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Abstract: In this paper, we propose an integrated action classification and regression learning
framework for the fine-grained human action quality assessment of RGB videos. On the basis of 2D
skeleton data obtained per frame of RGB video sequences, we present an effective representation
of joint trajectories to train action classifiers and a class-specific regression model for a fine-grained
assessment of the quality of human actions. To manage the challenge of view changes due to camera
motion, we develop a self-similarity feature descriptor extracted from joint trajectories and a joint
displacement sequence to represent dynamic patterns of the movement and posture of the human
body. To weigh the impact of joints for different action categories, a class-specific regression model
is developed to obtain effective fine-grained assessment functions. In the testing stage, with the
supervision of the action classifier’s output, the regression model of a specific action category is
selected to assess the quality of skeleton motion extracted from the action video. We take advantage
of the discrimination of the action classifier and the viewpoint invariance of the self-similarity
feature to boost the performance of the learning-based quality assessment method in a realistic
scene. We evaluate our proposed method using diving and figure skating videos of the publicly
available MIT Olympic Scoring dataset, and gymnastic vaulting videos of the recent benchmark
University of Nevada Las Vegas (UNLV) Olympic Scoring dataset. The experimental results show
that the proposed method achieved an improved performance, which is measured by the mean rank
correlation coefficient between the predicted regression scores and the ground truths.

Keywords: action quality assessment; human activity analysis; skeletal feature representation

1. Introduction

Human action evaluation (HAE) aims to tackle the challenging problem of making computers
automatically quantify how well people perform actions. It has been largely unexplored in past
decades [1,2], and has been involved in a wide range of applications, such as sport activity scoring and
training systems [1,3], physical therapy and rehabilitation [4–7], interactive entertainment [8–10], skill
training for expertise learners, and video retrieval [11–13]. With the rapid progress in human activity
understanding in the research area of computer vision, research efforts have recently been devoted to
human action quality assessment [14,15].
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Since the traditional manual assessment of human motion quality needs a great deal of expertise
from specialized fields, longtime learning, and training processes are required to summarize the
experience and evaluation rules for automatic scoring sport activity in a specialized field. This
requires a great amount of time and high labor cost. Apart from traditional action recognition
research, human action evaluation aims to design computation models for automatically assessing
the quality score of human actions or activities and further give interpretable feedback to improve
human body movement. It relies on accurate human motion detection and segmentation, action feature
extraction and representation, and effective evaluation methods for measuring the quality of action
performance. Severe challenges have to be dealt with when the action evaluation learning method is
applied in realistic scenes such as intra-class variations in the scale, appearance, illumination, view,
and inter-class ambiguity.

Most of the published research on human action evaluation directly employed advanced action
recognition approaches to segment an action video into several action fragments, extract local or
holistic motion features for video fragments, and aggregate fragmented features into a final feature
representation. Then, regression models [14,15] or Hidden Markov Models (HMM) [16] were trained
to estimate the quality score of featured actions. Furthermore, interpretable feedback was provided for
improving the action performance. Some of these studies employed an optimization framework to
formalize the action quality assessment problem [1,5,15]. They commonly employed this framework
to develop a unified regression model for all action categories. One of the disadvantages of using a
unified regression model is that large approximation errors caused by in-class variation lead to poor
fitting in regression analysis. The second disadvantage is that a common evaluation function shared
among all action categories can be fragile when dealing with unbalanced distributions of training data.
Third, similar postures shared by different action categories significantly decrease the performance
of action evaluation methods, such as the swing in a tennis serve and badminton smash, the spin in
figure skating, and the floor exercise. Consequently, single assessment function learning for all action
categories tends to generate an inaccurate assessment score and even provide the wrong feedback
information. With significant progress in pose estimation methods, skeleton data of the human body
can be estimated from an RGB video to facilitate detailed motion quality analysis. Most of the existing
research introduced alignment and normalization methods developed for action recognition in action
quality analysis to preprocess the skeleton data [17–20]. However, view variation due to a change of
the camera position has not yet been addressed, despite the fact that it cannot be trivial for human
action evaluation of a realistic dataset.

In this paper, we attempt to extract effective skeletal feature representation of human motion from
an RGB video for a fine-grained human action quality assessment and develop a learning framework
for assessing the action quality of sport activity. First, it is reasonable to assume that the action quality
directly depends on the dynamic changes in human body movements. Therefore, in this study, we
employed the OpenPose estimation method [21] to extract skeleton data from RGB videos for action
quality analysis. Then, to determine the action category of test videos, we extracted the local motion
pattern from each joint movement volume and aggregated all volumes to form a feature description for
action classification. To accurately predict the quality score of an action video, we developed effective
self-similarity feature descriptors extracted from the self-similarity matrices (SSMs) of joint trajectories
and a joint displacement sequence that has been proven to alleviate the impact of camera motion in
diving, figure skating, and vaulting videos. Lastly, a class-specific regression model learning strategy
was employed to weigh the impact of joints on different action category evaluations. In the testing
stage, with the supervision of the action classifier’s output, the target regression model was determined
to predict the quality score of the testing action video. The framework of our approach is illustrated
in Figure 1.
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Figure 1. The framework of our action quality assessment method. (The input data were RGB
videos of diverse action categories. Skeleton data detection: OpenPose algorithms provided by the
work of Reference [21] were performed to capture skeleton data from the RGB video. Local motion
pattern representation: the local motion pattern was extracted from each joint movement volume
and aggregated to train the action classifier. Action classifier: the Support Vector Machine (SVM)
classifier was developed from labeled training samples to determine the class label of the action video.
Self-similarity pattern representation: we developed self-similarity feature descriptors extracted from
joint trajectories and joint displacement sequences to represent the periodic property of sport activities.
Regression models: we employed a class-specific learning strategy, and trained multiple regression
models specific to different action categories for action quality score estimation.).

The contributions of this paper can be summarized as follows.
(1) First, in this paper, we propose an integrated action classification and action quality regression

learning framework for the human action evaluation of RGB videos. An action classifier and assessment
regression models are utilized, respectively, in different components. The former is used to predict
the class label of a testing video, while the latter is employed to estimate the quality score with the
supervision of a class label.

(2) Second, taking advantage of the view invariant property provided by self-similarity, in this
paper, we develop self-similarity feature representation extracted from joint trajectories and joint
displacement sequences to describe motion patterns of joints and posture changes, respectively. This
encodes not only the dynamic changes of individual joints, but also the layout changes of all body
joints. The experimental results prove that it alleviates the impact of camera motion in realistic scenes,
and improves the skeleton representation’s performance for diving, figure skating, and vaulting videos
of an Olympic sports event.

(3) Experiments on a benchmark dataset were carried out in this study. The results show that the
proposed method improved the rank correlation coefficient of the predicted scores against the judge’s
scores when compared with the baseline and other handcrafted feature methods.

The remainder of this paper is organized as follows. Section 2 introduces the related research
works. Section 3 describes the algorithms developed to implement our action quality assessment
method. After showing experiments in Section 4, we conclude the study in Section 5.

