note that in the classification tasks of the second and third layers,
FCE-KNN only analyzes encrypted flows. The application label types include AIM (AmericanOnline
Instant Messenger), ICQ (I Seek You, one of the message software), VoipBuster (one of the voice
communication software), Spotify (one of the music service software), Hangouts (one of the message
software), Youtube (one of the video communication software), SFTP (SSH File Transfer Protocol),
Email, FTPS (File Transfer Protocol over SSL (Secure Sockets Layer)), Facebook (one of the message
software), BitTorrent (one of the file transfer software), Netflix (one of the video communication
software), Skype (one of the message software) and Vimeo (one of the message software). The content
label types include chat, VoIP, file and streaming.
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Table 2. Flow labels and number of flows used in the experiments.

Label Type Label Name and Number

Encryption Status Encrypted
(18468)

Non-Encrypted
(262072)

Application type
(Encrypted flows)

AIM (32) Email (298)
ICQ (31) FTPS (125)

VoipBuster (1618) Facebook (2494)
Spotify (137) BitTorrent (477)

Hangouts (10871) Netflix (173)
YouTube (213) Skype (1835)

SFTP (28) Vimeo (136)

Content type
(Encrypted flows)

Chat (4327) File (1497)
VoIP (11,985) Streaming (659)

To test the performance of FCE-KNN, the dataset was divided into a train-validation set and test set.
The test set was only used for the final performance test of the model. Meeting the need of parameters’
validation, 10-fold cross-validation was used to improve the utilization of the train-validation set.
To satisfy the requirement for the algorithms, the model training data of the train-validation set was
further divided into a decision samples set and a weights update set in each fold of cross-validation.
The details of the data division is shown in Figure 3.

Figure 3. Dataset division in experiments.

Although we have said that the analysis of the fine-grained classification of encrypted flows can
be used for anomaly detection, we did not evaluate the performance. On the one hand, the main
proposal of our research is to analyze encrypted network flows, but not to detect malicious flows,
so we had not considered evaluating the anomaly detection effect of the presented method. On the
other hand, anomaly detection based on the analysis of correlations between the flow attributes is a
little subjective. There is not a suitable public dataset that can be used, and if we create a dataset that
regards some flows with specific application and content to be malicious according to our judgement,
and evaluate the presented method on this dataset, the results make no sense. This is because the
malicious flows are designed by ourselves and we know the rules of anomaly in advance. Therefore,
testing the performance of identifying the application and content type of encrypted flows is a more
essential, useful and effective evaluation. As long as we identify the fine-grained attributes of the
network flows, we can easily find out the malicious flows with strange combinations of application
type and content type according to the network security rules.

5.2. Metric

The following metrics were used to evaluate the classification effect: Accuracy, Precision, Recall,
and F1-Score. The metrics are defined as: Accuracy = TPi

TPi+FNi
, Precision = TPi

TPi+FPi
, Recall = TPi

TPi+FNi
and

F1− score = 2·Precision·Recall
Precision·Recall . Among them, TPi is the number of ith type flows that are correctly classified,

FPi is the number of not ith type flows that are misclassified as ith type flows, and FNi is the number of
ith type flows that are misclassified as not ith type flows. In the first-layer classification, which was a
two-class task, the types of flows are encrypted and non-encrypted. In the second and third layers of
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classifications, i.e., multi-class tasks, the types of flows are different application (content), e.g., FTPS,
Email etc. (Chat, File etc.).

5.3. Experiments and Results

Some important parameters of FCE-KNN are k, nRound, and δ. This section discusses the
classification performance analysis of FCE-KNN and evaluates the optimal values of the parameters.
According to the three classification layers in FCE-KNN, this section is divided into three subsections,
including analyzing the performance of FCE-KNN in identifying the encryption status, application
type, and content type of encrypted flows, respectively. The four state-of-the-art methods, including
DTW-KNN (Dynamic Time warping based on KNN) [53], C4.5 (one of the decision trees) [16], ADA
(ADAboost, one of the ensemble method) [32] and AISVM (Incremental Support Machine with
Attenuation factor) [31] are compared with FCE-KNN. DTW-KNN [53] is a variant KNN, which is
based on the optimization problem, dynamic time warping, with the minimum cumulative distance
when the two templates are matching. ADA [32] is an ensemble machine learning algorithm, adaboost,
which is an ensemble classifier with multiple simple C4.5. C4.5 [16] is one of the widely used decision
tree algorithm. AISVM [31] isa modified version of the incremental support vector machine (ISVM),
which introduces attenuation factor and improves accuracy. All the algorithms in comparison are
network traffic-classification methods based on modified versions of machine-learning algorithms.
Neural networks are also widely used in traffic classification, but they need large amount of training
data, which make no sense in evaluation with a small training set.

