
electronics

Article

Efficient Systolic-Array Redundancy Architecture for
Offline/Online Repair

Keewon Cho 1, Ingeol Lee 2, Hyeonchan Lim 1 and Sungho Kang 1,*
1 Department of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Korea;

ckw1505@soc.yonsei.ac.kr (K.C.); lhcy92@soc.yonsei.ac.kr (H.L.)
2 Design Technology Team, Samsung Electronics CO., Ltd., Hwaseong-Si 445-330, Korea;

ingeol99.lee@samsung.com
* Correspondence: shkang@yonsei.ac.kr; Tel.: +82-2-2123-2775

Received: 22 January 2020; Accepted: 13 February 2020; Published: 15 February 2020
����������
�������

Abstract: Neural-network computing has revolutionized the field of machine learning. The systolic-
array architecture is a widely used architecture for neural-network computing acceleration that was
adopted by Google in its Tensor Processing Unit (TPU). To ensure the correct operation of the neural
network, the reliability of the systolic-array architecture should be guaranteed. This paper proposes
an efficient systolic-array redundancy architecture that is based on systolic-array partitioning and
rearranging connections of the systolic-array elements. The proposed architecture allows both offline
and online repair with an extended redundancy architecture and programmable fuses and can
ensure reliability even in an online situation, for which the previous fault-tolerant schemes have not
been considered.

Keywords: offline repair; online repair; parallel processing; redundancy; systolic-arrays

1. Introduction

In the past few years, convolutional neural networks (CNNs) have outperformed traditional
machine-learning algorithms. Thus, CNNs are considered state-of-the-art for a wide range of
applications, such as image and video recognition [1], text classification [2], and language translation [3].
These neural networks are traditionally operated on central processing units (CPUs), graphics processing
units (GPUs), and field-programmable gate arrays (FPGAs) [4], which can be easily adapted to new
network architectures. However, to train and execute a CNN, millions of parameters must be taken into
consideration, making the construction of neural networks expensive. Several hardware techniques
have been developed for accelerating such machine-learning algorithms. In recent years, neural-network
accelerator design has been a topic of enormous interest in the computer architecture industry.

A systolic-array is a homogeneous grid of processing elements (PEs), which are small processors,
with each element connected only to its neighbors [5]. During its operation, a PE reads data from
its neighbors, computes a simple multiplication function, and stores the result in its local memory.
Recently, Google developed a Tensor Processing Unit (TPU) that uses a 256 × 256 systolic-array of
multiply and accumulate (MAC) units at its core and provides 30–80 times higher performance than
CPU- or GPU-based servers [6].

However, if faults occur in some PEs, such as manufacturing problems, this computing architecture
in the form of a systolic-array can yield erroneous results. Although neural-network application
has a fault-tolerance capability, reliability issues still exist, because a single hardware fault affects all
operations of the neural-network application. Besides, post-manufacturing failures may cause the
additional erroneous results during the normal operation. Therefore, there is a need for an architecture
that can guarantee the reliability of the systolic-array architecture. In this point of view, the proposed

Electronics 2020, 9, 338; doi:10.3390/electronics9020338 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/2079-9292/9/2/338?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9020338
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 338 2 of 14

idea is the best fit for the CNN applications for high reliability. For example, machine learning
solutions in the automotive vehicle industry needs high reliability in sensor fusion, mapping, and path
planning [7–9].

In general, if a single core has faults, it can be replaced by a redundant core. However, in the
conventional multicore CPU architecture, designing a redundancy core is considered inefficient,
because each redundant CPU has a very large area overhead. However, application-specific accelerator
processors, such as neural-network accelerators, are composed of at least several hundreds to tens
of thousands of cores. Owing to this structural characteristic, it can be expected that design of the
redundancy of the systolic MAC array incurs a reasonable area overhead compared with the design of
the redundancy of the multicore CPU architecture.

The redundancy architecture of the systolic MAC array is configured differently from general
redundancy structures, such as through-silicon via (TSV) redundancy and input/output (IO) redundancy
structures. In the case of TSV and IO redundancy, rerouting to the redundancy is relatively easy
because the signal is connected between only one input and one output. However, in the systolic-array
architecture, as there are a large number of connections from one MAC core to other adjacent MAC
cores, various routing possibilities should be considered for obtaining the correct calculation results
after repair.

In this research, an efficient redundancy architecture for a systolic MAC array is proposed.
The proposed method involves offline repair, which is conducted during a manufacturing test by using
the additional redundant MACs. Online repair is also performed by using the remaining redundant
MACs that are not used in the offline repair. In order to utilize the repair information in the offline
repair process, programmable fuses, which are widely used in the memory repair, are adopted in
the proposed method. Unlike the previous works, the offline repair process focuses not only the
reparability, but also the fault tolerance for online repair. By doing so, the proposed method improves
the reliability in the offline and online statuses and requires a small area overhead since the additional
redundancies can be used for both repairs. The proposed method provides not only the improved
yield and reliability but also the cost-effective design while requiring no drastic change in the IC
manufacturing stage.

The remainder of this paper is organized as follows. In Section 2, we review the previous work
related to the systolic MAC array and its redundancy architecture. Section 3 presents the proposed
redundancy architecture and the basic concept of the proposed repair mechanism. Section 4 presents
the experimental results indicating the performance of the proposed architecture with regard to the
repair rate and hardware overhead. Finally, Section 5 concludes the paper.

2. Previous Works

In this section, the systolic-array architecture and its fault-tolerance schemes, which were previously
proposed, are described.

2.1. Systolic-Array Architecture

Because matrix multiplication and convolution operations are independent for each piece of data,
the calculations are optimized using parallel processing with as many processors as possible. However,
if the number of processors exceeds several thousand, interconnection problems that transfer data
from the memory increase rapidly. To solve these problems, a systolic-array structure was introduced
in [5], as shown in Figure 1a.

In the systolic-array architecture, a MAC unit, which enables MAC functions, is used [10].
The MAC unit performs multiplication and accumulation processes repeatedly to perform continuous
and complex operations in digital signal processing. A basic MAC architecture is illustrated in Figure 1b.
In neural-network calculations, the convolution-layer operation accounts for most of the computation
time. Therefore, by adopting this systolic-array structure, matrix multiplication and convolution
calculations can be accelerated.

Electronics 2020, 9, 338 3 of 14
Electronics 2020, 2, x FOR PEER REVIEW 3 of 14

(a)

(b)

Figure 1. Neural computing unit structure for calculating N × N matrix multiplication: (a) Systolic-

array neural computing unit; (b) Conventional MAC architecture.

2.2. Previous Fault Repair Systolic-Array Designs

Fault-tolerant systolic-array designs were proposed by Kung et al. [11] and were later improved

[12]. The basic concept of these schemes is considering the array as a small systolic-array when faulty

MACs are detected in the array.

Figure 2a shows the redundant MAC architecture for repairing a faulty MAC processor. MAC

processors are arranged in a 4 × 4 systolic-array, and redundant MAC processors are placed at the

end of each row. These redundant MAC processors can serve as substitutes when a fault occurs in

each row. Furthermore, to replace the faulty MAC with the redundant MAC, the signal should be

rerouted so that several MUXs are used.