2. Related Works

On the basis of skeleton data analysis, several video-based human action evaluation research
studies have been published in the last decade. There are two major issues focused on in these
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studies. The first relates to capturing useful features from an RGB video to represent human actions for
video-based human action evaluation, and the second relates to developing a robust evaluation method
for accurately assessing the similarity between action features on account of complex environments.
Some of the reviewed published works regarded the task of human action evaluation as a video
sequence recognition problem. They tackled the challenge with the help of a machine learning
method. In summary, the reviewed action quality assessment models proposed for human action
evaluation research can be divided into three categories. These three categories include linear
regression models (LR) [1,5,15], Hidden Markov Models (HMM) [4,7,10], and other statistic-based
learning models [3,6,11,12,14].

In the early work of Reference [11], linear regression was employed to reduce the raw Motion
Capture data for online action recognition. They designed a graph-based action model embodied with
recurrent transitions for motion retrieval. The algorithm was linear and incremental, which makes
it convenient for adding new actions and suitable for real-time application. Pirsiavash et al. [1] first
proposed a two-layer processing framework for video-based human action quality assessment. In the
first layer, they extracted spatio-temporal interest point features from regions returned by a human
detection algorithm and computed discrete cosine transformation (DCT) features of joint displacement
vectors from body joints’ trajectories to represent human actions. Then, in the second layer, they
developed a regression estimator to predict the quality score of a sports activity. Venkataraman et al. [15]
tried to encode human actions through the dynamic changes of each body joint and the relationship
between body joints. They developed two kinds of entropy-based features extracted from human
skeleton data to represent these two clues and used them to realize human action segmentation
from long video sequences and assess the quality score of diving in sports competition videos.
Antunes et al. [5] presented a visual and human-interpretable feedback system for assisting with the
physical activities of patients or athletes suffering from sport injuries. They also used skeleton data
extracted from videos to quantify the action quality of human movements. First, the pre-processing
transformation steps were conducted in both spatial and temporal dimensions to align a testing
sequence with the template. Then, the matching error between the testing sequence and the template
was computed based on the Euclidean distance of joints’ coordinates in order to quantify the similarity
between a testing sequence and a normal one. Furthermore, feedback for guiding how to perform
properly was computed by minimizing the skeleton matching error and returned to the users.

Paiement et al. [4] used 3D skeleton data captured by two kinds of depth sensors and pre-processed
the coordinates of joint sequences for online estimation of the quality of human movements. They
proposed two statistical models: one was the probability density function (PDF) of each individual
pose, and the other was the conditional PDF of a pose sequence in order to represent the features
of normal movements. Then, log-likelihoods of observations compared with the model of normal
ones were computed for quality assessment. They evaluated their methods using a gait on the stairs’
dataset. In their further work of Reference [7], they studied four low-level pose features such as joint
positions, joint velocities, pairwise joint distances, and pairwise joint angles. They also compared three
kinds of discrete-state HMM and one continuous-state HMM to represent pose features and temporal
dynamics of motion. They tested these features and models using periodic and non-periodic motions,
including walking on a flat surface, gait on stairs, sitting, and standing. The experimental results
demonstrated that continuous-state HMM performed better when describing motion dynamics for
these action categories than other models for a frame-by-frame analysis of a motion quality assessment.

To concurrently evaluate the relevant spatial and temporal information of motion, Morel et al. [3]
proposed an automatic morphology-independent and sport-independent method for assessing the
motion of a player by comparing the features with the model learned from experts’ motions. To deal
with the different motion durations, they employed Dynamic Time Warping (DTW) to temporally
align the skeleton data of joint trajectories. Considering the limitation of DTW—that the first and last
frame of two aligned sequences are required to be in correspondence—Baptista et al. [6] investigated
adapting Subsequence Dynamic Time Warping (SS-DTW) and Temporal Commonality Discovery
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(TCD) to provide feedback proposals for improving the action performance of stroke survivors in a
video-based rehabilitation system. Hu et al. [12] presented an action tutor system, which aimed to
achieve a high-level evaluation of human action movements with the aid of Kinect. The body-joint
configuration and shape/depth distribution of the human silhouette were encoded as pose descriptors
to reflect the difference between various postures. Modified DTW and approximate string matching
were further proposed to measure the similarity of actions. In the work of Reference [14], a novel
framework for motion analysis, including the real-time action detection, recognition, and evaluation
of motion capture data, was presented. The descriptor named Gesturelet was calculated for 3D
skeleton joint positions, and combined the Moving Pose [22] and the angle descriptor [23] with
appropriate weighting. Kinetic energy features were employed to construct Bag-of-Words data
representation for action segmentation. In the evaluation component, 3D joint position and linear
velocity errors were calculated and normalized, and then fed into a fuzzy logic engine to produce
semantic feedback interpretations.

In this work, we investigated the effectiveness of using an integrated learning framework
combining action quality assessment with action classification to boost the performance of action
evaluation in realistic scenes. In this framework, a novel feature descriptor extracted from the
self-similarity matrix of joint trajectories and joint displacement sequences was developed to alleviate
the impact of camera motion. Then, class-specific regression models were established to predict
the quality scores of action videos. Additionally, we trained the action classifier to supervise
the determination of the regression model to assess the quality score of a testing action video.
The experimental results proved that this approach is helpful for alleviating approximation errors
caused by inter-class confusion.

3. Proposed Method

3.1. Skeleton Data Extraction

It is a reasonable assumption that the quality of human motion directly depends on the changing
process of human body movement, which can be represented by the motion trajectory and relative
location relationship between joints or body parts. Therefore, learning effective action features from
motion trajectories of action videos plays an important role in developing reliable quality assessment
algorithms for action evaluation. Most recent works employed skeleton data that was captured or
detected from a depth or color camera for action evaluation research. With significant progress in recent
pose estimation techniques and methodologies, skeleton data can now be estimated from RGB image
data. Traditional skeletonization models, such as the deformable part model and flexible mixtures
of parts model, have been replaced by deep neural network-based approaches. OpenPose [21] is an
effective pose estimation method developed by the perceptual computing lab of Carnegie Mellon
University. It is the first real-time multi-person skeleton detection system and works well when applied
to RGB videos. Therefore, to obtain skeleton data of an action performer in an RGB video, we employed
the state-of-the-art OpenPose algorithm to detect joints’ position for each frame and extracted the
trajectories of joints to represent the action video.

OpenPose provides the functionality of 2D real-time multi-person key point detection (15-, 18-,
or 25-key point body/foot key point estimation). The 18-key point skeleton model is composed of
18 human body joints, as illustrated in Figure 2a, including the nose, neck, right shoulder, right elbow,
right wrist, left shoulder, left elbow, left wrist, right hip, right knee, right ankle, left hip, left knee, left
ankle, right eye, left eye, right ear, and left ear. Since action quality assessment is highly dependent on
the changing positions and configuration of human body parts, the motion changes of key points on
eyes, ears, and feet are not clear. Consequently, we only used the motion information of 14 body joints
(N = 0~13) except for the eyes and ears for analysis. After the multi-person’s skeleton detection results
were returned by OpenPose, we carried out scale computation of the human body and a key point
confidence comparison to extract the target performer’s skeleton data and filter out noise data, which
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results from a cluttered background. In the case of occlusion or self-occlusion, zero values of the joints’
coordinate were obtained due to the failure detection of the human body. Then, linear interpolation
was employed to capture the missing skeleton data from the pose estimation results of the previous
frame and the next frame. In this way, the joint trajectories of the target performer were obtained. Some
detection examples of diving and figure skating videos from the MIT Olympic Scoring Dataset [1] are
illustrated in Figure 2b,c.Electronics 2020, 9, x FOR PEER REVIEW  6 of 20 

   

(a) (b) (c) 
 

Figure 2. The 18-key point skeleton model and detection examples of OpenPose [21]. (a) Skeleton 
model of 18 joints, (b) example of diving, and (c) example of figure skating. 

