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Abstract: In terahertz imaging systems based on Gaussian beam active illumination and focal plane
array detectors, severe image distortion has been observed, which significantly reduces the resolving
power of the imaging system. To solve this problem, a novel computational method, Light Field
Imaging (LFI), has been introduced for terahertz imaging. A conventional transmission-type terahertz
imaging system based on a gas-pumped terahertz source and terahertz Focal Plane Array Detectors
(FPA) arrays is established to analyze the problem of image distortion. An experimental virtual
camera array terahertz LFI system is also established. With the acquisition and reconstruction of
synthetic aperture terahertz light fields, the improvement on resolving power and SNR performance
have been validated.

Keywords: terahertz imaging; light field imaging; synthetic aperture imaging; image distortion;
resolving power

1. Introduction

Terahertz imaging is a novel imaging method with promising application fields. Terahertz waves
are electromagnetic waves with a wavelength between 30 and 3000 µm or a frequency between
0.1 and 10 THz. Terahertz waves have a low electron energy and a high penetration against dielectric
materials, which make them applicable for see-through imaging for multiple materials such as plastic,
ceramic, woods, papers and polymer composites [1–3]. Compared with common see-through imaging
methods such as X-ray, microwave and ultrasonic imaging, terahertz imaging has advantages in
penetration, non-destructive and resolving power, which make it a promising and irreplaceable imaging
method in multiple application fields, including industrial Non-Destructive Testing (NDT)—[4,5],
heritage conservation [6–8], aerospace [9], security [10–12], biology and medicine [13].

Thanks to the fast development of terahertz source and detector component techniques, terahertz
Focal Plane Array Detectors (FPA) based on a microbolometer [14,15] and complementary metal
oxide semiconductor (CMOS) [16–19] make fast, large-scale, high-resolution, incoherent terahertz
imaging methods available. However, passive mode imaging in the terahertz region is infeasible
for the see-through applications mentioned above, as little background radiation in the terahertz
region exists in the environment, and the method is still limited by the performance of commercially
available devices [20]. To ensure an acceptable signal-to-noise ratio (SNR) and resolve the power for
samples with a certain thickness, most terahertz imaging applications rely on a high-power, collimated
source for illumination [3]. The beam of a high power continuous-wave (CW) terahertz source such
as a gas-pumped laser and quantum cascade laser (QCL) is a Gaussian beam. When used in active
illumination imaging, the wavefront characteristics of the Gaussian beam would lead to distortion,
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which significantly reduces the resolving power. A beam homogenizer would help in reducing such
distortion; however, a beam homogenizer diffuses beam energy, which leads to negative impacts
in transmission-type imaging applications that require a sufficiently effective imaging depth and
concentrated beam energy. Moreover, the microbolometer and CMOS terahertz FPA have issues in
terms of Fixed Pattern Noise (FPN) [21,22], which leads to adverse effects on the SNR and the resolving
power of the imaging result.

An optical system with a larger aperture will help to solve the problems mentioned above.
However, limited by the size of the system and the cost of processing, enlarging the aperture size is
impracticable in most applications. Introducing the Light Field Imaging (LFI) method will help to
solve this problem. LFI is an incoherent computational imaging method which extracts information
from data of higher dimensions and achieves a better performance compared with conventional
methods [23]. In LFI, both the positional and directional information of the imaging object are
gathered simultaneously, implementing enhancements in SNR, dynamic range, depth of field (DoF)
and additional depth information about the images [24] with reconstruction algorithms. In the visible
region, light field acquisition methods based on microlens arrays [24], camera arrays [25], and coded
aperture compressive sensing [26] are now being widely studied. Moreover, the LFI technique
is also utilized in multiple applications including dynamic refocusing [24], DoF extension [27],
all-in-focus reconstruction [28], depth estimation [29,30], 3D reconstruction [31], super-resolution
reconstruction [32,33], synthetic aperture imaging and high-speed photography [27].

Jain et al. [34] proved the feasibility of LFI in the terahertz waveband with a simplified experimental
setup. In their experiments, the LFI of a point source and simple opaque object was implemented with
a camera module of a low angular (approximately 1.5◦) and spatial (approximately 28 mm) resolution.
In their study, the effects caused by the coherence of light sources and the aperture of the imaging
system are not further discussed, which are important factors for practical imaging systems and objects.
In fact, these effects cause the main differences in the image characteristics between the terahertz and
visible region.