(a)

(b)

Figure 2. Previous systolic-array redundant architecture [12]: (a) Overview; (b) Repair example.

An example of a repair process in this redundancy architecture is presented in Figure 2b.

According to the characteristics of the systolic-array, if MAC unit C11 has a defect, for normal

operation, the role of the faulty core is performed by C12, and the role of C12 is performed by C13.

Finally, a redundant core R1 performs the role of C13. Through this process, the repair process is

Figure 1. Neural computing unit structure for calculating N×N matrix multiplication: (a) Systolic-array
neural computing unit; (b) Conventional MAC architecture.

2.2. Previous Fault Repair Systolic-Array Designs

Fault-tolerant systolic-array designs were proposed by Kung et al. [11] and were later improved [12].
The basic concept of these schemes is considering the array as a small systolic-array when faulty MACs
are detected in the array.

Figure 2a shows the redundant MAC architecture for repairing a faulty MAC processor.
MAC processors are arranged in a 4 × 4 systolic-array, and redundant MAC processors are placed at
the end of each row. These redundant MAC processors can serve as substitutes when a fault occurs
in each row. Furthermore, to replace the faulty MAC with the redundant MAC, the signal should be
rerouted so that several MUXs are used.

Electronics 2020, 2, x FOR PEER REVIEW 3 of 14

(a)

(b)

Figure 1. Neural computing unit structure for calculating N × N matrix multiplication: (a) Systolic-

array neural computing unit; (b) Conventional MAC architecture.

2.2. Previous Fault Repair Systolic-Array Designs

Fault-tolerant systolic-array designs were proposed by Kung et al. [11] and were later improved

[12]. The basic concept of these schemes is considering the array as a small systolic-array when faulty

MACs are detected in the array.

Figure 2a shows the redundant MAC architecture for repairing a faulty MAC processor. MAC

processors are arranged in a 4 × 4 systolic-array, and redundant MAC processors are placed at the

end of each row. These redundant MAC processors can serve as substitutes when a fault occurs in

each row. Furthermore, to replace the faulty MAC with the redundant MAC, the signal should be

rerouted so that several MUXs are used.

(a)

(b)

Figure 2. Previous systolic-array redundant architecture [12]: (a) Overview; (b) Repair example.

An example of a repair process in this redundancy architecture is presented in Figure 2b.

According to the characteristics of the systolic-array, if MAC unit C11 has a defect, for normal

operation, the role of the faulty core is performed by C12, and the role of C12 is performed by C13.

Finally, a redundant core R1 performs the role of C13. Through this process, the repair process is

Figure 2. Previous systolic-array redundant architecture [12]: (a) Overview; (b) Repair example.

An example of a repair process in this redundancy architecture is presented in Figure 2b. According
to the characteristics of the systolic-array, if MAC unit C11 has a defect, for normal operation, the role
of the faulty core is performed by C12, and the role of C12 is performed by C13. Finally, a redundant
core R1 performs the role of C13. Through this process, the repair process is completed in such a
manner that the signals to be transmitted to the faulty MAC are shifted to the neighboring MAC
and transmitted. Thus, the repair process is completed. Another repair process is proposed in [13].
In this study, the role of the faulty MAC is replaced by the neighboring core which is placed on a
diagonal. Basically, switches are located at the intersection point among every four neighboring cores.

Electronics 2020, 9, 338 4 of 14

By utilizing switches, the faulty MAC can be bypassed in either horizontal or vertical ways and shifted
by its neighboring core.

Recently, Zhang et al. proposed a fault-tolerant systolic-array design considering the impact of
hardware faults in the application domain [14]. The method reduced the effect of the faulty MAC by
calculating the weight in the CNN corresponding to the faulty MAC as zero. Although this method
reduces the effect of hardware faults without additional redundant MACs, reliability issues still exist,
because the systolic-array is comprised of the faulty MACs.

3. Proposed Redundancy Architecture

In this section, the proposed systolic-array redundancy architecture is described. The proposed
method has two main features: the “redundancy architecture” and “online error repair.”

3.1. Systolic-Array Redundancy Architecture

The previous redundancy architecture can repair all faulty MACs when only one faulty MAC
occurs in each row. This means that faulty MACs cannot be repaired when two or more faulty
MACs are exist in a row. Therefore, an extended redundancy architecture is considered in which
configuring redundancies at the end of the row and column of the array as shown in Figure 3a.
This redundancy architecture can repair faults for various patterns when a large number of MACs
fail. The proposed method repairs faulty MACs by using the shift-based repair mechanism which
is commonly used for its simple implementation. Figure 3b shows an example in which three faulty
MACs are concentrated in an area. In this example, there are two faulty MACs in the 2nd row and the
3rd column. Nevertheless, the redundant MAC architecture structure can repair this faulty pattern
with more additional hardware overhead.

Electronics 2020, 2, x FOR PEER REVIEW 4 of 14

completed in such a manner that the signals to be transmitted to the faulty MAC are shifted to the

neighboring MAC and transmitted. Thus, the repair process is completed. Another repair process is

proposed in [13]. In this study, the role of the faulty MAC is replaced by the neighboring core which

is placed on a diagonal. Basically, switches are located at the intersection point among every four

neighboring cores. By utilizing switches, the faulty MAC can be bypassed in either horizontal or

vertical ways and shifted by its neighboring core.

Recently, Zhang et al. proposed a fault-tolerant systolic-array design considering the impact of

hardware faults in the application domain [14]. The method reduced the effect of the faulty MAC by

calculating the weight in the CNN corresponding to the faulty MAC as zero. Although this method

reduces the effect of hardware faults without additional redundant MACs, reliability issues still exist,

because the systolic-array is comprised of the faulty MACs.

3. Proposed Redundancy Architecture

In this section, the proposed systolic-array redundancy architecture is described. The proposed

method has two main features: the “redundancy architecture” and “online error repair.”

3.1. Systolic-Array Redundancy Architecture

The previous redundancy architecture can repair all faulty MACs when only one faulty MAC

occurs in each row. This means that faulty MACs cannot be repaired when two or more faulty MACs

are exist in a row. Therefore, an extended redundancy architecture is considered in which configuring

redundancies at the end of the row and column of the array as shown in Figure 3a. This redundancy

architecture can repair faults for various patterns when a large number of MACs fail. The proposed

method repairs faulty MACs by using the shift-based repair mechanism which is commonly used for

its simple implementation. Figure 3b shows an example in which three faulty MACs are concentrated

in an area. In this example, there are two faulty MACs in the 2nd row and the 3rd column.

Nevertheless, the redundant MAC architecture structure can repair this faulty pattern with more

additional hardware overhead.

(a)

(b)

Figure 3. Redundancies in both rows and columns: (a) Overall architecture; (b) Repair example.