3.2. Action Classification Component 

We considered local feature representations’ advantage in terms of their robustness in dealing 
with intra-class variation, and the fact that holistic feature representations provide a comprehensive 
description of human body movement for a time sequence. Combining both of their strengths, we 
proposed a joint movement feature to acquire discriminative information for action classification. It 
is believed that the semantics of human action are related to the movement pattern of joints and the 
relationship of the human body interacting with its surrounding environment. Therefore, building 
effective features that capture both the discriminative dynamics of body joints and the descriptive 
spatial context for class label determination is investigated in this paper. The pipeline of our action 
classification component is illustrated in Figure 3. 

 
Figure 3. The pipeline of the action classification component. (The input of the action classification 
component was joint trajectories obtained by skeleton detection from an RGB video. Joint motion 
volume: A joint motion volume centered at each of the joint positions and comprised of the n × n 
spatial context was extracted to represent the movement of each joint. Local motion pattern 
representation: We employed the central moment features computed by the noise filtered joint motion 
volume to describe the motion patterns of each corresponding joint, and concatenated all joint features 
into the final motion descriptor. Bag-of-words (BoW) modeling: For the sake of alleviating intra-class 
variation, we employed bag-of-words feature modeling, which utilizes K-means feature clustering 
and cluster frequency statistics to form the final action representation of a video. Action classifier: The 
SVM classifier was developed from features of labeled training samples to determine the class label 
of action instance.). 

Let {𝑆ଵ, 𝑆ଶ, … , 𝑆ே} denote a set of joint trajectories obtained by skeleton detection for video V, 
where N is the number of human body joints, 𝑆௞ = [𝑠ଵ௞, 𝑠ଶ௞, … , 𝑠௞்] represents the trajectory of the kth 
joint, and T is the number of frames of V. Each joint position is located by its coordinates s = [𝑠௫, 𝑠௬, 𝑠௧] 
in discrete (x, y, t)-space. To capture the spatial context of joints, a n × n dimensional local patch 
centered at each joint position s௞ = ൣ𝑠௫௞, 𝑠௬௞, 𝑠௧௞൧ is extracted from video frames where 𝑘 = 1~𝑁. All 

Figure 2. The 18-key point skeleton model and detection examples of OpenPose [21]. (a) Skeleton
model of 18 joints, (b) example of diving, and (c) example of figure skating.

3.2. Action Classification Component

We considered local feature representations’ advantage in terms of their robustness in dealing
with intra-class variation, and the fact that holistic feature representations provide a comprehensive
description of human body movement for a time sequence. Combining both of their strengths, we
proposed a joint movement feature to acquire discriminative information for action classification. It is
believed that the semantics of human action are related to the movement pattern of joints and the
relationship of the human body interacting with its surrounding environment. Therefore, building
effective features that capture both the discriminative dynamics of body joints and the descriptive
spatial context for class label determination is investigated in this paper. The pipeline of our action
classification component is illustrated in Figure 3.

Let
{
S1, S2, . . . , SN

}
denote a set of joint trajectories obtained by skeleton detection for video V,

where N is the number of human body joints, Sk =
[
sk

1, sk
2, . . . , sk

T

]
represents the trajectory of the kth

joint, and T is the number of frames of V. Each joint position is located by its coordinates s =
[
sx, sy, st

]
in discrete (x, y, t)-space. To capture the spatial context of joints, a n × n dimensional local patch
centered at each joint position sk =

[
sx

k, sy
k, st

k
]

is extracted from video frames where k = 1 ∼ N.
All patches extracted over a temporal duration ( t = 1 ∼ T) are assembled into a motion volume of
joint k, denoted by vk(k = 1 ∼ N), which is illustrated by the red cuboids in Figure 3.

To filter out noise data resulting from failure or false detection of the joint position, 2D
Gaussian smoothing is first performed for the joint motion volume vk. Then, the central moment
features mr

i, j( i, j = 1 ∼ n, r = 1, 2) for each super-pixel vk
i, j of joint motion volume vk are calculated

according to Equation (1).

mr
i, j =

1
T
∑T

t=1

(
Gi, j,t −G

)r
, G =

1
n× n× T

∑T
t=1

∑n
i=1

∑n
j=1Gi, j,t (1)

where Gi, j,t is the value of the pixel located at the (i, j, t)-coordinate in filtered volume vk. Features of
all the super pixels contained in a joint motion volume vk are assembled to form the motion feature
mk, and to represent the motion pattern of the kth joint. Then, all the features of N joint volumes are
concatenated to form the final spatio-temporal feature description to represent the action instance
occurring in video V.



Electronics 2020, 9, 568 7 of 21

Electronics 2020, 9, x FOR PEER REVIEW  6 of 20 

   

(a) (b) (c) 
 

Figure 2. The 18-key point skeleton model and detection examples of OpenPose [21]. (a) Skeleton 
model of 18 joints, (b) example of diving, and (c) example of figure skating. 

3.2. Action Classification Component 

We considered local feature representations’ advantage in terms of their robustness in dealing 
with intra-class variation, and the fact that holistic feature representations provide a comprehensive 
description of human body movement for a time sequence. Combining both of their strengths, we 
proposed a joint movement feature to acquire discriminative information for action classification. It 
is believed that the semantics of human action are related to the movement pattern of joints and the 
relationship of the human body interacting with its surrounding environment. Therefore, building 
effective features that capture both the discriminative dynamics of body joints and the descriptive 
spatial context for class label determination is investigated in this paper. The pipeline of our action 
classification component is illustrated in Figure 3. 

 
Figure 3. The pipeline of the action classification component. (The input of the action classification 
component was joint trajectories obtained by skeleton detection from an RGB video. Joint motion 
volume: A joint motion volume centered at each of the joint positions and comprised of the n × n 
spatial context was extracted to represent the movement of each joint. Local motion pattern 
representation: We employed the central moment features computed by the noise filtered joint motion 
volume to describe the motion patterns of each corresponding joint, and concatenated all joint features 
into the final motion descriptor. Bag-of-words (BoW) modeling: For the sake of alleviating intra-class 
variation, we employed bag-of-words feature modeling, which utilizes K-means feature clustering 
and cluster frequency statistics to form the final action representation of a video. Action classifier: The 
SVM classifier was developed from features of labeled training samples to determine the class label 
of action instance.). 