In this paper, a novel, incoherent synthetic aperture terahertz imaging method based on the LFI
technique is demonstrated, and the performance improvements of the new method are validated.
The phenomenon of image distortion happening in the terahertz imaging system with Gaussian
beam illumination has been investigated. With microbolometer-based terahertz FPA detectors and
a high-power gas-pumped terahertz source, a terahertz virtual camera array LFI system has been
established. With the experiments of transmission-type imaging configuration, the effectiveness of the
LFI method in removing the image distortion and improving the resolving power compared with a
conventional setup is validated.

2. Theory and Methods

2.1. Light Field Theory and Mathematical Model

The plenoptic model is a model used to describe the “light field”, i.e., the spatial propagation
of light flowing. In particular, in the plenoptic model, the light flow is simplified as sizeless “rays”,
described by their position and direction and by the plenoptic function. Assuming that the rays emitted
by light sources do not spatially overlap, the positional and directional information of light rays can be
described using four dimensions.

In the case of a two-plane scheme, a 4D light field can be described with a 4D plenoptic function
LF(x, y, u, v), which describes rays with the intersectional coordinates of two parallel planes.

Specifically, two planes uv and xy are defined with a fixed distance, and the rays will intersect
with two lanes. The combination of all the rays passing through every coordinate on planes uv and
xy create the full light field, as shown in Figure 1. The two-plane scheme is introduced for practical
light field acquisition methods. For any combination of two dimensions in the 4D plenoptic function,
for example, rays intersect with a certain (u, v) or certain (x, y) coordinate—we call this a 2D slice of the
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4D plenoptic function. In practice, the “slice” is used to describe the sub-aperture images, macro-pixels
or epipolar images of 4D light fields.
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Figure 1. The two-plane scheme of 4D light field.

The procedure of LFI can be divided into two steps: the acquisition and the reconstruction.
The acquisition phase physically gathers and resolves the 4D light field of the object, and the
reconstruction phase generates enhanced images with the acquired 4D light field information.

2.2. The Acquisition of the 4D Light Field

Compared with conventional imaging, the acquisition of the 4D light field initiates both positional
and directional resolution simultaneously, namely the resolving of individual light rays. Imagine an
FPA imaging system, or “camera”: light rays are focused by optic systems (called the main aperture) at
the uv plane, then gathered, resolved and imaged by detector pixels at the xy plane. The pixels are the
partitions of xy planes. The light signal received by pixels corresponds to the sum of light rays emitted
from a certain position in all directions (which can be gathered by the main aperture). The light signal
received by pixels is converted into images. We perform the same partition on the uv plane, and the
partition on the uv plane is called a “sub-aperture”. The lightbeams illuminated on a single pixel
through the single sub-aperture could be approximately regarded as rays in the plenoptic model. Rays
correspond to the partition of light emitted by a certain point source along a certain direction. In this
case, besides the image plane in the image space, the conjugated plane of the xy plane in the object
space can be regarded as the xy plane as well, after a simple coordinate transformation, as shown in
Figure 2a.

For an FPA imaging system, when the imaging distance is long enough, relative to the focal length,
the size of the aperture can be ignored, and the whole beam focused on a single pixel through the
aperture can be regarded as an individual ray. Thus, the image recorded by the detector array can
be regarded as a combination of rays in certain positions and different directions, namely a 2D slice
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of the 4D light field. Arranging such cameras on the uv plane, the full light field can be recorded
by recording all of its sub-aperture slices. With this camera array, the 4D light field can be acquired
with a synthetic aperture equivalent to the size of the camera array, and its resolution depends on the
resolution and spacing of the camera modules. In this case, the xy plane does not really exist in the
image space, since there is no common image space for every single camera. Besides this, the common
plane conjugated to image planes of all cameras (supposing they are regularly arranged and have
the same optical parameters) in the object space is regarded as the xy plane, as shown in Figure 2b.
In practice, the light field slices are acquired with a camera array consisting of multiple FPA cameras,
or a virtual camera array for static light fields, with a limited number of cameras.
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2.3. Light Field Reconstruction

The reconstruction of a 4D light field is a simulation of the focusing and imaging procedures of
the optical imaging system in a geometric optic manner, based on the 4D light field information.

For a given 4D light field LF(x,y,u,v), the planes, uv, xy, and the distance F between planes uv and
xy are given.