3.2. Redundancy Configuration by Partitioning the Entire Array

In the event of MAC failure, to repair the fault, the signals that should be assigned to the faulty

MAC are rerouted to the adjacent MAC, and the signals that should be conveyed to the last MAC in

Figure 3. Redundancies in both rows and columns: (a) Overall architecture; (b) Repair example.

3.2. Redundancy Configuration by Partitioning the Entire Array

In the event of MAC failure, to repair the fault, the signals that should be assigned to the faulty
MAC are rerouted to the adjacent MAC, and the signals that should be conveyed to the last MAC in the
rows or columns are assigned to the redundant MAC. However, when the number of faulty MACs is
high, the redundancy architecture cannot repair the specific faulty MAC patterns. For example, if two
or more faults occur in a systolic-array row, one redundant MAC at the end of the row can only repair
one faulty MAC. In this case, the remaining unrepaired faulty MACs can be repaired by the redundant
MAC located at the end of the column, but if there are other faults in this column, the fault pattern

Electronics 2020, 9, 338 5 of 14

means that the faults cannot be repaired. Therefore, to reduce the probability of these fault patterns
occurring, an architecture of configuring redundancies by partitioning a large size systolic-array can be
considered. This partitioning architecture, which is called “array partitioning,” is more efficient in
terms of repair rate because it can repair more faulty MAC patterns. Increasing the partitioning level
means partitioning the entire array into multiple small arrays. For example, if the entire systolic-array
size is 128 × 128, setting the partitioning level to 4 will partition the entire array into four 64 × 64 arrays.
Similarly, when the partitioning level is set to 16, an entire 128 × 128 array will be partitioned into
16 arrays with a size of 32 × 32. In this paper, the parameter PL (partitioning level) which indicates the
number of parts the entire array will be partitioned into is used. Let NROW and NCOL are the number
of rows and columns of the systolic-array, respectively. Then, if the PL is set to 4, it means that the
entire NROW × NCOL size array is divided into four NROW/2 × NCOL/2 size arrays.

An advantage of the “array partitioning” feature of the proposed method is that it increases
the repair rate by increasing PL; however, excessive partitioning of the entire array can increase the
redundancies and possibly cause a timing problem due to the redundancy configuration. Therefore,
it is important to determine the appropriate PL.

3.3. One Redundancy per Multiple Rows and Columns

A straightforward redundancy architecture for repairing faults in systolic-array partitions involves
placing redundancies at the end of every row and column. However, this architecture is inefficient in
terms of area overhead unless the probability of a fault occurring in the systolic-array is high. Therefore,
to design a more efficient redundancy architecture in terms of area overhead, an architecture whereby
a redundancy is placed per two or more rows and columns can be considered. We set the parameters
“One redundancy per multiple Rows Level (ORL)” and “One redundancy per multiple Columns Level
(OCL)”. If the ORL is set to 2 and the OCL is set to 4, it means one redundancy is placed in two rows
and four columns. In addition, when applying the same value to ORL and OCL, use the parameter OL.
For example, if OL is set to 4, ORL and OCL have the same value 4.

Figure 4a shows the proposed architecture with OL 2. Redundancy MAC RC0 can repair any one
faulty MAC occurring in the first row and the second row. That is, if a faulty core is detected in the
first systolic-array row, RC0 should act as the last core of the first row, and if a faulty core is detected in
the second systolic row, RC0 should act as the last core in the second row. This extension architecture
can reduce the total additional hardware overhead because it can reduce the number of redundant
MACs. Similarly, Figure 4b shows the case where OL is 4.Electronics 2020, 2, x FOR PEER REVIEW 6 of 14

(a)

(b)

Figure 4. Proposed redundancy architecture: (a) OL 2; (b) OL 4.

Based on this extension, it is also possible to extend the architecture of one redundant core per

three or more rows and columns. However, if three or more rows and columns have only one

redundant MAC, this redundancy architecture can be configured with less hardware overhead, but

the repair rate will decrease; furthermore, a timing problem may occur because the distance between

the redundancy and MAC will increase.

3.4. Repair Strategy for Offline/Online Repair

Typically, redundancies that are not used in offline repair are wasted. However, in the proposed

method, the remaining redundancies are used to repair faults during normal operation. If at least one

redundant MAC remains unused, the online repair process can be performed. Typically,

programmable fuses are used to repair faulty memory cells by programming the address fuses of the

spare decoder [15]. In order to utilize the unused redundant MACs, programmable fuses are adopted

to enable the online repair process to repair additional erroneous MACs during the normal operation.

Basically, the online repair process is progressed with unused redundant MACs after the offline

repair process. It means that if an error occurs in the MAC which cannot be covered by the remaining

redundancies, it is impossible to repair the erroneous MAC with the proposed method. Therefore, it

is best to leave unused redundant MACs as efficiently as possible during the offline repair process.

This does not mean that the number of unused redundant MACs should be maximized because the

area of repairable MACs in the online repair process is not fully determined by the quantity of unused

redundant MACs. Besides, more unused redundant MACs means redundancies are over-assigned in

the first place.

Unlike the previous redundancy architecture, the proposed method assigns redundancies to

both the end of the row and column of the array. As mentioned in Section 2.2, each redundant MAC

is specialized to repair the faulty MAC at the same line. So, several MACs share the same redundant

resources depending on the redundancy architecture. Let’s say that those several MACs belong to

the same group. Then, each group has the same number of available redundant MACs to use before

the offline repair process. As the repair process is progressed, the number of available redundancies

of each group is decreased. The basic concept of the proposed repair strategy is spending

redundancies first in the group which has the higher number of available redundant MACs. This

prevents the specific group from having no available redundancy even though there is another option

to utilize resources of other groups.

Figure 4. Proposed redundancy architecture: (a) OL 2; (b) OL 4.

Electronics 2020, 9, 338 6 of 14

Based on this extension, it is also possible to extend the architecture of one redundant core per
three or more rows and columns. However, if three or more rows and columns have only one redundant
MAC, this redundancy architecture can be configured with less hardware overhead, but the repair rate
will decrease; furthermore, a timing problem may occur because the distance between the redundancy
and MAC will increase.

3.4. Repair Strategy for Offline/Online Repair

Typically, redundancies that are not used in offline repair are wasted. However, in the proposed
method, the remaining redundancies are used to repair faults during normal operation. If at least one
redundant MAC remains unused, the online repair process can be performed. Typically, programmable
fuses are used to repair faulty memory cells by programming the address fuses of the spare decoder [15].
In order to utilize the unused redundant MACs, programmable fuses are adopted to enable the online
repair process to repair additional erroneous MACs during the normal operation.

Basically, the online repair process is progressed with unused redundant MACs after the offline
repair process. It means that if an error occurs in the MAC which cannot be covered by the remaining
redundancies, it is impossible to repair the erroneous MAC with the proposed method. Therefore,
it is best to leave unused redundant MACs as efficiently as possible during the offline repair process.
This does not mean that the number of unused redundant MACs should be maximized because the
area of repairable MACs in the online repair process is not fully determined by the quantity of unused
redundant MACs. Besides, more unused redundant MACs means redundancies are over-assigned in
the first place.