Let {𝑆ଵ, 𝑆ଶ, … , 𝑆ே} denote a set of joint trajectories obtained by skeleton detection for video V, 
where N is the number of human body joints, 𝑆௞ = [𝑠ଵ௞, 𝑠ଶ௞, … , 𝑠௞்] represents the trajectory of the kth 
joint, and T is the number of frames of V. Each joint position is located by its coordinates s = [𝑠௫, 𝑠௬, 𝑠௧] 
in discrete (x, y, t)-space. To capture the spatial context of joints, a n × n dimensional local patch 
centered at each joint position s௞ = ൣ𝑠௫௞, 𝑠௬௞, 𝑠௧௞൧ is extracted from video frames where 𝑘 = 1~𝑁. All 

Figure 3. The pipeline of the action classification component. (The input of the action classification
component was joint trajectories obtained by skeleton detection from an RGB video. Joint motion
volume: A joint motion volume centered at each of the joint positions and comprised of the n × n spatial
context was extracted to represent the movement of each joint. Local motion pattern representation:
We employed the central moment features computed by the noise filtered joint motion volume to
describe the motion patterns of each corresponding joint, and concatenated all joint features into
the final motion descriptor. Bag-of-words (BoW) modeling: For the sake of alleviating intra-class
variation, we employed bag-of-words feature modeling, which utilizes K-means feature clustering and
cluster frequency statistics to form the final action representation of a video. Action classifier: The
SVM classifier was developed from features of labeled training samples to determine the class label of
action instance.).

We propose applying the Bag-of-Words (BoW) [24] model for action representation. Specifically,
the unsupervised K-means algorithm is first performed on all joint motion volume features extracted
from training videos to obtain K clusters for constructing the action codebook. The center of each
cluster is called a visual word, and all centers of K clusters form a visual codebook for action modeling.
Then, the original feature is projected onto the closest visual word in the action codebook. All features
of an action video are projected and aggregated into an occurrence frequency histogram of visual
words. This forms the final BoW feature representation of the action video.

Lastly, BoW features with class labels are fed into maximum margin classifier learning, as
formulated in Equation (2).

minw,b
||w||2

2
, s.t. Y

(
wTHC + b

)
− 1 ≥ 0, (2)

where HC denotes the feature vector of a training video for classification and Y is the ground-truth
action class label of each training video provided by manual annotation in the benchmark dataset. w
and b represent the normal vector and bias of the classification hyperplane, respectively.

3.3. Quality Assessment Component

As stated above, skeleton-based pose feature representations intuitively reflect the changing
process of human body movement and provide significant information for action quality assessment.
Therefore, when developing an accurate action quality assessment method, it is preferable to encode
the dynamic changes of joints or body parts into feature representation for action analysis. However,
the fine-grained quality assessment of human action is confronted by the challenges of intra-class
variations, such as different scales of the human body, variation in motion velocity, individual style,
and changes due to camera motion. We performed skeleton data preprocessing, including noise
filtering, scale normalization, and spatial alignment, to tackle the problem of intra-class variations.
Furthermore, self-similarity patterns were extracted from joint trajectories and joint displacement
sequences, respectively, to model the invariant dynamics of human body motion and to deal with view
changes in realistic scenes.

Another motivation is the observation that the movement ranges of joints are different for various
action categories. Therefore, the importance of different joint movements cannot be considered
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identical for action quality evaluation. For example, as far as serves, smashes, and swings in tennis and
badminton activity are concerned, the movement of upper limbs ranges more significantly than that
of lower limbs. On the contrary, the remarkable change that occurs in lower limb motion should be
addressed in pommel horse riding, parallel bars, and football. Furthermore, all limb movement may be
considered equal for figure skating and diving quality assessments. Therefore, it should be noted that,
for different action categories, the similarity measurement of quality features should address weight
assignment for the impact of different joints. To address this problem, a class-specific regression model
was developed to weigh different impacts of joint movements and to obtain more accurate evaluation
scores for fine-grained human action quality assessment in this work.

The quality assessment component of our proposed learning framework consists of the
preprocessing of joint trajectories, joint displacement sequence extraction, feature extraction from the
self-similarity matrix (SSM) of joint trajectories and joint displacement sequence, and class-specific
regression learning. The training process of our class-specific action quality assessment component is
illustrated in Figure 4.
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Figure 4. The training process of our quality assessment component. (The input of the action
classification component was joint trajectories obtained by skeleton detection from an RGB video.
Joint trajectory detection and preprocessing: We performed noise filtering, normalization, and spatial
alignment processes for detected joint trajectories to deal with failure or false detection, scale variation,
and spatial transformation of human motion. Joint displacement extraction: As the middle of the left hip
and right hip was selected as the central point, the displacement of each joint relative to the central point
was computed to represent the layout relationship between human body parts. Self-similarity volume
of joint position extraction: Temporal self-similarity matrix of each joint trajectory was computed
to capture view invariant patterns of intra-joint dynamic changes. Self-similarity matrix of joint
displacement extraction: Temporal self-similarity matrix of all joint displacements was computed to
capture view invariant patterns of inter-joint dynamic changes. Feature description: the Histogram of
Gradient (HOG) descriptor was employed to describe the pattern structure of two kinds of self-similarity
matrices. Class-specific regression learning: We utilized two types of regression strategy—support
vector regression and ridge regression—to develop class-specific regression models for an action
quality assessment.).

3.3.1. Pre-Processing of the Joint Trajectory

The original skeleton data detected from RGB videos often contain noise in cases of occlusion
and cluttered environments in realistic applications. To obtain robust similarity quantization for
fine-grained assessment, the first processing step of skeleton data is the noise filtering of incorrect joint
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coordinates resulting from incorrect human detection. Then, normalization and alignment processing,
including the scale, transition, rotation, and appearances, are subsequently conducted to deal with
various intra-class variations.

In the case of occlusion or self-occlusion, the failure or false detection of the human body leads to
outliers of joint coordinates in skeleton estimation that lead to an unreliable representation of human
motions. In this study, discrete cosine transformation was performed for discrete coordinates of each
joint trajectory to filter out zero values or sharply changing coordinates resulting from failure or false
pose estimation. Low-frequency components were preserved for the reliable detection of human
body positions.

On one hand, the scale of captured skeleton data can be quite diverse due to different distances
between the subject and camera. The original joint coordinates are required to be normalized to a
prototypical range for comparison. The scale normalization process is formulized as follows. Suppose
that you are given skeleton data

{
S1, S2, . . . , SN

}
detected from an action video I, where N denotes the

number of joints and Sk =
[
sk

1, sk
2, . . . , sk

T

]
represents the motion trajectory of the kth joint through T

consecutive frames of I. First, the middle of Rhip (Joint 8) and Lhip (Joint 11) of the first frame is defined
as the central point, and the distance from Neck (Joint 1) to the central point is defined as the normalized
length. Then, the joints’ coordinates are scaled by the normalized length. The normalization process
can be formulated by the following equation.

s′kt =
sk

t

‖ s1
1 −

s8
1+s11

1
2 ‖

, (3)

where sk
t =

[
sx, sy, t

]
denotes the origin coordinate of joint k in frame t in the (x, y, t)-space.

