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Abstract: An improvement to the line-of-sight (LoS) approximation of the equivalence principle used
in far-field computations is presented. In the original LoS approximation of the equivalence principle,
the integral equation uses only the surface currents on the LoS surface, as well as the edge currents on
the contour of the LoS surface, which is the replacement of the surface integrals over the shadow part
of the surface. Here, we show that the integration over one type of surface current on the LoS surface
and edge currents is sufficient, which reduces the resources required for the LoS radiation pattern
computations by half. The proposed theory is a rigorous analysis of Love’s Equivalence theory
with an introduction of the point-of-symmetry concept. The proposed method makes use of the
vector-potential field representation to derive the improved LoS equivalence principle. The proposed
approach is validated with the calculation of the far-field radiation pattern of a patch antenna using
the Finite Difference Time Domain (FDTD) simulations.

Keywords: antenna radiation patterns; FDTD methods; image theory; physical optics; electromagnetic
diffraction; electromagnetic scattering; equivalence principle

1. Introduction

The surface equivalence principle has been widely used in the analysis of the radiation patterns of
antennas. It is a rigorous solution to Huygens’ principle [1], which was introduced by Schelkunoff [2].
In the surface equivalence principle, the original problem with radiating sources is transformed into an
equivalent problem with sources on an arbitrary surface enclosing the original sources [3–5]. Nearly all
problems involving the surface equivalence principle make use of the free-space Green’s function in
the integration of both types of surface currents (electric and magnetic).

A few attempts have been reported to reduce the integration to just one type of current, e.g., [6,7].
Typically, physical optics approximations, along with the image theory, are used. In this paper, we
present a unique mathematical justification for the use of only one type of surface current for a class
of enclosing surfaces, used in the far-field antenna pattern calculations with the line-of-sight (LoS)
approximation to the equivalence principle [8].

When radiation/scattering problems are solved with numerical techniques, the equivalence
principle is practically the only means of far-field pattern computation. The LoS approximation,
which reduces the computational time significantly in comparison with the standard equivalence
approach, was introduced in [8]. It considers the source contributions from surface currents that are
on the LoS surface only; as well as the currents along the LoS contour (see Figure 1). The “shadow”
surface Sext, which is not in LoS and is extended to the far-field region is suspended by the LoS contour
CLoS. The integration of the equivalent currents on Sext is approximated by a contour integration over
the contour currents on CLoS. The effect of the contour current is shown to be significant [8].
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Here, we justify the use of only one type of surface current on the LoS surface. This improves 
the efficiency of the radiation pattern computations by a factor of two when used with numerical 
techniques such as the finite-difference time-domain (FDTD) method. This is because one radiation 
integral is computed instead of two. 

 
Figure 1. Illustration of the line-of-sight (LoS) equivalent surface, the LoS surface contour, the shadow 
region, the point-of-symmetry, and the observation point. 

First, we briefly review the LoS approximation to the equivalence principle; then, we present 
our new theory, which justifies the use of only one type of surface current on the LoS surface. In 
Section 4, we present an example of the computation of the radiation pattern of a microstrip patch 
antenna using the FDTD method. We show the comparison between the standard equivalence 
principle using both surface currents on the entire virtual surface and our LoS equivalence 
approximation with either type of surface currents that are only on the LoS surface. 
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Figure 1. Illustration of the line-of-sight (LoS) equivalent surface, the LoS surface contour, the shadow
region, the point-of-symmetry, and the observation point.

Here, we justify the use of only one type of surface current on the LoS surface. This improves
the efficiency of the radiation pattern computations by a factor of two when used with numerical
techniques such as the finite-difference time-domain (FDTD) method. This is because one radiation
integral is computed instead of two.

First, we briefly review the LoS approximation to the equivalence principle; then, we present our
new theory, which justifies the use of only one type of surface current on the LoS surface. In Section 4,
we present an example of the computation of the radiation pattern of a microstrip patch antenna using
the FDTD method. We show the comparison between the standard equivalence principle using both
surface currents on the entire virtual surface and our LoS equivalence approximation with either type
of surface currents that are only on the LoS surface.