Unlike the previous redundancy architecture, the proposed method assigns redundancies to both
the end of the row and column of the array. As mentioned in Section 2.2, each redundant MAC is
specialized to repair the faulty MAC at the same line. So, several MACs share the same redundant
resources depending on the redundancy architecture. Let’s say that those several MACs belong to the
same group. Then, each group has the same number of available redundant MACs to use before the
offline repair process. As the repair process is progressed, the number of available redundancies of
each group is decreased. The basic concept of the proposed repair strategy is spending redundancies
first in the group which has the higher number of available redundant MACs. This prevents the
specific group from having no available redundancy even though there is another option to utilize
resources of other groups.

The example of the proposed repair strategy is depicted in Figure 5. In this example, there are
two faulty MACs, C13 and C33, into a 4 × 4 MAC array as shown in Figure 5a. There are four groups
in the MAC array and each group has two available redundant MACs. For example, Group 1 consists
of MAC C00, C01, C10, and C11. If a fault occurs in Group 1, redundant MACs, RC0 and RR0, can
be utilized. Therefore Group 1 has one available row redundant MAC and one column redundant
MAC. Figure 5b depicts the number of available redundant MACs of each group. In this example, C13
and C33 can be repaired by utilizing {RC0, RC2} or {RC0, RR2}. However, choosing {RC0, RR2} as a
solution makes Group 2 has no available redundancy in the online repair process. On the other hand,
choosing {RC0, RC2} as a solution makes all groups have at least one available redundant MAC in the
online repair process as shown in Figure 5d. This repair strategy secures more flexibility in the online
repair process.

Electronics 2020, 9, 338 7 of 14

Electronics 2020, 2, x FOR PEER REVIEW 7 of 14

The example of the proposed repair strategy is depicted in Figure 5. In this example, there are

two faulty MACs, C13 and C33, into a 4 × 4 MAC array as shown in Figure 5a. There are four groups

in the MAC array and each group has two available redundant MACs. For example, Group 1 consists

of MAC C00, C01, C10, and C11. If a fault occurs in Group 1, redundant MACs, RC0 and RR0, can be

utilized. Therefore Group 1 has one available row redundant MAC and one column redundant MAC.

Figure 5b depicts the number of available redundant MACs of each group. In this example, C13 and

C33 can be repaired by utilizing {RC0, RC2} or {RC0, RR2}. However, choosing {RC0, RR2} as a

solution makes Group 2 has no available redundancy in the online repair process. On the other hand,

choosing {RC0, RC2} as a solution makes all groups have at least one available redundant MAC in

the online repair process as shown in Figure 5d. This repair strategy secures more flexibility in the

online repair process.

(a)

(b)

(c)

(d)

Figure 5. Example of the proposed repair strategy: (a) Faulty systolic-array example; (b) Visualization

of the number of available redundant MACs of each group; (c) Repair decision of C13; (d) Repair

decision of C33.

The overall flowchart of the proposed method is shown in Figure 6. First, redundant MACs

should be tested before testing normal MACs because only healthy redundant MACs can be utilized

in the repair process. And then, the offline test for normal MACs is progressed. When faults are

detected in the offline test process, faulty information is collected in the fault list. As get the proper

Figure 5. Example of the proposed repair strategy: (a) Faulty systolic-array example; (b) Visualization
of the number of available redundant MACs of each group; (c) Repair decision of C13; (d) Repair
decision of C33.

The overall flowchart of the proposed method is shown in Figure 6. First, redundant MACs
should be tested before testing normal MACs because only healthy redundant MACs can be utilized in
the repair process. And then, the offline test for normal MACs is progressed. When faults are detected
in the offline test process, faulty information is collected in the fault list. As get the proper repair
solution, the repair decision of the offline repair starts after all the faulty information is collected. Then,
the proposed method investigates the number of available redundancies of each group and sorts the
numbers in descending order. If there are available redundancies to use, the offline repair process is
performed based on the repair strategy. The redundancy list is updated whenever the repair decision
is making. If all faulty MACs are repaired, the offline test phase ends. Once the online test phase
starts, the first process is to check the available resources through programmable fuses. In the online
test phase, repairable MACs are determined by the information of remaining redundant MACs in the
redundancy list. Therefore, if an error is detected during the normal operation, the proposed method
can instantly find out whether the erroneous MAC is repairable or not. If the group which has the
erroneous MAC can utilize two or more redundant MACs, the proposed method seeks the way to
avoid the number of available redundant MACs of each group being 0. This decision making process

Electronics 2020, 9, 338 8 of 14

can be easily performed with the simple binary search tree. Then, online repair step is repeatedly
performed until there is no remaining redundancy left.

Electronics 2020, 2, x FOR PEER REVIEW 8 of 14

repair solution, the repair decision of the offline repair starts after all the faulty information is

collected. Then, the proposed method investigates the number of available redundancies of each

group and sorts the numbers in descending order. If there are available redundancies to use, the

offline repair process is performed based on the repair strategy. The redundancy list is updated

whenever the repair decision is making. If all faulty MACs are repaired, the offline test phase ends.

Once the online test phase starts, the first process is to check the available resources through

programmable fuses. In the online test phase, repairable MACs are determined by the information of

remaining redundant MACs in the redundancy list. Therefore, if an error is detected during the

normal operation, the proposed method can instantly find out whether the erroneous MAC is

repairable or not. If the group which has the erroneous MAC can utilize two or more redundant

MACs, the proposed method seeks the way to avoid the number of available redundant MACs of

each group being 0. This decision making process can be easily performed with the simple binary

search tree. Then, online repair step is repeatedly performed until there is no remaining redundancy

left.

Figure 6. Flowchart of the proposed method.

3.5. Efficient Redundancy Configuration

To efficiently perform the convolution operation, it is effective to set the systolic-array to 128 ×

128 or more. Therefore, a strategy for a systolic-array with a size of 128 × 128 or more should also be

configured to construct redundancy. While it is possible to simply place redundancies all the way to

the right and to the bottom side of the entire array, this is not an efficient solution in terms of repair

rate and hardware overhead.

As mentioned in Sections 3.2 and 3.3, the proposed architecture can reduce the hardware

overhead and can increase the repair rate when multiple faulty MACs are detected. Therefore, the

redundancy architecture that can be applied as efficiently as possible in terms of hardware overhead

and repair rate with a systolic-array size, can be effectively applied in real neural network operations.

Figure 6. Flowchart of the proposed method.

3.5. Efficient Redundancy Configuration

To efficiently perform the convolution operation, it is effective to set the systolic-array to 128 × 128
or more. Therefore, a strategy for a systolic-array with a size of 128 × 128 or more should also be
configured to construct redundancy. While it is possible to simply place redundancies all the way to
the right and to the bottom side of the entire array, this is not an efficient solution in terms of repair
rate and hardware overhead.