Then, spatial alignment is conducted by performing rotation transformation. The rotation angle θ
is determined by projecting the vector from Lhip to Rhip onto the x-axis. Then, each joint’s coordinate
is transformed by rotating θ-degree, as formulated by Equation (4).

θ = acos(

−−−−−−−→(
s11
− s8

)
·
→
ox∣∣∣|s11 − s8|

∣∣∣‖ →ox ‖
),
→
s
′

=

[
cosθ sinθ
cosθ −sinθ

]
→
s , (4)

where,
→
s =

[
sx, sy

]
and

→
ox = [1, 0].

3.3.2. Self-Similarity Feature Description

The motion pattern for different viewpoints varies significantly for an action, as shown in Figure 5.
It illustrates two different joint trajectories of the same person performing a diving action in the side
and front views. The first row presents the skeleton detection results on the side view and the second
row shows the skeleton detection results on the front view. It should be noted that a reliable feature
representation for fine-grained quality assessment has to be robust for different camera positions.

Junejo et al. [25] introduced the use of trajectory-based self-similarity matrices (SSMs) to encode
humans observed from different views for classifying human actions. They proved that the Histogram
of Gradient (HOG) and Optical Flow (OF) features extracted from a self-similarity matrix are stable
under view changes of an action. In Reference [25], for calculating the trajectory-based SSM of{
S1, S2, . . . , SN

}
, each element of SSM is computed by the equation below.

di j =
1
N

N∑
k=1

‖ sk
i − sk

j ‖2
, (5)



Electronics 2020, 9, 568 10 of 21

where sk
t =

[
sx, sy, t

]
denotes the original coordinate of joint k in frame t in the (x, y, t)-space, and ‖ . ‖2

represents the Euclidean distance.
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It is worth noting that each element of the temporal self-similarity matrix in Reference [25]
represents the accumulated coordinate’s offset over all body joints for a frame of t, as formulated
in Equation (5). However, it completely neglects the individual motion dynamics of each joint and
the relationship between body joints’ relative positions. We believe that both of these factors can be
essential for an action similarity measurement and should be addressed in feature representation.
Different from the SSM feature in Reference [25], we represent the trajectories of each joint of the
human body independently, and further analyze the displacement sequence of inter-joints to build the
temporal self-similarity matrices. As a result, temporal self-similarity matrices of joint trajectories and
displacement sequences are computed, respectively, to capture view invariant patterns of intra-joint
and inter-joint dynamics.

The calculation process is formulized as follows. Suppose that you are given preprocessed
skeleton data

{
S1, S2, . . . , SN

}
through the procedures outlined in Section 3.3.1, where N denotes the

number of joints and Sk =
[
sk

1, sk
2, . . . , sk

T

]
represents the motion trajectory of the kth joint through T

frames of the image sequence. The temporal self-similarity matrices of joint trajectories can be denoted
by SSMJs =

[
SSMJ1 , SSMJ2 , . . . , SSMJN

]
, where SSMJk = [dk

i j]T×T
and dk

i j denotes the Euclidean distance
between the position coordinates of the kth joint in frame i and j, as formulated by Equation (6).

dk
i j = ‖ sk

i − sk
j ‖2

(6)

The middle of Rhip (Joint 8) and Lhip (Joint 11) in each frame is regarded as the central point,
and the displacement sequence of skeleton data can be represented by P = [p1, p2, . . . , pT], where
→
pt =

[
p1

t , p2
t , . . . , pN

t

]
and pk

t denotes the displacement of the kth joint relative to the central point in
frame t. It is computed by the equation below.

pk
t = |s

k
t −

s8
t + s11

t
2
|, (7)

where | . | denotes the norm of the vector. Then, the temporal self-similarity matrix of the joint
displacement sequence can be denoted by SSMD = [d′i j]T×T

, where d′i j denotes the Euclidean distance

between two displacement vectors
→
pi and

→
p j belonging to frame i and j. It is computed by Equation (8).

d′i j = ‖
→
pi −

→
p j ‖2 =

1
N

N∑
k=1

‖ pk
i − pk

j ‖2 (8)

The Histogram of Gradient (HOG) feature descriptor extracted from a log-polar semicircle centered
on the main diagonal of the matrix is used to describe the pattern structure of the self-similarity
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matrix of joint trajectories and joint displacement sequences. For a given semicircle area, C =

{ri,θi}(ri = 0 ∼ r,θi = 0 ∼ π), where r is the radius of the semicircle, which denotes the temporal
window extent to be considered, and the origin of the pole coordinate is located at the jth element of
SSM’s main diagonal. C is segmented into 11 blocks equally divided into three sections of the polar axis
and five bins of the polar angle. One block near the origin of the pole ordinate is kept within one-third
of the radius and without division of the polar angle. For each block of C, the normalized eight-bin
HOG feature vector ha

j = [ha
j,b]
′

b=1∼8
is calculated, and the vectors of all 11 blocks are concatenated to

form a feature vector h j = [ha
j ]
′

a=1∼11
of the jth element of SSM’s main diagonal. h = (h1, h2, . . . , hT) is

computed for all elements of SSM’s main diagonal to form a feature description of SSM. Lastly, HOG
feature vectors of all joint trajectories and joint displacement sequences are concatenated to generate
self-similarity feature representation of an action instance H = [hSSMJ1 , . . . , hSSMJN

, hSSMD ].

3.3.3. Class-Specific Regression Model

Not all joints are equally involved in the motion of the human body, and, for different action
categories, the participating joints show different levels of significance. Therefore, different impact
weights should be assigned to distinguish the importance of body joints. We propose a class-specific
regression learning strategy to address this problem. In this strategy, training samples annotated
with class labels and quality scores were used to train regression weight vectors for specific action
categories, which resulted in a more effective evaluation of different categories that shared postures.
This alleviated the confusion. Correspondingly, a more accurate score can be estimated to boost the
performance of a fine-grained quality assessment. The learning process is formulated as follows.

The training set D =
{(

H1
1, y1

1

)
,
(
H1

2, y1
2

)
, . . . ,

(
H1

n1
, y1

n1

)
, . . . ,

(
Hc

1, yc
1

)
,
(
Hc

2, yc
2

)
, . . . ,

(
Hc

nc , yc
nc

)}
consists of action videos annotated with action class labels and quality assessment scores. Hi

j ∈ RK

is the self-similarity feature vector of the jth action instance that belongs to action class i, which is
computed through the feature description procedure described in the previous subsection. yi

j ∈ R
denotes the ground-truth quality score and ni is the number of training samples belonging to action
class i. The regression model wi of the ith action category is trained for all videos of the same action
category by finding a real-valued linear function wiTHi

j, which acquires the minimized approximation
errors between the ground truths and estimated scores. The estimated score is obtained by projecting
the original features onto the transformation space. The learning process is formulated as the following.

argminwi
∑ni

j=1‖ yi
j −wiTHi

j ‖2
, (9)

where wi
∈ RK, yi

j is the ground-truth quality score of the jth action instance belonging to class i and

wiTHi
j is the corresponding predicted score.
The algorithm is performed individually for each action category to obtain a specific regression

model. In the proposed method, two types of regression strategies—Support Vector Regression (SVR)
and Ridge Regression (RR)—are employed to implement this training process. During testing, with
the supervision of the action classifier’s output, the specific regression model is determined to predict
the quality score of the testing video.