5.3.1. Identification of Encryption Status of Network Flows

This section verifies the performance of FCE-KNN in identifying the flow encryption status, i.e.,
whether a flow is an encrypted flow or not.

The optimal parameter values were first analyzed. As shown in Figure 4a, k1 is most likely
to obtain an optimal value between 1 and 21. As shown in Figure 4b, when k1 is 5, the accuracy
reaches the highest, which is 99.14%. The analysis of the optimal nRound1 value is shown in Figure 5a.
As nRound1 increases, the verification accuracy of the model changes accordingly. In the 3rd and
8th rounds, the testing accuracy reaches its highest value without over-fitting. Considering that the
three-round training requires a shorter training time, the best value for nRound1 is 3. The analysis of
the optimal δ1 value is shown in Figure 5b. When the value is 0.6 or 0.8, the accuracy of the model
is the highest, and as the value increases, the accuracy decreased significantly. Therefore, a value of
0.6–0.8 is relatively suitable. The experiment also outputs the feature weights in the feature selection
part of the model training, as shown in Figure 6, where the red line indicates the feature selection
threshold. It can be seen that the features of the packet interval and packet byte have a significant
impact on the classification. The trained model retains only around 1/3 of all the features, further
indicating that the reduction in traffic features can improve not only the efficiency of online feature
extraction but also the classification accuracy.
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Figure 4. Accuracy of fine-grained classification of encrypted network flows based on improved KNN
(FCE-KNN) for identifying encryption status of network flows with different values of k1: (a) k1 from 1
to 101, interval 10; (b) k1 from 1 to 20, interval 1.

Figure 5. Accuracy of FCE-KNN for identifying encryption status of network flows with different
values of nRound1 or δ1:(a): Accuracy under different nRound1; (b) Accuracy under different δ1.

Figure 6. Comparison of feature weights in the feature selection part of the model training for
identifying encryption status of network flows.
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In this section, two sub-experiments were implemented. The first one was to train a model on the
whole train-validation set and test the model on the test set. To verify the robustness of FCE-KNN for
flow encryption status identification, the other one was performed to test whether the model can deal
with the flows of an unknown application. In this experiment, assuming Hougout was an unknown
application, we used all the data except Hougout flows and the corresponding encryption status labels
to train a model, and tested the model on the all Hougout flows.

The parameter setting of FCE-KNN was as follows: k1 was set to 3, nRound1 was set to 3, and δ1 was
set to 0.6. As shown in Table 3, FCE-KNN exhibited the best performance. Although the performance
of FCE-KNN was not significantly better than that of the other algorithms, the precision and recall of
FCE-KNN were high in the case of unbalanced classes, which indicated that FCE-KNN was sensitive to
encrypted flows. Note that it was not easy to maintain high precision and high recall at the same time.
Thus, FCE-KNN has high adaptability to encrypted flows classification tasks. In addition, it performed
best at identifying the encryption status of the unknown application flows, showing the best robustness
of classification.

Table 3. Performance comparison between FCE-KNN and other algorithms for identifying the
encryption status of network flows.

Method
Test on Known-Application Flows Test on Unknown-Application Flows

Acc (%) Pre (%) Rec (%) F1 Acc (%) Pre (%) Rec (%) F1

FCE-KNN 99.34 98.56 91.31 0.94 99.30 99.37 94.69 0.96
DTW-KNN [53] 98.99 96.71 87.68 0.91 98.20 94.46 90.12 0.92

C4.5 [16] 98.99 98.12 86.27 0.91 98.96 99.67 91.51 0.95
ADA [32] 99.11 97.87 88.41 0.92 99.06 99.99 92.08 0.95

AISVM [31] 95.01 59.17 78.01 0.67 88.10 45.94 0.31 0

Acc is Accuracy; Pre is Precision of identification of encrypted flows; Rec is Recall of identification of encrypted
flows; F1 is F1-score of identification of encrypted flows.

