
electronics

Article

Fast Characterization of Input-Output Behavior of
Non-Charge-Based Logic Devices by
Machine Learning

Arun Kaintura 1,*, Kyle Foss 1, Odysseas Zografos 2, Ivo Couckuyt 1, Adrien Vaysset 2,
Tom Dhaene 1 and Bart Sorée 2

1 IDLab, Department of Information Technology (INTEC), Ghent University—imec,
Technologiepark—Zwijnaarde 15, 9052 Ghent, Belgium; Kyle.Foss@UGent.be (K.F.);
Ivo.Couckuyt@ugent.be (I.C.); Tom.Dhaene@ugent.be (T.D.)

2 IMEC, Kapeldreef 75, B-3001 Leuven, Belgium; Odysseas.Zografos@imec.be (O.Z.);
Adrien.Vaysset@imec.be (A.V.); bart.soree@imec.be (B.S.)

* Correspondence: arun.kaintura@gmail.com

Received: 17 June 2020; Accepted: 24 August 2020; Published: 26 August 2020
����������
�������

Abstract: Non-charge-based logic devices are promising candidates for the replacement of
conventional complementary metal-oxide semiconductors (CMOS) devices. These devices utilize
magnetic properties to store or process information making them power efficient. Traditionally,
to fully characterize the input-output behavior of these devices a large number of micromagnetic
simulations are required, which makes the process computationally expensive. Machine learning
techniques have been shown to dramatically decrease the computational requirements of many
complex problems. We use state-of-the-art data-efficient machine learning techniques to expedite the
characterization of their behavior. Several intelligent sampling strategies are combined with machine
learning (binary and multi-class) classification models. These techniques are applied to a magnetic
logic device that utilizes direct exchange interaction between two distinct regions containing a bistable
canted magnetization configuration. Three classifiers were developed with various adaptive sampling
techniques in order to capture the input-output behavior of this device. By adopting an adaptive
sampling strategy, it is shown that prediction accuracy can approach that of full grid sampling while
using only a small training set of micromagnetic simulations. Comparing model predictions to a
grid-based approach on two separate cases, the best performing machine learning model accurately
predicts 99.92% of the dense test grid while utilizing only 2.36% of the training data respectively.

Keywords: machine learning; sequential sampling; data-efficient machine learning; magnetic logic
devices; classification

1. Introduction

The scaling of conventional complementary metal-oxide semiconductors (CMOS) is reaching
its limit [1] in accordance with Moore’s prediction [2], introducing limitations and challenges to
the semiconductor industry. As a result, various new concepts have emerged that aim to extend
the semiconductor industry beyond CMOS technology [3,4]. Non-charge-based logic devices are one
of the leading concepts [5] as these devices are power efficient and ultra-compact [6]. These devices
can operate at high frequencies and offer new features such as non-volatility and low-voltage
operation [5]. A number of such devices have been benchmarked in various publications for low-power
applications [6–11].

With the need for solutions beyond CMOS, the research and development of novel
non-charge-based logic devices have seen a great deal of interest in the past decade [3,4]. These logic

Electronics 2020, 9, 1381; doi:10.3390/electronics9091381 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-2899-4636
http://dx.doi.org/10.3390/electronics9091381
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/9/1381?type=check_update&version=2

Electronics 2020, 9, 1381 2 of 14

devices rely on material properties to store information or perform logical operations. Nano-magnetic
logic (NML), first introduced in [12,13] is a prominent concept in this category. This concept defines
the state variable as magnetization direction (perpendicular magnetization) and information is
processed through a dipolar coupling between nano-magnets. This allows computation to take place
without passing any electric currents, making NML devices consume ultra-low power [6]. However,
these devices possess certain limitations: Their operating frequency is restricted to about 3 MHz
and the physical size to around 200 nm × 200 nm [14]. Contrary to the NML concept, a novel logic
scheme was proposed in [15] based on the concept of bistable canted magnetization states. This scheme
utilizes direct exchange interaction between two canted regions to perform logic operations and proves
to be fast and power-efficient in comparison to other spin-based logic schemes [8,14].