As mentioned in Sections 3.2 and 3.3, the proposed architecture can reduce the hardware overhead
and can increase the repair rate when multiple faulty MACs are detected. Therefore, the redundancy
architecture that can be applied as efficiently as possible in terms of hardware overhead and repair rate
with a systolic-array size, can be effectively applied in real neural network operations.

4. Simulation Results

4.1. Simulation Environment

To evaluate the performance of the proposed architecture, hardware overheads, and repair rates
induced by the redundancy configuration were calculated and compared with those obtained by
changing the parameter of the proposed architecture. For example, Figure 7 shows the redundancy
architecture with PL 4 and OL 2. We experimented with large size of systolic-arrays such as 128 × 128,
256 × 256, and 512 × 512. Then, experiments were performed while varying the parameters, PL and
OL, for each array size. These experiments were performed in a 3 GHz Linux environment with
256 GB memory.

Electronics 2020, 9, 338 9 of 14

Electronics 2020, 2, x FOR PEER REVIEW 9 of 14

4. Simulation Results

4.1. Simulation Environment

To evaluate the performance of the proposed architecture, hardware overheads, and repair rates

induced by the redundancy configuration were calculated and compared with those obtained by

changing the parameter of the proposed architecture. For example, Figure 7 shows the redundancy

architecture with PL 4 and OL 2. We experimented with large size of systolic-arrays such as 128 × 128,

256 × 256, and 512 × 512. Then, experiments were performed while varying the parameters, PL and

OL, for each array size. These experiments were performed in a 3 GHz Linux environment with 256

GB memory.

Figure 7. Proposed redundancy architecture with PL: 4 and OL: 2.

4.2. Repair Rates

To evaluate the repair performance of the redundancy architectures, numerous random fault

patterns were introduced into the NROW × NCOL systolic-array MAC architectures. These faulty MACs

can be repaired using the redundant MACs that are located at the right and bottom sides. If all faulty

MACs are repaired successfully after the repair process, this fault pattern is classified as a “repairable

case.” On the other hand, if one or more faulty MACs cannot be repaired, this case is classified as an

“irreparable case.” The repair rates are represented as follows:

Repair rate(%) =
𝑅𝑒𝑝𝑎𝑖𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒

𝑅𝑒𝑝𝑎𝑖𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒 + 𝐼𝑟𝑟𝑒𝑝𝑎𝑟𝑎𝑏𝑙𝑒 𝑐𝑎𝑠𝑒

To investigate the effect of the PL and OL on repair rate, repair rates were measured while

increasing PL and OL. In this experiment, the number of fault patterns was randomly generated

100,000 times.

First, the repair rate was measured while PL was increased when OL was fixed to 1. In this case,

increasing PL while maintaining OL increases the number of redundancies and also the number of

repairable faults. Therefore, as the PL increases, a higher repair rate can be achieved as shown in Figure

8a. In contrast, when the PL was fixed, the repair rate was measured while increasing the OL. The result

is shown in Figure 8b. Increasing OL means decrease of the number of redundancies and the repair rate

drops. As shown in Figure 8, the increase of PL means the increase in redundancy, which means an

improvement in the repair rate. Similarly, the increase of OL causes the decrease of the repair rate

Figure 7. Proposed redundancy architecture with PL: 4 and OL: 2.

4.2. Repair Rates

To evaluate the repair performance of the redundancy architectures, numerous random fault
patterns were introduced into the NROW × NCOL systolic-array MAC architectures. These faulty MACs
can be repaired using the redundant MACs that are located at the right and bottom sides. If all faulty
MACs are repaired successfully after the repair process, this fault pattern is classified as a “repairable
case.” On the other hand, if one or more faulty MACs cannot be repaired, this case is classified as an
“irreparable case.” The repair rates are represented as follows:

Repair rate(%) =
Repairable case

Repairable case + Irreparable case

To investigate the effect of the PL and OL on repair rate, repair rates were measured while
increasing PL and OL. In this experiment, the number of fault patterns was randomly generated
100,000 times.

First, the repair rate was measured while PL was increased when OL was fixed to 1. In this case,
increasing PL while maintaining OL increases the number of redundancies and also the number of
repairable faults. Therefore, as the PL increases, a higher repair rate can be achieved as shown in
Figure 8a. In contrast, when the PL was fixed, the repair rate was measured while increasing the OL.
The result is shown in Figure 8b. Increasing OL means decrease of the number of redundancies and the
repair rate drops. As shown in Figure 8, the increase of PL means the increase in redundancy, which
means an improvement in the repair rate. Similarly, the increase of OL causes the decrease of the repair
rate because it reduces the number of redundancies. Changing PL and OL is related to changing the
number of redundancies and thus a change in the repair rate can be expected. Therefore, to proceed
with the experiments with the same number of redundant MACs, experiments were conducted under

Electronics 2020, 9, 338 10 of 14

a given number of PL and OL conditions to equalize the number of redundant MACs. For example,
assuming a systolic-array of N × N, the number of redundancies when the proposed architecture is not
applied is 2N, where N is placed on the right side and N is placed on the bottom side. Under these
conditions, a fourfold increase in the PL will double the number of redundancies, and a doubling of the
OL reduces the number of redundancies by half. Therefore, to have the same number of redundancies,
which is 2N, when an N × N systolic-array is set, the repair rate was measured with the PL and OL
as (1,1), (4,2), (16,4), (64,8), and (256,16), respectively. The results are shown in Figure 9. As can be
seen from the results of this experiment, the repair rate is the highest in OL 2 condition. When OL
is increased to 2 or more, the effect of reducing repair rate due to the increase of OL, becomes more
dominant than the effect of increasing repair rate due to the increase of PL. There is one more important
thing in these results. As mentioned in Section 3, the number of used redundant MACs in the offline
repair process and the number of the faulty MACs are the same if the faulty systolic-array is repairable.
Before the offline repair process, there are 256 redundant MACs in Figure 9a and 512 redundant MACs
in Figure 9b. As can be seen from the graphs, the number of unused redundant MACs is much larger
than the number of used redundant MACs even in the situations which have low repair rate. These
results prove the need for the online repair process with unused redundant MACs.

Electronics 2020, 2, x FOR PEER REVIEW 10 of 14

because it reduces the number of redundancies. Changing PL and OL is related to changing the number

of redundancies and thus a change in the repair rate can be expected. Therefore, to proceed with the

experiments with the same number of redundant MACs, experiments were conducted under a given

number of PL and OL conditions to equalize the number of redundant MACs. For example, assuming

a systolic-array of N × N, the number of redundancies when the proposed architecture is not applied is

2N, where N is placed on the right side and N is placed on the bottom side. Under these conditions, a

fourfold increase in the PL will double the number of redundancies, and a doubling of the OL reduces

the number of redundancies by half. Therefore, to have the same number of redundancies, which is 2N,

when an N × N systolic-array is set, the repair rate was measured with the PL and OL as (1,1), (4,2),

(16,4), (64,8), and (256,16), respectively. The results are shown in Figure 9. As can be seen from the

results of this experiment, the repair rate is the highest in OL 2 condition. When OL is increased to 2 or

more, the effect of reducing repair rate due to the increase of OL, becomes more dominant than the

effect of increasing repair rate due to the increase of PL. There is one more important thing in these

results. As mentioned in Section 3, the number of used redundant MACs in the offline repair process

and the number of the faulty MACs are the same if the faulty systolic-array is repairable. Before the

offline repair process, there are 256 redundant MACs in Figure 9a and 512 redundant MACs in Figure

9b. As can be seen from the graphs, the number of unused redundant MACs is much larger than the

number of used redundant MACs even in the situations which have low repair rate. These results prove

the need for the online repair process with unused redundant MACs.