5.3.2. Identification of Application Type of Encrypted Network Flows

This section tests the performance of FCE-KNN in the application type classification of encrypted
flows, i.e., what type of application is used. According to the dataset ISCX VPN-nonVPN, flows used
in the experiment involve 14 types of applications: AIM, BitTorrent, email, Facebook, FTPS, Hangouts,
ICQ, Netflix, SFTP, Skype, Spotify, Vimeo, VoipBuster, and YouTube.

First, paraments validation were implemented. As shown in Figure 7, the accuracy reaches
its maximum value when k2 is equal to 11, and as k2 increased, the accuracy gradually decreases.
When k2 is 8, the accuracy is the highest, which is 91.61%. The analysis of the optimal nRound2

value is shown in Figure 8a. As nRound2 increases, the validation accuracy of the model does not
change significantly. It can be seen that the feature weights have been trained to converge in the
first round; hence, the optimal value of nRound2 is 1. The analysis of the best δ2 value is shown in
Figure 8b. The model achieves the highest accuracy of 91.68% at a value of −0.2. As the value increases,
the accuracy decreases significantly. This is because there are only two or three features left in the
selected feature set, which degraded the classification performance severely. Figure 9 shows all the
feature weights in the feature selection part of the model training. The trained model retains only
around half of the features, and the feature of packet byte plays an important role in the application-type
identification of encrypted flows.
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Figure 7. Accuracy of FCE-KNN for identifying application types of encrypted flows with different
values of k2: (a) k2 from 1 to 101, interval 10; (b) k2 from 1 to 20, interval 1.

Figure 8. Accuracy of FCE-KNN for identifying application types of encrypted flows with different
values of nRound2 or δ2:(a): Accuracy under different nRound2; (b) Accuracy under different δ2.

Figure 9. Comparison of feature weights in the feature selection part of model training for identifying
application types of encrypted flows.

In this experiment, for the parameters of FCE-KNN, k2 was set to 8, nRound2 was set to 1, and δ2

was set to −0.2. As shown in Tables 4–7, FCE-KNN shows the best performance in the application
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type identification of encrypted flows and the highest accuracy among the five algorithms, with an
improvement of 2.4% over the second-ranked algorithm (DTW-KNN). AISVM performed well in
Section 5.3.1, but it did not seem to perform well in multi-class tasks. In most of the classes, FCE-KNN
has the highest Precision, Recall, and F1-score. Furthermore, we found that it was difficult to identify
the flows of AIM, ICQ, and SFTP, mainly because the amount of flows of these classes was too small
to train the model, whereas the number of training data of AIM, ICQ and SFTP were 24, 24 and 22,
respectively. Nevertheless, FCE-KNN could correctly classify some of them such as AIM and ICQ,
which performed better than other algorithms. Thus, FCE-KNN can rapidly adapt to the environment
in the condition of imbalanced classes and small training set. Furthermore, note that FCE-KNN has
the highest F1 scores in all the classes, which has fairly good stability, i.e., it balanced the precision
and recall.

Table 4. Accuracy comparison between FCE-KNN and other algorithms for identifying application
type of encrypted network flows.

Method Accuracy (%)

FCE-KNN 92.45
DTW-KNN [53] 90.06

C4.5 [16] 85.71
ADA [32] 89.77

AISVM [31] 67.65

Table 5. Precision comparison between FCE-KNN and other algorithms for identifying application
type of encrypted network flows.

Method
Precision (%)

AIM BitTorrent Email Facebook FTPS Hangouts ICQ

FCE-KNN 66.66 93.54 82.35 89.13 80.76 96.40 33.33
DTW-KNN [53] 0 86.95 78.18 86.91 45.71 95.78 0

C4.5 [16] 0 77.77 0 96.06 0 95.04 0
ADA [32] 0 85 87.5 82.79 84.61 95.39 0

AISVM [31] 0 0 0 0 0 72.02 0

Method
Precision (%)

Netflix SFTP Skype Spotify Vimeo VoipBuster YouTube

FCE-KNN 52.5 0 83.84 45.45 50 98.15 83.33
DTW-KNN [53] 29.41 0 76.22 35.29 60 98.70 70.73

C4.5 [16] 62.5 0 47.39 41.66 0 95.93 0
ADA [32] 59.25 0 72.41 57.14 32.60 97.22 80

AISVM [31] 0 0 28.69 0 0 84.59 0
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Table 6. Recall comparison between FCE-KNN and other algorithms for identifying application type
of encrypted network flows.