2. The LoS Approximation to the Equivalence Principle

The relationship between the far zone electric field E and the electric and magnetic field vectors
ES and HS on the surface enclosing the radiating sources is [5]:

E(P) ≈ −
jωµ0

4π

x

S

(
n̂×HS

) e− jkr

r
ds−

jωηε0

4π

x

S

[
r̂×

(
n̂× ES

)] e− jkr

r
ds (1)

here, r is the distance from the surface source point Q to the observation point P, n̂ is the unit normal to
the surface, r̂ is the unit vector from Q to P, k is the free-space wavenumber, ω is the frequency, and η is
the free space intrinsic impedance, the integration surface S contains all surface currents. The Green’s
function is denoted as:

G(r) =
e− jkr

4πr
(2)
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In the LoS approximation [8], the surface integrals in Equation (1) over Sext are replaced by contour
integrals over CLoS. The electric field at the observation point E1 consist of two parts, (E1_LoS + E1_ext),
and it is expressed as:

E1 ≈ − j
[
ωµ0

s
SLoS

(
n̂×HS

)
G(r)ds +k

s
SLoS

r̂×
(
n̂× ES

)
G(r)ds

]
− j

[∮
CLoS

[
ωµ0(r̂× n̂)HS

RCH + kn̂ES
RCE

]
G(r)dl

] (3)

where ES
R and HS

R denote the components of the electric and magnetic field vectors along the unit vector
r̂, respectively. The subscript 1 refers to the region outside the surface enclosing the sources. Region 2
is inside the surface; see the shadow region in Figure 1. The factors CE and CH are obtained from
the directional derivatives along r̂ of the phase terms of the electric and magnetic fields, respectively,
on the LoS contour [8]:

CE,H =

[
− j

(∣∣∣∣∣dΘE,H

dr

∣∣∣∣∣
CLoS

+ k
)]−1

(4)

In an FDTD simulation, the radiating structures are enclosed in a volume (virtual) with absorbing
boundaries to mitigate undesired reflection at the virtual boundary. The replacement of the surface
integral over Sext with the contour integral along CLoS is an approximation. The error due to this
approximation is typically low. For this, the worst error for field calculation with Mur’s first-order
absorbing boundary condition is given by the empirical formula,

eLoS ≈ 15
(
λ

lmin

)2

% (5)

where lmin is the minimum distance between the actual radiating structure to the virtual (LoS) surface.
The error contribution to the overall radiation pattern is further reduced when it is combined with the
dominating component, the LoS surface currents.

The computational effort of the LoS-based pattern calculation is mostly due to the evaluation of
the surface integrals over the LoS surface SLoS. Below, we show that with the proposed LoS equivalence,
only one of the two surface currents integral is required.

3. Surface Sources with LoS Equivalence

3.1. Vector Potentials and Surface Sources

The proposed theory is similar to Love’s equivalence principle [5], where the field (E2, H2) within
the enclosed region 2 is set equal to zero. Then, the equivalent surface current densities are:

Js = n̂×HS (6)

and
Ms = −n̂× ES (7)

where ES and HS are the field vectors on the surface, and n̂ is the surface unit normal. The surface
currents radiate in an unbounded medium (region 1), while the fields in region 2 are zero. The surface
unit normal n̂ points toward region 1.

We represent the equivalent problem in terms of the vector potentials A and F due to the surface
currents Js and Ms, respectively. In open space,

A = µ0

x

S

JsG(r)ds =
x

S

Aeds (8)
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and
F = ε0

x

S

MsG(r)ds =
x

S

Feds (9)

where Ae = µ0G(r)Js and Fe = ε0G(r)Ms are the elemental vector potentials due to the respective
current densities of the surface element. The field vectors in terms of the vector potentials are [5]:

E = EF + EA = −
1
ε0
∇× F +

1
jωµ0ε0

∇×∇×A (10)

and
H = HA + HF =

1
µ0
∇×A +

1
jωµ0ε0

∇×∇× F (11)