4. Experiments

The construction of an action evaluation dataset requires professional experts to annotate training
videos according to their knowledge and experience of relevant fields. The annotation is highly
dependent on the subjective judgement of professionals. It is difficult to collect training samples from
massive action categories, and accurate annotation acquisition requires a great deal of manual effort
when constructing a large-scale dataset of human action evaluation. Therefore, several limitations
are shared with the published dataset of action quality assessment, such as insufficient training data,
a limited number of action categories, a fixed position of the RGB camera, and identical scenes. In this
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study, we investigated the performance of our proposed method for the diving and figure skating
videos of the MIT Olympic Scoring dataset [26], and the gymnastic vaulting videos of the UNLV
Olympic Scoring dataset [27,28].

4.1. Introduction of Datasets and Experimental Setups

The MIT Olympic Scoring dataset [26] contains two action category sport videos: diving and
figure skating. The diving dataset contains 159 videos that include 25,000 frames with scores varying
between 20 and 100. The frame rate of diving videos is 60 fps and each diving instance is about
150 frames. The figure skating dataset consists of 150 videos captured at 24 fps. There is a total
of 630,000 frames, and each action instance is almost 4200 frames. The ground-truth score of each
action video is freely obtained by extracting the judge’s score that is released publicly in sports
footage. The quality assessment score of each action instance varies between 0 and 100. The figure
skating assessment is more suitable for activity evaluation since several action components, such as
jumps, spins, and steps, are included and repeated in each of the videos. Compulsory routines are
required in the performances of the Olympic games, including a spin, axel, spiral, and transition.
However, the sequential order of routines is different in action videos. Therefore, figure skating is more
challenging than diving because of the complexity of activity analysis rather than simple actions. Each
video is annotated with the start frame, end frame, and judgement score of action occurrence. The score
is extracted from the frame by displaying the referee’s decision from the video. Figure 6a,b show some
examples of diving and figure skating frames performed by different people with different views.
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The UNLV Olympic Scoring dataset [27,28] includes sport videos from Summer and Winter
Olympics events on YouTube. It comprises 1189 videos from seven action categories, including
370 videos of single-person diving from a ten-meter platform, 88 videos of synchronized diving from
a three-meter springboard, 91 videos of synchronized diving from a ten-meter platform, 176 videos
of a gymnastic vault, 175 videos of a skiing sport, 206 videos of snowboarding, and 83 videos of
trampolining in Olympic events. In the action categories of vaulting, skiing, and snowboarding, severe
view changes existed in the action videos. Since the motion patterns of a single person’s action are
addressed in our feature representation, synchronized events of more than one person are not taken
into account. Additionally, a long-range shot distance is commonly adopted in filming videos of skiing,
snowboarding, and trampolining. The accuracy of skeleton detection is severely reduced with the
influence of poor pose estimation results. Therefore, we only evaluated our proposed method for vault
videos of this dataset. The vault dataset of UNLV Olympic Scoring includes 176 videos with an average
length of about 75 frames. The frame size is 320 × 240. The ground-truth score of a vaulting video that
ranges from 12.30 to 16.87 is determined by the sum of the “execution” score and “difficulty” score.

In the action classification component, we propose extracting local motion patterns from the joint
motion volume and training the linear kernel-based SVM classifiers to determine the action label of the
testing action video. The estimation action class of the testing video can be obtained by comparing
the output of all classifiers and finding the highest category confidence. For the evaluation of our
classification component, we adopted leave-one-video-out validation for 159 diving videos, 150 figure
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skating videos, and 176 vaulting videos. The performance was measured by the average accuracy
over all videos. The proposed classification method achieved the performance of 92.6% for all action
videos. The average classification accuracies of diving, figure skating, and vaulting were 93%, 89.3%,
and 94.8%, respectively.

For validating the proposed action quality assessment method, the rank correlation coefficient
between the predicted scores and the ground truths was computed to evaluate the performance. We
employed the rank correlation coefficient measurement of two vectors’ similarity to evaluate our
proposed method. It was computed by Equation (10).

ρy,ŷ = 1−
6
∑N

i=1 d2
i

N(N2 − 1)
, (10)

where y is the ground truth score vector and ŷ is the predicted score vector. di denotes the ranking
difference between yi and ŷi of the ith video. A higher ρ value denotes a better estimation performance.
In experiments using the MIT diving and figure skating dataset, we followed the testing schema
introduced in Reference [1]. A random split of action videos was adopted, resulting in 100 videos
being selected as training samples and the rest as test samples. The average rank correlation coefficient
of 200 rounds’ testing results was computed as the final evaluation performance of the dataset.
Additionally, in experiments using the UNLV vaulting dataset, the testing schema introduced in
Reference [27] employing a fixed split of the dataset, namely 120 videos for training and the remaining
56 videos for testing, was followed. The detailed results are presented in the next section.

4.2. Results of the MIT Diving Dataset

According to the evaluation protocol introduced in Reference [1], 100 labeled action videos were
selected randomly as training samples from the diving dataset and the remaining 59 videos were used
as test samples. The rank correlation coefficient between the predicted scores and the ground truths of
this round split was computed. Then, 200 rounds of experiments with different random splits were
conducted according to the same strategy. The evaluation performance was obtained by averaging all
rounds’ rank correlation coefficients. We compared the performance of our proposed method with four
state-of-the-art action feature methods for human action recognition, and several evaluation learning
methods, including the all-action regression model, single-action regression models, support vector
regression of different kernels, and ridge regression.

We compared three feature extraction methods, including spatio-temporal interest points
(STIP) [29], dense sampling (Dense) [30], and skeleton data (Skeleton). The benchmark MIT Olympic
Scoring dataset that we employed to evaluate the proposed method was published in Reference [1].
Additionally, a similar solution strategy was employed both in Reference [1] and our proposed learning
framework. A handcrafted feature engine was first built for feature representation and a regression
model was then developed from the action features for quality assessment. Therefore, we chose
Reference [1] as the baseline method. In Reference [1], the researchers extracted both low-level
spatial and temporal filtering features that captured edges and velocities, as well as high-level pose
features obtained from the discrete cosine transformation of joint displacement vectors, and estimated
a regression model that predicted the scores of actions. They compared their performance with the
space-time interest points (STIP) method [29] and Discrete Fourier Transform (DFT) pose features.
STIP is the abbreviation for space-time interest points and was developed for feature detection in
traditional action recognition research. The method was presented based on the observation that
actions frequently occurred in positions with sharp changes in both the spatial and temporal domains.
It employed a space-time extension of the Harris corner detector to extract the prominent positions of
significant changes in spatial and temporal dimensions from the action video. Then, histograms of
oriented gradients (HOG) and the optical flow (HOF) were calculated and concatenated for each local
spatial and temporal volume centered at the prominent position. All the local features were aggregated
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to form the feature descriptor for action representation. However, it has been proven in Reference [30]
that dense sampling has demonstrated a better classification performance than original STIP for human
action recognition in realistic scenes. Dense sampling extracted video blocks at regular intervals and
scales in space and time by a sliding window moving throughout the whole video. The HOG and
HOF descriptors of each video block were computed and concatenated to represent the local feature of
each spatial and temporal position. All local feature descriptors were aggregated to form the final
feature representation of the whole video. Skeleton data can be obtained from RGB videos using the
pose estimation algorithm. Pose features extracted by transformation and projection of the original
skeleton data were regarded as being encoded with high-level semantics of human actions. Therefore,
we compared the performance of our skeleton data extraction method with that of STIP [29] and dense
sampling [30] using the benchmark MIT Olympic Scoring dataset.