Method
Recall (%)

AIM BitTorrent Email Facebook FTPS Hangouts ICQ

FCE-KNN 33.33 91.57 93.33 87.17 84 97.33 16.66
DTW-KNN [53] 0 84.21 71.66 85.17 64 97.19 0

C4.5 [16] 0 66.31 0 73.34 0 96.27 0
ADA [32] 0 71.57 70 87.77 44 97.24 0

AISVM [31] 0 0 0 0 0 96.18 0

Method
Recall (%)

Netflix SFTP Skype Spotify Vimeo VoipBuster YouTube

FCE-KNN 60 0 82.01 37.03 59.25 98.45 69.76
DTW-KNN [53] 42.85 0 76.02 44.44 33.33 94.44 67.44

C4.5 [16] 14.28 0 89.10 18.51 0 94.75 0
ADA [32] 45.71 0 74.38 29.62 55.55 97.22 37.20

AISVM [31] 0 0 34.87 0 0 86.41 0

Table 7. F1-score comparison of FCE-KNN for identifying application type of encrypted network flows
with other algorithms.

Method
F1-Score

Aim Bittorrent Email Facebook Ftps Hangouts Icq

FCE-KNN 0.44 0.92 0.87 0.88 0.82 0.96 0.22
DTW-KNN [53] 0 0.85 0.74 0.86 0.53 0.96 0

C4.5 [16] 0 0.71 0 0.83 0 0.95 0
ADA [32] 0 0.77 0.77 0.85 0.57 0.96 0

AISVM [31] 0 0 0 0 0 0.83 0

Method
F1-Score

Netflix Sftp Skype Spotify Vimeo Voipbuster Youtube

FCE-KNN 0.56 0 0.82 0.40 0.54 0.98 0.75
DTW-KNN [53] 0.34 0 0.76 0.39 0.42 0.96 0.69

C4.5 [16] 0.23 0 0.61 0.25 0 0.95 0
ADA [32] 0.51 0 0.73 0.39 0.41 0.97 0.50

AISVM [31] 0 0 0.31 0 0 0.85 0

5.3.3. Identification of Content Type of Encrypted Network Flows

This section tests the performance of FCE-KNN in identifying the content type of encrypted flows,
i.e., what type of content is carried by the encrypted flows. According to the public dataset ISCX
VPN-nonVPN and subsequent manual marking, the flows used in the experiment include four types
of content: chat, file, VoIP, and streaming.

First, paraments validation were implemented. As shown in Figure 10, the accuracy reaches its
maximum value when k3 is equal to 11, and as k3 increases, the accuracy gradually decreases. When k3

is 1, the accuracy is the highest, which is 96.67%. The analysis of the optimal nRound3 value is shown
in Figure 11a. As nRound3 increases, the accuracy of the model does not change significantly. It can be
seen that feature weights have been trained to converge in the first round; hence, the optimal value of
nRound3 is 1. The analysis of the best δ3 value is shown in Figure 11b. The model has the highest testing
accuracy when δ3 is 0, where the feature selection threshold is the mean of all the feature weights.
Figure 12 shows all the feature weights in the feature selection part of the model training. The trained
model retains only around half of the features, and the features of packet interval and packet byte have
significant influence on the model classification.
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Figure 10. Accuracy of FCE-KNN for identifying content type of encrypted flows with different values
of k3: (a) k3 from 1 to 101, interval 10; (b) k3 from 1 to 20, interval 1.

Figure 11. Accuracy of FCE-KNN for identifying content type of encrypted flows with different values
of nRound3 or δ3: (a) Accuracy under different nRound3; (b) Accuracy under different δ3.