Ishimaru [9] refers to these relations as the Franz formulas. It can be shown [10] that the Franz
formulas are equivalent to the well-known Stratton-Chu formulas,

E =
x

S

[
− jωµ0G

(
n̂×HS

)
−

(
n̂× ES

)
×∇G−

(
n̂·ES

)
∇G

]
ds (12)

and
H =

x

S

[
jωµ0G

(
n̂× ES

)
−

(
n̂×HS

)
×∇G−

(
n̂·HS

)
∇G

]
ds (13)

here, the gradient of G is taken with respect to the observation point. Notice that the surface integrals
in Equation (3) are an approximation of the Stratton-Chu formula (12) for the case of a far-zone field.

In terms of the elemental vector potential Fe, EF becomes

EF = −
1
ε0
∇×

x

S

Feds (14)

as per Equation (10). Since ∇× operates on the coordinates at the point of observation while the surface
integral is over the location of the sources, these two operators can be interchanged:

EF = −
1
ε0

x

S

(∇× Fe)ds (15)

Similarly, we obtain

EA =
1

jωµ0ε0

x

S

(∇×∇×Ae)ds (16)

The total field in terms of the elemental vector potentials is thus given by

E =
x

S

(
−

1
ε0
∇× Fe +

1
jωµ0ε0

∇×∇×Ae
)

ds (17)

and

H =
x

S

(
1
µ0
∇×Ae +

1
jωµ0ε0

∇×∇× Fe
)

ds (18)

3.2. Field Extinction in Region 2

As per Love’s equivalence principle [5], in region 2, the condition E2 = 0 and H2 = 0 is imposed,
from which the surface currents are obtained. In general, both types of currents exist on the enclosed
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surface. In terms of the elemental vector potentials, the condition of zero fields inside region 2 is
obtained by setting the following conditions:

∇× Fe
2 =

1
jωµ0

∇×∇×Ae
2 (19)

and
∇×Ae

2 = −
1

jωε0
∇×∇× Fe

2 (20)

which ensure the fulfilment of Equations (17) and (18) regardless of the shape of the enclosed surface.
Here, Ae

2 and Fe
2 are elemental vector potentials of the surface currents observed in region 2.

3.3. The Observation Point and Its Point-of-Symmetry

The point-of-symmetry is a point that is radially opposite to the observation point, with the
source point being at the centre of symmetry (see Figure 1). When the observation point is in the far
zone, the point-of-symmetry also falls in the far zone. Thus, in the conventional equivalence principle,
both the observation point and its point-of-symmetry belong to region 1 (outside the closed surface S).
In the LoS equivalence, however, the point-of-symmetry belongs to the shadow region since the virtual
surface S has been extended to a large (beyond far-field) conical frustum, as shown in Figure 1.

We consider the LoS surface to be regular if for each observation point and its corresponding
every surface element on LoS there exists one point-of-symmetry in the shadow region. Two such
points are shown in Figure 1. As an example, Figure 1 shows a conical (or pyramidal) frustum, or for
a tubular frustum, the surface formed by (SLoS + Sext) would be considered regular, also the normal
vector on the LoS surface would be pointing into region 1. The surface Sext, which is not in LoS, can be
approximated to a line integral, which is discussed in detail in the [8].

At the point-of-symmetry, the field of an elemental surface source has a unique relation to its
counterpart at the observation point. Consider a current element in free space together with its
observation point and point-of-symmetry as defined above. If the location of the observation point
with respect to the source point in spherical coordinates is defined by (r1, θ1, ϕ1), then the location of
the point-of-symmetry is

r2 = r1, θ2 = π− θ1, ϕ2 = ϕ1 + π (21)

Resulting in relations such as; sinθ2 = sinθ1, sinϕ2 = −sinϕ1, cosθ2 = −cosθ1, cosϕ2 = −cosϕ1.
From these, the following relations are derived for the curl and the curl of the curl of the vector potential
at the point-of-symmetry and the observation point:

∇×A(r1,θ1,ϕ1) = −∇×A(r2,θ2,ϕ2) (22)

and
∇×∇×A(r1,θ1,ϕ1) = ∇×∇×A(r2,θ2,ϕ2) (23)

By applying the relationships defined by Equations (22) and (23) to Equations (19) and (20),
we obtain the relationships between the elemental vector potentials at the point-of-symmetry
(r2, θ2, ϕ2) and at the respective observation point (r1, θ1, ϕ1):

∇× Fe
1(r1, θ1, ϕ1) = −∇× Fe

2(r2, θ 2, ϕ2) (24)

∇×∇× Fe
1(r1, θ1, ϕ1) = ∇×∇× Fe

2(r2, θ2, ϕ2) (25)

and
∇×Ae

1(r1, θ1, ϕ1) = −∇×Ae
2(r2, θ2, ϕ2) (26)

∇×∇×Ae
1(r1, θ1, ϕ1) = ∇×∇×Ae

2(r2, θ2, ϕ2) (27)
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The result can be summarized as follows: (1) the curl of an elemental vector potential at
the observation point is of the same magnitude but opposite sign as compared to its curl at the
point-of-symmetry; (2) the curl of the curl of an elemental vector potential is the same at the observation
point and its point-of-symmetry.

3.4. The Field at the Observation Point in the Far Zone

Applying the field-extinction formulas, Equations (19), (24) and (27), we obtain

∇× Fe
1 = −

1
jωµ0

∇×∇×Ae
1 (28)

Similarly, using Equations (20), (25) and (26), we obtain

∇×Ae
1 =

1
jωε0

∇×∇× Fe
1 (29)

According to the Franz formulas, Equations (17) and (18), it then follows that the field at the
observation point is due to the superposition of two identical terms—one due to electrical surface
sources and another due to magnetic surface sources. Thus, using Equations (17) and (28), the expression
for the electric field in region 1 is obtained as

E1 = −
2
ε0

x

SLoS+Sext

∇× Fe
1 ds (30)

whereas the expression for the magnetic field is obtained from Equations (18) and (29) as

H1 = −
2
µ0

x

SLoS+Sext

∇×Ae
1 ds (31)

Using the same set of equations, the fields can also be expressed as:

H1 =
2

jωµ0ε0

x

SLoS+Sext

∇×∇× Fe
1 ds (32)

E1 =
2

jωµ0ε0

x

SLoS+Sext

∇×∇×Ae
1 ds (33)

In order to translate this result into a Stratton-Chu formulation in terms of the surface field,
as in Equations (12) and (13), we make use of Kirchhoff’s far-field approximation to the free-space
Green’s function:

G̃(r) =
e− jk(r+r̂·r′)

4πr
(34)

here, r = rr̂ is the position vector of the observation point. It is independent of the integration point.
r′ is the position vector of the source (integration) point. The use of Equation (34) simplifies the
differential operations on the elemental vector potentials: ∇ is equal to − jkr̂, ∇× is equivalent to − jkr̂×
and ∇×∇× simplifies to −k2r̂× r̂× [8]. Using these with Equations (30) or (33) gives

E1 = −2 jk
x

SLoS+Sext

r̂×
(
n̂× ES

)
G̃(r)ds (35)

or
E1 = −2 jωµ0

x

SLoS+Sext

(
n̂×HS

)
G̃(r)ds (36)
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respectively.
In the LoS, we replace the surface integrals over Sext with their respective contour integrals,

as per Equation (3). Thus, if we compute E1 through the equivalent electric surface currents, then the
contribution of the LoS surface, E1LoS , becomes

E1LoS = −2 jωµ0

x

SLoS

(
n̂×HS

)
G̃(r)ds (37)

and the contribution from Sext is approximated as

E1ext ≈ −2 jωµ0

∮
CLoS

[
(r̂× n̂)HS

RCH
]
G̃(r)dl (38)

The alternative computation using equivalent magnetic surface currents is also possible.