(a)

(b)

Figure 8. Repair rate comparison with various PLs and OLs: (a) Fix OL, change PL; (b) Fix PL, change

OL.

Figure 8. Repair rate comparison with various PLs and OLs: (a) Fix OL, change PL; (b) Fix PL,
change OL.

Electronics 2020, 2, x FOR PEER REVIEW 11 of 14

(a)

(b)

Figure 9. Repair rate comparison with 2N redundancies: (a) 128 × 128; (b) 256 × 256.

For comparison with the previous architecture [12], the experiments with the number of

redundancies is set to N are conducted. Since the previous architecture places redundancy only on

its right side, the number of redundancies in this architecture of N × N is determined as N. As can be

seen in Table 1, even with the same number of redundancies, the redundancy architecture where

redundancies on the right and bottom side has a much higher repair rate than that of the previous

architecture under the condition that N is 128, 256, and 512. In addition, it can be seen that, even in

this case, as PL and OL increase, the repair rate decreases slightly even if the number of redundancies

is the same.

Table 1. Repair rates comparison with the previous architecture (unit: %).

Array size 128 × 128 256 × 256 512 × 512

of

faults

Prev.

[12]

PL: 4

OL: 4

PL: 16

OL: 8

Prev.

[12]

PL: 4

OL: 4

PL: 16

OL: 8

Prev.

[12]

PL: 4

OL: 4

PL: 16

OL: 8

10 69.81 99.61 99.18 83.82 99.96 99.90 91.62 99.99 99.99

20 21.28 94.27 90.96 46.83 99.18 98.67 68.40 99.89 99.82

30 2.50 76.15 68.32 15.08 96.11 94.29 42.28 99.44 99.18

40 0.13 45.32 36.87 4.02 88.65 85.33 21.12 98.30 97.76

50 0.00 16.51 11.92 0.58 75.24 70.65 8.40 96.00 95.13

60 0.00 3.12 2.02 0.06 57.29 51.70 2.74 92.14 90.22

70 0.00 0.25 0.14 0.01 37.34 31.96 0.75 86.26 83.88

80 0.00 0.01 0.00 0.00 19.91 16.36 0.16 78.10 75.39

90 0.00 0.00 0.00 0.00 8.44 6.52 0.00 68.07 64.62

100 0.00 0.00 0.00 0.00 2.61 1.95 0.01 56.74 53.06

110 0.00 0.00 0.00 0.00 0.58 0.44 0.00 44.06 40.72

120 0.00 0.00 0.00 0.00 0.09 0.07 0.00 32.18 29.30

Finally, repair rates of the online repair process with various redundancy architectures are

shown in Figure 10. In this experiment, the data from Figure 9b is utilized. It is assumed that 40 faulty

MACs are already repaired in the offline repair process. In order to evaluate the performance of the

online repair process, the concept of the error rate is defined as follows. An error rate of a single MAC

is the probability that an error occurs in a MAC during the normal operation. Similar to the results of

Figure 9. Repair rate comparison with 2N redundancies: (a) 128 × 128; (b) 256 × 256.

Electronics 2020, 9, 338 11 of 14

For comparison with the previous architecture [12], the experiments with the number of
redundancies is set to N are conducted. Since the previous architecture places redundancy only
on its right side, the number of redundancies in this architecture of N × N is determined as N. As can
be seen in Table 1, even with the same number of redundancies, the redundancy architecture where
redundancies on the right and bottom side has a much higher repair rate than that of the previous
architecture under the condition that N is 128, 256, and 512. In addition, it can be seen that, even in this
case, as PL and OL increase, the repair rate decreases slightly even if the number of redundancies is
the same.

Table 1. Repair rates comparison with the previous architecture (unit: %).

Array Size 128 × 128 256 × 256 512 × 512

of
Faults

Prev.
[12]

PL: 4
OL: 4

PL: 16
OL: 8

Prev.
[12]

PL: 4
OL: 4

PL: 16
OL: 8

Prev.
[12]

PL: 4
OL: 4

PL: 16
OL: 8

10 69.81 99.61 99.18 83.82 99.96 99.90 91.62 99.99 99.99
20 21.28 94.27 90.96 46.83 99.18 98.67 68.40 99.89 99.82
30 2.50 76.15 68.32 15.08 96.11 94.29 42.28 99.44 99.18
40 0.13 45.32 36.87 4.02 88.65 85.33 21.12 98.30 97.76
50 0.00 16.51 11.92 0.58 75.24 70.65 8.40 96.00 95.13
60 0.00 3.12 2.02 0.06 57.29 51.70 2.74 92.14 90.22
70 0.00 0.25 0.14 0.01 37.34 31.96 0.75 86.26 83.88
80 0.00 0.01 0.00 0.00 19.91 16.36 0.16 78.10 75.39
90 0.00 0.00 0.00 0.00 8.44 6.52 0.00 68.07 64.62
100 0.00 0.00 0.00 0.00 2.61 1.95 0.01 56.74 53.06
110 0.00 0.00 0.00 0.00 0.58 0.44 0.00 44.06 40.72
120 0.00 0.00 0.00 0.00 0.09 0.07 0.00 32.18 29.30

Finally, repair rates of the online repair process with various redundancy architectures are shown
in Figure 10. In this experiment, the data from Figure 9b is utilized. It is assumed that 40 faulty MACs
are already repaired in the offline repair process. In order to evaluate the performance of the online
repair process, the concept of the error rate is defined as follows. An error rate of a single MAC is
the probability that an error occurs in a MAC during the normal operation. Similar to the results of
the offline repair process, redundancy architectures, which have high repair rates in the offline repair
process, also show good results in the online repair process. In conclusion, the proposed method
shows much more improved repair rates compared to the previous work. However, it is necessary
to assign the proper value of PL and OL considering the number of faults, the error rate, and overall
hardware overhead.

Electronics 2020, 2, x FOR PEER REVIEW 12 of 14

the offline repair process, redundancy architectures, which have high repair rates in the offline repair

process, also show good results in the online repair process. In conclusion, the proposed method

shows much more improved repair rates compared to the previous work. However, it is necessary to

assign the proper value of PL and OL considering the number of faults, the error rate, and overall

hardware overhead.

Figure 10. Online repair rate comparison with various PLs and OLs.