Figure 12. Comparison of feature weights in the feature selection part of model training for identifying
content type of encrypted flows.
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The performances of FCE-KNN and the other algorithms are summarized in Tables 8 and 9.
The parameter setting of FCE-KNN was as follows: k3 was set to 1, nRound3 was set to 1, and δ3 was set
to 0. It can be seen that the FCE-KNN also has the highest accuracy in the content type identification of
encrypted flows, with an improvement of 2.7% over the second-ranked algorithm (ADA), and it has
the highest F1-score in all the classes, indicating that FCE-KNN has high adaptability in identifying the
content type of encrypted flows. Note that for the prediction of streaming flows, the performance of
other algorithms are obviously lower than FCE-KNN by approximately 10%. The reason may be that
the streaming flows does not have strong regularity, suggesting that FCE-KNN has excellent learning
ability even if the data do not have strong regularity.

Table 8. Accuracy comparison between FCE-KNN and other algorithms for identifying content type of
encrypted network flows.

Method Accuracy (%)

FCE-KNN 97.02
DTW-KNN [53] 94.50

C4.5 [16] 92.69
ADA [32] 95.37

AISVM [31] 66.00

Table 9. Performance comparison between FCE-KNN and other algorithms for identifying content
type of encrypted network flows.

Method
Chat File Streaming VoIP

P(%) R(%) F1 P(%) R(%) F1 P(%) R(%) F1 P(%) R(%) F1

FCE-KNN 95.78 96.99 0.96 88.85 90.63 0.89 91.72 92.42 0.92 98.82 98.08 0.98
DTW-KNN [53] 93.68 94.22 0.93 82.43 81.60 0.82 80.62 78.78 0.79 97.03 97.07 0.97

C4.5 [16] 97.64 91.10 0.94 64.10 83.61 0.72 82.14 52.27 0.63 96.01 96.62 0.96
ADA [32] 97.04 94.80 0.95 80.93 80.93 0.80 83.33 75.75 0.79 97.15 98.45 0.97

AISVM [31] 0 0 0 50.30 27.42 0.35 0 0 0 66.74 98.28 0.79

P is Precision; R is Recall; F1 is F1-score.

5.4. Analysis of Time Complexity and Consumption

It is important to analyze the complexity and time consumption of an algorithm.
Low time-consumption is a significant requirement for real-time classification. FCE-KNN consists
of WKNN and WKNN-Selfada algorithms. We first analyzed the time complexity of the algorithms.
For WKNN, to predict the label of the test point, the algorithm will calculate the point distance between
the test point and each decision training sample, so the time complexity is O(m) ≈ O(n), where m
is the size of the decision sample set, and n is the size of the whole training set. For WKNN-Selfada,
to select the features and obtain the corresponding feature weights, the algorithm will first calculate
the point distance between the each weight’s update sample and each decision training sample,
so the time complexity is O(m ·(n − m)) ≈ O(n2

)
, where n − m is the size of the weights update

set. Accordingly, the training time complexity of FCE-KNN is O(n2
)
, and the test time complexity is

O(n). In addition, the training time complexities of DTW-KNN, C4.5, ADA and AISVM are O(n2
)
,

O(log(n) ·n), O(log(n) ·n·k), O(n2
)
, respectively, and the test time complexities are O(n), O(d), O(d ·k),

O(s), respectively, where k is the number of trees, d is the depth of the trees, and s is the number of the
support vectors.

Then the actual time consumption is analyzed, as shown in Table 10. The training numbers
of the flows in the experiments of the three layers are 224,432; 14,774; and 14,774, respectively.
The test numbers of the flows in the experiments of the three layers are 26,108; 3694; and 3694,
respectively. The sizes of the selected feature sets of the three layers are 12, 19, 18. It could be seen
that the time consumptions of FCE-KNN are a little high, just lower than ADA and AISVM. It is
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possible that FCE-KNN processes the feature selection and feature weights calculation, which is more
time-consuming than traditional KNN. It is also because the algorithm learns the characteristics from
each sample completely, consuming more time to train on a single sample. Thus, the total time
consumption is a little higher than similar algorithms.

Table 10. Time consumption comparison between FCE-KNN and other algorithms in the framework of
fine-grained classification (s).