4. Discussion

The above derivations are summarized here. Equations (17) and (18) describe the field at a
point in space in terms of the elemental vector potentials. The field at any point in region 1 is the
integral (or sum in numerical simulation scenario) of the contributions of all elemental surface currents
on the surface enclosing region 1. Furthermore, with an appropriate shape choice for the extended
surface, there exists a point-of-symmetry in region 2 for every elemental surface current. If the field
in region 2 were to be zero, then even for an elemental surface current contribution, the field should
be zero in region 2. For each observation point in region 1, there are points-of-symmetry in region 2,
corresponding to the surface currents. The fields at all these points-of-symmetry are zero, with these
conditions, Equations (30) through (33) are valid.

The resonant frequency of this patch antenna was determined to be 2.42 GHz. The radiation
pattern is for the E∅ component and it is on the plane cut (shown in Figure 2) that is perpendicular to the
antenna plane and the feed line. Figure 3 shows the simulation results for the radiation patterns for the
three cases: (1) using standard equivalence with both types of surface current over the entire enclosed
virtual surface; (2) using LoS approximation with only magnetic surface current and LoS-contour
current; and (3) using LoS approximation with only electric surface current and LoS-contour current.
All three radiation patterns were normalized to the maximum value of the standard equivalence.
In general, good agreement between all three cases is observed. The minor discrepancies seen in
Figure 3 near the edge are due to the approximation of the edge current integrals. This type of error
was expected, and they were addressed in detail in [8].
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Figure 3. The E-plane co-polarization radiation pattern of the patch antenna.

The general LoS approximation of the far-zone field is given by Equations (3) and (4), this is
also detailed in [8]. According to the theory presented above, we need to resolve either the surface
integral over the equivalent electric current (2n̂×HS) or the one over the magnetic current (2n̂× ES).
This improves the efficiency of the far-field radiation pattern calculations.

We apply the LoS approach with a single surface-current source type to a practical problem
simulated with the FDTD method. We compute the far-field radiation pattern of a printed microstrip
antenna, shown in Figure 2, and verify it by comparing with a computation based on the standard
equivalence where the integration is performed over both surface current types of the whole enclosed
surface. The size of the patch antenna used in the simulation is 44 × 80 mm2. The substrate is of area
110 × 115 mm2, the height is 1.8 mm, and the relative dielectric constant is 2.0. The feed structure of
the antenna is a 50-Ω square coaxial transmission line of length 55 mm followed by a microstrip line of
length 32 mm. The inner conductor of the coaxial line is of cross-sectional dimension 1.8 × 1.8 mm2,
the outer conductor is 5.1 × 5.1 mm2, and the relative dielectric constant is 1.0.

In the FDTD simulation, the excitation source is a Gaussian pulse of width 30 ps. The total
number of iterations is 1600 with 1 ps time-step interval. The mesh size used for the simulation is
120 × 70 × 120 grid cells. The size of the computation domain is 300 × 170 × 260 mm3, and the size of
the virtual box (the equivalent surface) is 250 × 100 × 210 mm3. The absorbing boundaries use Mur’s
first-order absorbing boundary condition [11].

5. Conclusions

We proposed an improvement to the LoS approach to the computation of antenna far-field
radiation patterns using the equivalence principle. We demonstrated that, under the condition of
the point-of-symmetry falling into the zero-field region, the use of one type of surface current in
the LoS method does not degrade the accuracy of the computations. The validation is made with
an application to a practical problem of calculating the radiation pattern of a printed patch antenna.
There is remarkably good agreement between the simulation results of the improved LoS approach and
the standard equivalence method. The efficiency of the new LoS approach, as compared to the standard
equivalence principle, in the calculation of radiation patterns is due to the reduced computation of
surface integration. The total computational time for the new LoS approach is approximately one-sixth
of that required by the standard equivalence for the computation of radiation pattern in the principal
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plane. One half of this improvement is due to using only one type of surface current. Thus, the LoS
approach is an efficient alternative to existing standard algorithms for the computation of far-field
patterns in high-frequency structure simulators.
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