4.3. Hardware Overhead

To calculate the hardware overhead of the redundancy architectures, we employed the synthesis

tool Synopsys Design Vision [16] and the Synopsys Armenia Educational Department (SAED) 32/28

nm Open Cell Library [17] technology parameters. The additional hardware consists of MUXs that

allow signals to be sent to adjacent MACs to reroute the signal and redundant MACs. In this

experiment, the additional area overheads were measured by changing PL and OL in a systolic-array

having a large size of 128 × 128 or more.

Figure 11 shows the ratio of the additional hardware size caused by the redundant configuration

for the systolic-array compared to the structure without the redundancy. Increasing OL to 1, 2, 4, and

8 in the same PL condition will inevitably lead to hardware reduction because the number of

redundant MACs is reduced. Conversely, when OL is fixed and PL is increased, as shown in Figure

12, the area overhead becomes larger because the redundancies are further allocated for each divided

systolic-array partition. In addition, we measured the area overhead while adjusting OL and PL for

the area comparison under the conditions of the same number of redundancies. As shown in Figure

13, when the number of redundancies is the same, it can be seen that even if PL and OL change, the

overall area overhead is similar. However, owing to an increase in OL, the overall area overhead

slightly increased because of the addition of a large size MUX for routing in multiple rows and

columns. Although 8.9%, 5.8%, and 3.0% hardware overheads are consumed in 8-bit, 16-bit, and 32-

bit, respectively, compared to the previous architecture, high repair rates can be achieved through

the proposed architecture.

Figure 10. Online repair rate comparison with various PLs and OLs.

Electronics 2020, 9, 338 12 of 14

4.3. Hardware Overhead

To calculate the hardware overhead of the redundancy architectures, we employed the synthesis
tool Synopsys Design Vision [16] and the Synopsys Armenia Educational Department (SAED) 32/28 nm
Open Cell Library [17] technology parameters. The additional hardware consists of MUXs that allow
signals to be sent to adjacent MACs to reroute the signal and redundant MACs. In this experiment,
the additional area overheads were measured by changing PL and OL in a systolic-array having a large
size of 128 × 128 or more.

Figure 11 shows the ratio of the additional hardware size caused by the redundant configuration
for the systolic-array compared to the structure without the redundancy. Increasing OL to 1, 2, 4,
and 8 in the same PL condition will inevitably lead to hardware reduction because the number of
redundant MACs is reduced. Conversely, when OL is fixed and PL is increased, as shown in Figure 12,
the area overhead becomes larger because the redundancies are further allocated for each divided
systolic-array partition. In addition, we measured the area overhead while adjusting OL and PL
for the area comparison under the conditions of the same number of redundancies. As shown in
Figure 13, when the number of redundancies is the same, it can be seen that even if PL and OL change,
the overall area overhead is similar. However, owing to an increase in OL, the overall area overhead
slightly increased because of the addition of a large size MUX for routing in multiple rows and
columns. Although 8.9%, 5.8%, and 3.0% hardware overheads are consumed in 8-bit, 16-bit, and 32-bit,
respectively, compared to the previous architecture, high repair rates can be achieved through the
proposed architecture.

Electronics 2020, 2, x FOR PEER REVIEW 12 of 14

the offline repair process, redundancy architectures, which have high repair rates in the offline repair

process, also show good results in the online repair process. In conclusion, the proposed method

shows much more improved repair rates compared to the previous work. However, it is necessary to

assign the proper value of PL and OL considering the number of faults, the error rate, and overall

hardware overhead.

Figure 10. Online repair rate comparison with various PLs and OLs.

4.3. Hardware Overhead

To calculate the hardware overhead of the redundancy architectures, we employed the synthesis

tool Synopsys Design Vision [16] and the Synopsys Armenia Educational Department (SAED) 32/28

nm Open Cell Library [17] technology parameters. The additional hardware consists of MUXs that

allow signals to be sent to adjacent MACs to reroute the signal and redundant MACs. In this

experiment, the additional area overheads were measured by changing PL and OL in a systolic-array

having a large size of 128 × 128 or more.

Figure 11 shows the ratio of the additional hardware size caused by the redundant configuration

for the systolic-array compared to the structure without the redundancy. Increasing OL to 1, 2, 4, and

8 in the same PL condition will inevitably lead to hardware reduction because the number of

redundant MACs is reduced. Conversely, when OL is fixed and PL is increased, as shown in Figure

12, the area overhead becomes larger because the redundancies are further allocated for each divided

systolic-array partition. In addition, we measured the area overhead while adjusting OL and PL for

the area comparison under the conditions of the same number of redundancies. As shown in Figure

13, when the number of redundancies is the same, it can be seen that even if PL and OL change, the

overall area overhead is similar. However, owing to an increase in OL, the overall area overhead

slightly increased because of the addition of a large size MUX for routing in multiple rows and

columns. Although 8.9%, 5.8%, and 3.0% hardware overheads are consumed in 8-bit, 16-bit, and 32-

bit, respectively, compared to the previous architecture, high repair rates can be achieved through

the proposed architecture.

Figure 11. Hardware overhead comparison for various OLs.

Electronics 2020, 2, x FOR PEER REVIEW 13 of 14

Figure 11. Hardware overhead comparison for various OLs.

Figure 12. Hardware overhead comparison for various PLs.

Figure 13. Hardware overhead comparison under the same number of redundancies condition.

5. Conclusion

To ensure the reliability of the systolic-array architecture, which is widely used in neural-

network computing, a new efficient redundancy architecture is proposed. The proposed architecture

can repair a larger number of faults than the previous redundancy architecture, with reasonable

hardware overhead. Moreover, unused redundant MACs are utilized in the online repair process

through programmable fuses. For maximizing the efficiency of the online repair process, group-based

repair strategy is adopted in the entire repair process. This provides maximum redundancies

utilization by minimizing hardware overhead waste.

Author Contributions: Conceptualization, K.C. and I.L.; methodology, K.C. and I.L.; software, K.C. and I.L.;

validation, K.C., I.L., and H.L.; formal analysis, I.L.; investigation, K.C. and H.L.; resources, K.C.; data curation,

K.C.; writing—original draft preparation, K.C. and I.L.; writing—review and editing, K.C. and S.K.; visualization,

K.C. and I.L.; supervision, S.K.; project administration, S.K.; funding acquisition, S.K. All authors have read and

agreed to the published version of the manuscript.

Funding: This work was supported by Samsung Electronics Company, Ltd., Hwaseong, Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.

In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Stateline, NV, USA, 3–

8 December 2012; pp. 1097–1105.

2. Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei, L.F. Large-scale video classification

with convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 1725–1732.

3. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of

the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December

2014; pp. 3104–3112.

Figure 12. Hardware overhead comparison for various PLs.

Electronics 2020, 9, 338 13 of 14

Electronics 2020, 2, x FOR PEER REVIEW 13 of 14

Figure 11. Hardware overhead comparison for various OLs.

Figure 12. Hardware overhead comparison for various PLs.

Figure 13. Hardware overhead comparison under the same number of redundancies condition.