Method
Training Testing

1st Layer 2nd Layer 3rd Layer 1st Layer 2nd Layer 3rd Layer

FCE-KNN 116.33 0.31 0.25 16.98 0.22 0.22
DTW-KNN [53] 77.15 0.20 0.17 15.71 0.20 0.19

C4.5 [16] 0.98 0.04 0.04 0.01 0.01 0.01
ADA [32] 206.93 10.75 9.45 0.73 0.15 0.07

AISVM [31] 1595.10 9.75 10.00 67.51 1.61 1.41

5.5. Discussion

It can be seen from the experimental results in Section 5.3 that FCE-KNN is not sensitive to the k
value. FCE-KNN overcomes the drawbacks of the traditional KNN algorithm, i.e., it is more robust and
shows better performance. Furthermore, FCE-KNN is not sensitive to nRound. This may be because the
weight update samples are sufficient and the feature weights converge after the first round of training.
For the threshold δ used for feature selection, the performance is stable before reaching the optimum
value, and the accuracy of the model will decrease rapidly after a certain peak value. This may be
because the size of the selected feature set will be extremely small, and there may be only two or three
features when the value is large. From the curve of δ, we can conclude that for traffic classification
the feature set should not be as large as possible; redundant features may degrade the classification
performance owing to the weak correlation with the classification target.

The performance of FCE-KNN is not always optimal in all the experiments. Although,
the performance is not the best in a few cases of identification of a single class, the F1 scores
are the highest in all the classes, indicating that FCE-KNN is a highly balanced algorithm with both
high precision and high recall. Moreover, FCE-KNN has high practicability as it can identify the
encryption status of unknown applications. In the experiments described in Sections 5.3.2 and 5.3.3,
FCE-KNN shows better performance than the other algorithms in the case of class imbalance, such
as small amounts of ICQ, AIM, and Netflix flows in the task for identifying the application type
of encrypted flows. For example, under the situation that the number of AIM flows was 32, the
precision of FCE-KNN was 66%, while other algorithms were 0. To some extent, FCE-KNN alleviates
the problem of class imbalance and small training set and shows strong adaptability to actual traffic
environments. From the experimental results, it is seen that FCE-KNN performs better than those
algorithms because different features have different influences upon different classification tasks and the
presented algorithm has expressed the different influences by introducing feature weights self-adapting
adjustment. It is proved that the thought of feature selection and feature weights self-adaption are
effective and feasible.

As for the fact that FCE-KNN can train an accurate model with a small training set, we can
evaluate this from two perspectives. On the one hand, the WKNN-Selfada algorithm selectes features
by comparing the trained feature weights, and the feature weights are updated by a single training
sample each time, not a batch. So it could fully learn the characteristics of each sample and train an
accurate model just by using a small training set. This means that the algorithm adjusts the feature
weights on each sample. In other words, every sample is beneficial and useful for the model training,
which is different from some algorithms in which the model is trained on some special samples. On the
other hand, in the experiments of identification of application type and content type of network flows,
the number of some flows is very small, such as AIM, ICQ, FTPS, of which the numbers are 32, 31, 125,
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respectively. For those flows with a small amount, FCE-KNN shows obvious superiority comparing
with other algorithms, which proves that FCE-KNN is able to train a model in the case of a small
training set.

However, time consumption of FCE-KNN is a little higher than the other algorithms, which
means more good hardware is required to achieve real-time classification. Owing to processes of
feature selection and feature weights self-adaption, the time consumption of model training is high,
but this did not affect the real-time processing. The feature extraction and distance calculation can be
incrementally updated, where the raw packets do not need to be stored and the packet data can just be
processed once. To sum up, FCE-KNN improves the traditional KNN algorithm and performs better
than similar algorithms in accuracy, while it is a little time-consuming.

6. Conclusions

This study improves the traditional KNN algorithm and adopts it for the fine-grained classification
of encrypted network flows. The experimental results verify the feasibility of the improved algorithm,
which not only outperforms the traditional KNN algorithm but also shows stronger stability and higher
performance than other similar methods. Furthermore, feature selection based on feature weights and
point distance calculation is shown to be effective. The proposed WKNN-Selfada algorithm can be
applied to actual traffic environments after it is trained to learn the laws of network flows.

However, this study still has the following limitations. FCE-KNN is dependent on training samples
and it is more time-consuming than other algorithms such as decision trees. Therefore, in the future,
we will try to exploit other machine-learning algorithms or establish a hybrid model that combines the
advantages of different methods, and apply them to the fine-grained classification framework.
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