When replacing the plane xy with the plane x′y′ in the description, where the distance from plane
uv is z = αF, the transformed plenoptic function could be described as

Lz(x′, y′, u, v) = LF
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which is equal to shearing the plenoptic function in xy dimensions. The ray passing through the point
(x0, y0, z) in space and the point (u,v,0) on the plane uv could be described as
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Substituting the deferent points (u,v) in Equation (2) gives us the combination of the rays passing
through the point (x0, y0, z). Assuming we know the depth z(x0, y0) of all points (x0, y0). in the scene,
the Equation (2) could be transformed into
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and the reconstructed image could be described as

E(x0, y0) =
s

Lz(x0,y0)(x
′, y′, u, v)dudv
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s
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(4)

As mentioned in Section 2.2, in practical light field acquisition, the 4D light field is discretized
into pixels in all xyuv dimensions, and the slices of the light field in uv and xy dimensions are
discretized into the 2D combination of pixels as well. Therefore, in the practical implementation of the
reconstruction algorithm, the continuous integration in Equation (3) is transformed into the numerical
sum of discretized pixels. For every discretized pixel (x0,y0) in the reconstructed image, the algorithm
traverses all the slices (u,v) of the light field, searches for the pixels corresponding to the ray through
(u,v), (x′,y′) and (x0,y0), and calculates the pixel values from all the slices.

If the input light field is from a single physical aperture, the algorithm simply simulates the
imaging procedure in geometric optics and generates reconstructed images as a result. If the input
light field is from the camera array described in Section 2.2, the algorithm generates reconstructed
images based on a synthetic aperture.

3. Experiment and Result

3.1. Distortion Analysis of Gaussian Beam Active Illuminated Terahertz Imaging

In this section, the phenomenon of the image distortion observed in the active illuminated
terahertz imaging process will be discussed.

In our experiment, a transmission-type terahertz imaging system based on Gaussian beam active
illumination and an FPA terahertz camera has been established. In particular, the terahertz beam from
the source is collimated by a Teflon collimation lens, transmitted through the object, and then received
by the camera at different positions. In the experiment, the object and the source are fixed. The camera
moves around and acquires images at different positions. The camera remains static when acquiring
images to avoid motion blur. The experimental setup is shown in Figure 3.
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Figure 3. Experimental setup of transmission-type terahertz imaging system.

In the experiment, a Coherent SIFIR–50 gas-pumped continuous-wave terahertz source is used
as an illumination source. The terahertz source works at 2.52 THz, and the output power is about
50 mW, which provides a stable and good SNR performance. An INO IRXCAM-THz–384 terahertz
camera module is used to acquire terahertz images. The camera uses FPA detectors based on uncooled
microbolometers, with a 35 µm pixel size and a resolution of 384 × 288 pixels, and is capable of
capturing images at a 50 fps rate. The camera module has Silicon imaging optics, with a 44-mm focal
length, a field of view of about 17.3 × 13.0 degrees, and a spatial resolution of about 0.5 mm. In the
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experiment, an extra Teflon filter is mounted in front of the camera module to filter the unwanted
infrared signal in the environment.

The imaging object of the experiment is a polypropylene composite Pelican case with bumped
markings. The thickness of the case is about 4 mm, and the diameter and thickness of the bumped
markings are about 5 mm and 0.2 mm, respectively, as shown in Figure 4. In the experiment, the distance
between the source and the object is 2000 mm, and the distance between the object and the camera is
600 mm.
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Figure 4. Visual photograph of (a) the polypropylene composite Pelican case and (b) the bumped
markings, A and B.

Figure 5 is the image acquired by the camera when in different positions. For active illuminated
imaging, when using a point source or collimated beam for illumination, only a portion of the beam
that passes through both the object and the aperture contributes to the imaging result. This portion of
the “effective” beam corresponds to a “bright spot” or “bright circle” in the terahertz image. Refraction
and total reflection occur at the edges of the bumped markings, which results in a significant contrast
in the acquired terahertz images.
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3.2. Resolving Power Analysis of Terahertz LFI Setup 

Figure 5. Terahertz images of the bumped markings, A and B, with the markings at the center and the
edge of the “effective” light spot, captured at different positions, with different markings at the center
of the spot.