On the other hand, we developed self-similarity feature representation extracted from joint
trajectories and joint displacement sequences to describe motion patterns of joints and posture
changes. The self-similarity matrices employed to encode human actions were initially proposed in
Reference [25], in which only the coordinate’s offset over all body joints was accumulated for a single
frame, and the individual motion dynamics of each joint and the relationship of body joints’ relative
positions were neglected. In contrast to Reference [25], we encoded the motion dynamics of each body
joint independently, as well as the displacement sequence between body joints, to build temporal
self-similarity matrices. On the basis of skeleton data representation for human actions, we compared
our proposed feature method with the baseline self-similarity matrix feature [25] and the pose feature
captured from discrete cosine transformation (DCT) [1] for the original coordinates of human body
joints. The performance comparison of our proposed feature and the reviewed features of the MIT
diving dataset is presented in Table 1.

Table 1. Quality assessment results on the Massachusetts Institute of Technology (MIT) diving dataset.
The average rank correlation coefficients between the predicted results and the ground truth of different
feature representation and evaluation methods are presented (The higher the value, the better the
performance.).

STIP * Dense Skeleton + DCT Skeleton + SSM * Our Method

All-action SVR-Linear 0.07 0.09 0.19 0.13 0.20

Single-action SVR-Linear * 0.18 0.16 0.45 0.35 0.52

Single-action Ridge Regression 0.07 0.10 0.32 0.30 0.4 1

1 The bolded value indicated the best performance of all compared feature methods. * STIP means space-time
interest points feature method. SSM indicates self-similarity matrices feature method. SVR means support vector
regression method.

As shown in Table 1, skeleton-based feature representations exhibited a significantly greater
strength than low-level features of STIP or dense sampling under different evaluation strategies for the
diving video assessments. On the basis of the same skeleton data detection results, the DCT feature
method captured from the discrete cosine transform on the original coordinates of joints achieved
better performances at 0.19, 0.45, and 0.32 under different evaluation strategies, in comparison to
the corresponding results of 0.13, 0.35, and 0.30 obtained by the SSM feature method. This is likely
because the SSM feature accumulated the position offsets of all joints between each frame of the video
sequences. Therefore, it completely discarded the motion information of individual joints of the human
body and the relationship between body joints. The DCT feature captured the dynamic changes of
human body movement. However, it simply considered the change of joints’ position relative to the
centroid of the human body along the time dimension, and neglected the motion patterns of each joint
trajectory and the changes of the joints’ correlation. The proposed feature method extracted patterns
from the self-similarity matrix of each joint trajectory and joint displacement sequence. It encoded
not only the dynamic changes of individual joints, but also the pose feature described by the layout
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changes of all body joints. It achieved the best rank correlation coefficients of 0.20, 0.52, and 0.4 among
all the experienced feature methods for the MIT diving dataset.

Furthermore, we compared the performance of different evaluation methods, namely all-action
support vector regression (all-action SVR) evaluation, single-action support vector regression
(single-action SVR) evaluation, and single-action evaluation ridge regression (single-action ridge
regression) evaluation for this dataset. All-action evaluation trained a unified regression function
to assess all action categories, and single-action evaluation employed the strategy of specific-action
training to learn a specific assessment function for each action category from annotated action features.
As shown in Table 1, the performance difference is not clear between single-action ridge regression and
all-action evaluation under low-level STIP (single-action, 0.18, all-action, 0.07) and dense sampling
features (single-action, 0.16, all-action, 0.09). However, the estimation results were significantly
improved under the same skeleton-based feature representation, and the performance of single-action
evaluation was significantly superior to that of all-action evaluation. This indicated that a dedicated
quality assessment model for specific action categories is suitable for sport activity scoring. Therefore,
it is less effective to design one unified feature evaluation function to assess various kinds of feature
patterns’ similarities for all action categories. We also attempted different kernel functions of support
vector regression evaluation and compared the evaluation methods of SVR and Ridge Regression
(RR). It was found that SVR with a linear kernel achieved a better performance of 0.52 than the ridge
regression method, which displayed a value of 0.4. In addition, the linear kernel always achieved
better results than the Radial Basis Function (RBF) kernel and sigmoid kernel in SVR regression.

The predicted score of each testing video for the MIT diving dataset from our best rank correlation
coefficient performance is presented in Figure 7. The horizontal axis denotes the index of the action
video for testing, and the vertical axis represents the predicted quality score. The data series of the
GT_test indicate the ground truth scores of test videos, and the pred test corresponds to the estimated
scores of the proposed method.
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4.3. Results on the MIT Figure Skating Dataset

The figure skating activity of the MIT Olympic Scoring dataset is more challenging than the
diving action. The frame rate of figure skating videos is 24 fps and the length of each video is about
4200 frames. Therefore, complex activity, rather than a single action, is involved in a figure skating
video. Other challenges are the irregular camera motion and cluttered background that commonly
exist in long-duration recorded videos. Compulsory routines are required and performed successively
in each video, such as jumps, spins, turns, steps, and moves. However, the order of execution for
custom actions is not strictly restricted. Moreover, significant pose variations seriously affected the
performance of action quality assessment due to the appearance of athletes, irregular changing of the
camera position, and zooming in and out for the sake of capturing the best recording effect.
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To obtain effective feature representation of complex activities in long-duration videos, we divided
each video into 10 segments with an equal length. Feature extraction was performed for each segment,
and all segments’ features were concatenated to represent the action feature of the whole video.
The performance using the figure skating dataset was also evaluated according to the testing protocol
in Reference [1] where the average rank correlation coefficient of 200 experiments was computed with
random splitting. In this case, 100 action videos were selected as training samples and the rest were
selected as tests. The performance comparison of our feature method and the baseline method and
other state-of-the-art feature methods was investigated. The details are presented in Table 2.

Table 2. Quality assessment results on the MIT figure skating dataset. The average rank correlation
coefficients between the predicted results and the ground truth of different feature representations and
evaluation methods are presented.

STIP * Dense Skeleton + DCT Skeleton + SSM * Our Method

All-action SVR-Linear * 0.13 0.15 0.21 0.15 0.25

Single-action SVR-Linear 0.21 0.23 0.37 0.19 0.41

Single-action Ridge Regression 0.20 0.21 0.25 0.17 0.28

* STIP means space-time interest points feature method. SSM indicates self-similarity matrices feature method. SVR
means support vector regression method.