5. Conclusion

To ensure the reliability of the systolic-array architecture, which is widely used in neural-

network computing, a new efficient redundancy architecture is proposed. The proposed architecture

can repair a larger number of faults than the previous redundancy architecture, with reasonable

hardware overhead. Moreover, unused redundant MACs are utilized in the online repair process

through programmable fuses. For maximizing the efficiency of the online repair process, group-based

repair strategy is adopted in the entire repair process. This provides maximum redundancies

utilization by minimizing hardware overhead waste.

Author Contributions: Conceptualization, K.C. and I.L.; methodology, K.C. and I.L.; software, K.C. and I.L.;

validation, K.C., I.L., and H.L.; formal analysis, I.L.; investigation, K.C. and H.L.; resources, K.C.; data curation,

K.C.; writing—original draft preparation, K.C. and I.L.; writing—review and editing, K.C. and S.K.; visualization,

K.C. and I.L.; supervision, S.K.; project administration, S.K.; funding acquisition, S.K. All authors have read and

agreed to the published version of the manuscript.

Funding: This work was supported by Samsung Electronics Company, Ltd., Hwaseong, Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.

In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Stateline, NV, USA, 3–

8 December 2012; pp. 1097–1105.

2. Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei, L.F. Large-scale video classification

with convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 1725–1732.

3. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of

the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December

2014; pp. 3104–3112.

Figure 13. Hardware overhead comparison under the same number of redundancies condition.

5. Conclusions

To ensure the reliability of the systolic-array architecture, which is widely used in neural-network
computing, a new efficient redundancy architecture is proposed. The proposed architecture can
repair a larger number of faults than the previous redundancy architecture, with reasonable hardware
overhead. Moreover, unused redundant MACs are utilized in the online repair process through
programmable fuses. For maximizing the efficiency of the online repair process, group-based repair
strategy is adopted in the entire repair process. This provides maximum redundancies utilization by
minimizing hardware overhead waste.

Author Contributions: Conceptualization, K.C. and I.L.; methodology, K.C. and I.L.; software, K.C. and I.L.;
validation, K.C., I.L., and H.L.; formal analysis, I.L.; investigation, K.C. and H.L.; resources, K.C.; data curation,
K.C.; writing—original draft preparation, K.C. and I.L.; writing—review and editing, K.C. and S.K.; visualization,
K.C. and I.L.; supervision, S.K.; project administration, S.K.; funding acquisition, S.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by Samsung Electronics Company, Ltd., Hwaseong, Korea.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Stateline, NV, USA,
3–8 December 2012; pp. 1097–1105.

2. Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei, L.F. Large-scale video classification with
convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 1725–1732.

3. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of
the Advances in Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December
2014; pp. 3104–3112.

4. Ma, Y.; Suda, N.; Cao, Y.; Seo, J.S.; Vrudhula, S. Scalable and modularized rtl compilation of convolutional
neural networks onto fpga. In Proceedings of the Field Programmable Logic and Applications (FPL) 26th
International Conference, Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–8.

5. Kung, H.T. Why systolic architectures? IEEE Comput. 1982, 15, 37–46. [CrossRef]
6. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.;

Borchers, A.; et al. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th
Annual International Symposium on Computer Architecture, ISCA ’17, Toronto, ON, Canada, 26 June 2017;
pp. 1–12.

7. Paine, S.W.; Fienup, J.R. Machine learning for improved image-based wavefront sensing. Opt. Lett. 2018, 43,
1235–1238. [CrossRef] [PubMed]

8. Wu, C.; Ko, J.; Davis, C.C. Lossy wavefront sensing and correction of distorted laser beams. Appl. Opt. 2020,
59, 817–824. [CrossRef]

http://dx.doi.org/10.1109/MC.1982.1653825
http://dx.doi.org/10.1364/OL.43.001235
http://www.ncbi.nlm.nih.gov/pubmed/29543260
http://dx.doi.org/10.1364/AO.59.000817

Electronics 2020, 9, 338 14 of 14

9. Liu, S.; Tang, J.; Wang, C.; Wang, Q.; Gaudiot, J.L. A unified cloud platform for autonomous driving. Computer
2017, 50, 42–49. [CrossRef]

10. Hoang, T.T.; Själander, M.; Edefors, P.L. A High-Speed, Energy-Efficient Two-Cycle Multiply-Accumulate
(MAC) Architecture and Its Application to a Double-Throughput MAC Unit. Circuits Syst. I Regul. Pap. IEEE
Trans. 2010, 57, 3073–3081. [CrossRef]

11. Kung, H.T.; Lam, M.S. Fault-tolerance and two-level pipelining in vlsi systolic arrays. Tech. Rep. Carnegie
Mellon UNIV 1983. [CrossRef]

12. Kim, J.H.; Reddy, S.M. On the design of fault-tolerant two-dimensional systolic arrays for yield enhancement.
IEEE Trans. Comput. 1989, 38, 515–525. [CrossRef]

13. Takanami, I.; Horita, T.; Akiba, M.; Terauchi, M.; Kanno, T. A built-in self-repair circuit for restructuring
mesh-connected processor arrays by direct spare replacement. In Transactions on Computational Science XXVII,
LNCS 9570; Springer: Berlin/Heidelberg, Germany, 2016; pp. 97–119.

14. Zhang, J.; Gu, T.; Basu, K.; Garg, S. Analyzing and mitigating the impact of permanent faults on a systolic
array based neural network accelerator. In Proceedings of the IEEE VLSI Test Symposium, San Francisco,
CA, USA, 22–25 April 2018; pp. 1–6.

15. Lee, C.; Kang, W.; Cho, D.; Kang, S. A new fuse architecture and a new post-share redundancy scheme for
yield enhancement in 3-d-stacked memories. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2014, 33,
786–797.

16. Synopsys Design Vision, Synopsys, Mountain View, CA, USA. Available online: https://www.synopsys.
com/content/dam/synopsys/implementation&signoff/datasheets/design-compiler-nxt-ds.pdf (accessed on
14 February 2020).

17. The Synopsys Armenia Educational Department (SAED) 32/28nm Open Cell Library, Synopsys, Mountain
View, CA, USA. Available online: https://www.synopsys.com/community/university-program/teaching-
resources.html (accessed on 14 February 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MC.2017.4451224
http://dx.doi.org/10.1109/TCSI.2010.2091191
http://dx.doi.org/10.1117/12.936453
http://dx.doi.org/10.1109/12.21144
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/design-compiler-nxt-ds.pdf
https://www.synopsys.com/content/dam/synopsys/implementation&signoff/datasheets/design-compiler-nxt-ds.pdf
https://www.synopsys.com/community/university-program/teaching-resources.html
https://www.synopsys.com/community/university-program/teaching-resources.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Previous Works
	Systolic-Array Architecture
	Previous Fault Repair Systolic-Array Designs

	Proposed Redundancy Architecture
	Systolic-Array Redundancy Architecture
	Redundancy Configuration by Partitioning the Entire Array
	One Redundancy per Multiple Rows and Columns
	Repair Strategy for Offline/Online Repair
	Efficient Redundancy Configuration

	Simulation Results
	Simulation Environment
	Repair Rates
	Hardware Overhead

	Conclusions
	References