Ideally, the round bumped markings should be the same shape in the terahertz image as
their original shapes. In the experiment, when located in the center of the spot, the markings are
imaged correctly as a circle. However, when located near the edge of the spot, the markings are
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significantly distorted and appear to be drop-shaped. The phenomenon of distortion does not occur
when illuminated by a planar homogenized source or incoherent sources in the infrared waveband.
In practical applications, this distortion will significantly affect the resolving power of the imaging.

3.2. Resolving Power Analysis of Terahertz LFI Setup

In this section, compared with conventional transmission-type imaging, the improvement of
terahertz LFI on the resolving power and image distortion mentioned in Section 3.1 will be discussed.

Based on the transmission-type terahertz imaging system mentioned in Section 3.1, a terahertz
LFI system has been established. A virtual camera array based on a terahertz camera module and
motorized translation stages are utilized to replace the single terahertz camera, in order to acquire the
full 4D light field.

The camera module is fixed on a 2D translation stage, which can move in both x and y directions
vertical to the optical axis of the camera. The translation stages drive the camera and acquire the slices
of the full light field in different positions.

In the experiment, the Coherent SIFIR–50 source works at the frequency of 1.40 THz, with an
output power of about 84 mW, which provides a better penetration for the sample used in this part of
the experiment. The experimental setup is shown in Figure 6.
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Figure 6. Experimental setup of terahertz virtual camera array system.

The imaging object is a resolving power test target with concentric circle and line pair patterns.
The base material of the card is epoxy of 0.5 mm thickness, which is transparent to the terahertz wave.
The concentric circle and line pair patterns are printed on the base with copper, which is opaque to
the terahertz wave. The spacing between line pairs ranges from 0.125 mm to 3 mm, and the spacing
between concentric circles ranges from 0.5 mm to 3 mm. The line widths of both line pairs and
concentric circles are 1 mm, as shown in Figure 7. In the light field acquisition, the number of sub
images is 11 × 31 sub-images, and the spacing is 5 × 5 mm. The distance between the source and the
object is 2000 mm, and the distance between the object and the camera is 600 mm.

Figure 8 is one of the enlarged sub-aperture images; i.e., the imaging result of a single shot with
a single camera. Compared with the results in Section 3.1, the result of line pairs and concentric
circles suffered a severe and irregular distortion, which significantly reduced the resolving power of
the imaging system for the patterns and made the positions and spacing of lines and circles almost
indistinguishable. Moreover, the interference fringes and fixed pattern noise of the detectors further
reduced the performance of the imaging result.
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Figure 9a,b shows the results of the light field reconstruction. Figure 9a is the result directly
reconstructed by the 4D light field reconstruction algorithm, and Figure 9b is the result further
enhanced with the Unsharp Mask (USM) algorithm. In reconstructed light field images, the complete
portions of the object are clearly imaged. The distortion is almost removed, and the line and circle
patterns are clearly distinguishable. The interference fringes and FPN are significantly suppressed
as well. In the directly reconstructed image, the fourth line and the first circle with a spacing of
0.5 mm are clearly distinguishable. In the USM-enhanced image, although the suppression of noise is
weakened, the resolving power of patterns is increased, since the third line, with a spacing of 0.375 mm,
becomes distinguishable. Compared with the result of the conventional method, the performance
and resolving power are significantly improved by using the synthetic aperture method, and the
unrecognizable patterns as a result of the conventional method become fully recognizable with the
synthetic aperture method.
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4. Conclusions

In this paper, an experimental transmission-type terahertz imaging system and a virtual camera
array terahertz LFI system were established based on a high-power gas-pumped terahertz source
and terahertz focal plane array detectors. On the one hand, the phenomenon of image distortion
occurred in terahertz imaging, and its influences on resolving power have been observed and analyzed;
on the other hand, a novel synthetic aperture method based on the LFI technique was introduced,
and its improvement of image performance and suppression of image distortion were validated in the
experiments carried out.

In the imaging experiment on a resolving power test target, the conventional method showed an
unacceptable result, where the distortion made the line and circle patterns completely indistinguishable,
while the synthetic aperture method with USM sharpening enhancement showed a much better result:
the line pairs with less than 0.5 mm spacing were clearly resolved.

The application field of terahertz imaging requires imaging methods with high efficiency, high
performance and compact integration. Computational imaging methods such as LFI are promising
approaches to overcome the disadvantages of current imaging methods caused by the limitations
in terahertz sources and detector technologies and to fulfil further requirements in other potential
application fields.
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