From Table 2, it can be observed that most of the skeleton-based feature representations achieved a
superior performance in comparison to low-level STIP or dense sampling feature methods. In skeleton
data-based feature representation, the best mean rank correlation coefficients of the Discrete Cosine
Transform (DCT) transformation feature and our proposed feature were 0.37 and 0.41, respectively,
which outperformed STIP (0.21) and dense sampling (0.23) with single-action Support Vector Regression
(SVR) employing a linear kernel. The proposed feature representation slightly improved the result
of DCT and achieved the best value of 0.41. The promotion was limited, likely due to the simple
segmentation of videos according to the equal length strategy, and the synchronization of segments
between different action instances that were not considered. It is noted that the performance of the
original SSM feature method was clearly decreased for this dataset, and the best result obtained was
0.19, which was inferior to the low-level feature of STIP and dense sampling. This indicated that
the original SSM feature is unsuitable for fine-grained feature representation of long-duration video
sequences, likely because it accumulated all joints’ relative position offsets between each two successive
frames of a video sequence. However, the motion data of each joint and joint relationship important
for describing the intrinsic characteristic of different contained actions were completely ignored. We
also compared the all-action evaluation and single-action evaluation methods, SVR regression, and the
RR regression method using this dataset. The comparison of different evaluation methods is presented
in Table 2. In terms of the best rank correlation coefficient obtained, the predicted score of each testing
video for the MIT figure skating dataset is illustrated in Figure 8.
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4.4. Results on the UNLV Vault Dataset

The UNLV vault dataset comprises 176 videos of gymnastic vaulting captured from five
international competitions of the Summer and Winter Olympics on YouTube. The average length is
75 frames per vault video. The frame size is 320 × 240. The ground-truth score of each vaulting video is
freely obtained by extracting the judge’s score that is publicly released in sports footage. It ranges from
12.30 to 16.87, and is determined by the sum of the “Execution” score and “Difficulty” score. Although
a short average length and relatively simple actions are contained in vault videos compared with those
of diving and figure skating, severe view changes exist in this dataset due to the different broadcast
configurations employed for different events. Additionally, the low-resolution of some broadcasting
videos make them more difficult to employ for action quality scoring.

We followed the evaluation protocol in Reference [27], which consists of a fixed split of the dataset,
where 120 videos were chosen as training samples and the rest of the 56 videos were selected as testing
samples. The comparison of our feature method with other reviewed state-of-the-art feature methods
and different evaluation methods is presented in Table 3.

Table 3. Quality assessment results for the UNLV vault dataset. The rank correlation coefficient
between the predicted results and the ground truth is presented.

STIP Dense Skeleton + DCT Skeleton + SSM Our Method

All-action SVR-Linear 0.05 0.10 0.15 0.09 0.17

Single-action SVR-Linear 0.13 0.16 0.41 0.33 0.47

Single-action Ridge Regression 0.11 0.12 0.35 0.31 0.39

From Table 3, it can be concluded that skeleton-based feature representations exhibited a
significantly greater strength than low-level features of STIP and dense sampling under most of
the different evaluation strategies used for vault video assessment. In skeleton data-based feature
representation, the best mean rank correlation coefficients of the DCT transformation feature, SSM
feature, and our proposed feature were 0.41, 0.33, and 0.47, respectively. It outperformed STIP
(0.13) and dense sampling (0.16) with single-action SVR using a linear kernel. The proposed feature
representation improved the performance and achieved the best result of 0.47. In the comparison of
different evaluation methods, as is shown in Table 3, it could also be found that, even though the
performance difference between single-action evaluation and all-action evaluation under low-level
STIP and dense sampling features is not clear, singe-action evaluation significantly improved the
performance of skeleton-based feature representations. It is noted that the ridge regression obtained
better results for this dataset than for the diving and figure skating datasets. The predicted score of
each testing video for this dataset is illustrated in Figure 9.
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4.5. Comparison with State-of-the-Art Feature Methods

We also compared our method with other state-of-the-art feature methods for the MIT diving,
MIT figure skating, and UNLV vault dataset, as shown in Table 4.

Table 4. Comparison results of the proposed method with the baseline and other relevant methods.

MIT Diving Dataset MIT Figure Skating Dataset UNLV Vaul Dataset

STIP feature method [1] 0.10 0.21 –

Pose+DFT method [1] 0.27 0.31 –

Pose+DCT method [1] 0.41 0.35 –

ApEn method [15] 0.45 – –

Our approach 0.52 0.41 0.47

As a baseline method, Pirsiavash et al. [1] proposed a general learning-based framework to assess
the quality of human-based actions from videos. They proposed using DFT and DCT transformation
of original coordinates of human body joints detected by the Flexible Parts Model [31], and selected k
low frequency coefficients to represent human actions. They evaluated the proposed feature method
using the MIT diving and figure skating datasets and compared the performance with two kinds
of low-level features, namely the STIP feature and DFT pose feature. For the MIT diving dataset,
the best results of the STIP feature were 0.07 with the support vector regression and 0.10 with ridge
regression. The DCT pose feature achieved the best result of 0.41, which was superior to the STIP
feature value of 0.10 and DFT pose feature value of 0.27. For the MIT figure skating dataset, the DCT
transformation-based pose feature obtained the result of 0.35, which was better than the STIP feature
value of 0.21 and DFT transformation pose feature value of 0.31. Venkataraman et al. [15] investigated
approximate entropy-based (ApEn) feature representation for segmenting untrimmed motion capture
data, and only evaluated their method for assessing the quality of diving actions included in the
MIT Olympic Scoring dataset. They reported the best result of 0.45 for the diving dataset, which
showed that a 10% improvement was achieved in the rank correlation coefficient when compared to
Reference [1].

As shown in Table 4, from the results on MIT diving and figure skating of the above-mentioned
handcrafted features, we can conclude that our proposed feature method achieved the best rank
correlation coefficients of 0.52 and 0.41, respectively, for the two actions. It is believed that the proposed
feature representation can better encode the dynamics of human motion for the fine-grained quality
assessment of human actions than the reviewed state-of-the-art feature methods by capturing the
self-similarity patterns from joint trajectories and joint displacement sequences.
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5. Conclusions

In this paper, we have proposed an integrated category classification and regression-based
evaluation framework for fine-grained human action quality assessment. In this framework, for
action classification, the local motion patterns of body joint-based feature representation are extracted
to train the discriminative classifier. The output of the classifier is used to supervise the quality
assessment process in the testing stage. To deal with intra-class variations and acquire effective
dynamic representation, the semantic pose feature captured from the self-similarity matrix of joint
trajectories and joint displacement sequences is developed. A class-specific learning algorithm is
employed to build an evaluation function for each action category. The experimental results show
improvements for both the diving and figure skating datasets in comparison with other handcrafted
feature methods.

The limitations of our proposed method include the fact that the segmentation of long videos
has simply been considered and the synchronization of segments has not been researched. Our
method is more suitable for assessing well-segmented action instances. When complex activities rather
than actions are contained in videos with a long-time duration, the quality score is strongly affected.
In future studies, semantic segmentation and alignment methods will be addressed to promote the
practical application of the proposed framework.
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