The performance and ability of these devices to perform logic are dependent on various dynamics
such as input field conditions and magnetization behavior. The key to characterizing the behavior of
a new design is to identify input conditions for which the logic device behaves as desired. Traditionally,
this is carried out by running a wide range of micromagnetic simulations (full grid sampling) using
a simulator (such as Object-Oriented Micromagnetic Framework (OOMMF) or mumax [16,17]) for
the micromagnetic system under study. The complexity of these devices increases with the number of
logic structures, therefore, making simulations severely computationally expensive. Hence, there is
a need to characterize these devices with minimal computational requirements.

Data-efficient machine learning (DEML) techniques have proven useful at reducing
the computational requirements of a variety of engineering problems [18–21]. These techniques
can be applied to micromagnetic problems for various objectives. One of the key applications of DEML
in micromagnetics could be to characterize the behavior of a new design. The behavior of a device can
be defined as operating if it performs a useful logical process and defined as not operating if it does
not behave in a desired manner. In particular, in machine learning, such problems are identified as
a classification problem that aims to separate a set of inputs into distinct groups (or classes). This is
achieved by training a classifier or a model to a set of (training) data. Traditionally, this is a fixed data
set. However, when data is expensive, the training data set can be generated via an adaptive sampling
strategy. The adaptive algorithm starts with a small initial training data and adaptively enriches
the training data by adding new samples from interesting regions in the design space. Henceforth,
the trained classifier can be used to predict labels on any new unlabeled data. The main advantage
of using DEML techniques over traditional practice is that full grid sampling is not required and
only a small training set is sufficient to characterize device behavior. This significantly expedites the
characterization of device behavior.

To apply novel DEML techniques to micromagnetic devices, we have considered a device that
utilizes direct exchange interaction between two canted regions to perform logic operations [15].
Several state-of-the-art sampling strategies are combined with machine learning classification
models. This paper evaluates the performance of the Explicit Design Space Decomposition (EDSD),
Neighborhood-Voronoi (NV), Probability of Feasibility (PoF), and Entropy [18,22–24] sampling
strategies. The performance of each technique is compared by three classifiers: Support Vector
Machines (SVM), Gaussian process (GP), and Logistic regression (LR) [25–27] built on a training data
that is obtained by adaptive sampling strategies. The preliminary analysis of the problem is presented
in [28]. In the next section, various adaptive sampling algorithms and classification procedure are
discussed.

2. Classification Methods

An adaptive sampling algorithm is used to intelligently select new training data in the input space
in a sequential way. The adaptive sampling process can be model-dependent or model-independent
depending on the sampling criteria or information utilized in the sampling process.

Electronics 2020, 9, 1381 3 of 14

In the context of this work, we have used various adaptive sampling schemes that perform
exploration and/or exploitation in the design space (NV, EDSD, PoF, and Entropy [18,22–24]).
These techniques are discussed in the following subsections.

2.1. Neighborhood-Voronoi

Neighborhood-Voronoi is derived from the LOLA-Voronoi algorithm [29]. It is a model
independent algorithm that requires no intermediate model construction during the selection of
new training data. It has two components: Exploration (space-filling) and exploitation (refining
boundaries), which are combined to identify boundaries of different class labels in the input space. NV
maintains a balance between exploration and exploitation components, which allows the identification
of previously undiscovered regions in the input space. One of the key advantages of using the NV
algorithm is that no intermediate model is required during the selection of new training samples,
which makes NV extremely efficient to execute. Given a set of K points, the exploration ensures
that the input space is sampled as evenly as possible. A Voronoi-tessellation partitions the plane
into Ck cells and the corresponding volume of each Voronoi cell is computed and assigned a score
V(xk) (Equation (1)). Cells with larger relative volumes correspond to sparse areas and a higher score
is assigned:

Vxk =
Vol(Ck)

Vol(C1) + · · ·+ Vol(CK)
, W(xk) =

{
1⇔ ∀ 1 ≤ i, j ≤ N : L(xi

k) = L(xj
k)

0⇔ ∃ 1 ≤ i, j ≤ N : L(xi
k) 6= L(xj

k)
(1)

G(x) = V(x) + W(x) x ∈ t (2)

xnew = arg max min||x− (xk ∪ t)|| (3)

The NV-exploitation component refines the boundaries between different classes by favoring new
samples in those regions. It computes a neighborhood of N points

{
xn

k
}N

n=1 for each chosen point
xk. It should ensure that all neighbors are located closest to the chosen point while at the same time
far apart from each other. Once the neighborhood is constructed, the labels of all neighbors L(xn

k)

are compared for any disagreement (mismatch). Any disagreement corresponds to the boundary
region and a higher score W(xk) is assigned to that Voronoi cell (Equation (1)). Finally both scores
are combined G(x) for each Voronoi cell and each cell is ranked (Equation (2)). The next sample
location is then selected from the highest ranked cell. This is achieved by generating t random points
in the ranked voronoi cell for each xk, and one point which is far away from other existing samples are
chosen (Equation (3)).The process is repeated until the input region is sufficiently covered.

2.2. Explicit Design Space Decomposition

Explicit Design Space Decomposition [22] is a model-dependent technique that identifies
boundaries between different classes. It requires intermediate models to be built during the selection
of new samples. These models are explicitly used to define nonlinear boundaries or disjoint regions in
the input space. These boundaries are treated as a limit state function/optimization constraint which is
iteratively refined by adding new samples selected from regions where the misclassification probability
is the highest. The reconstruction of classification boundaries continues until a converging criterion is
met. Typically, EDSD uses Support Vector Machines (SVMs) to construct a limit state function. The
SVM algorithm can efficiently handle discontinuities in the region. A SVM limit state function can be
defined as:

s(x) = sign

{
b +

M

∑
j=1

λiyiK(xi, x)

}
(4)

Electronics 2020, 9, 1381 4 of 14

where b is a scalar quantity which is also noted as the bias and λi are the Lagrange multipliers.
K is the SVM kernel function. Equation (9) can be used to classify any given arbitrary point in the
design space depending on the positive or negative condition of s.

The selection of new training points begin by first generating initial training samples using Design
of Experiments (DOE). In this work Centroidal Voronoi Tesellations (CVT) [30] is used to generate
initial samples. The binary output to these observations is then calculated and a SVM limit state
function is constructed. The SVM decision boundary is continuously refined by sampling new points
on the SVM decision boundary that maximizes the distance to the nearest training sample. The process
continues until the convergence criteria is met. The complete algorithm is shown in Figure 1.

Figure 1. Process flow for model dependent on the Explicit Design Space Decomposition (EDSD)
algorithm.

2.3. Probability of Feasibility

Probability of Feasibility is a model-based approach for adaptive design. In a classification
problem [31], it gives a probabilistic estimate of a probabilistic classifier. The PoF criterion selects new
samples in the design space that have a high probability of prediction to remain below a certain limit or
threshold (gmin). In this work, this probability is multiplied by the candidate variance σ2

x,D to include a
component of exploration. Using the PoF criterion, any new point xnew can be selected as:

xnew = arg max
{

σ2
x,D (P(F(x) < gmin))

}
(5)

= arg max

{
σ2

x,D Φ

(
gmin − µx,D

σ2
x,D

)}
(6)

where Φ is the cumulative density function of the standard normal distribution. The PoF criterion is
mostly used with the Gaussian process or Kriging models. Equation (5), F(x) is a random variable
with prediction mean µx,D and variance σ2

x,D at any point x and D in the observed data.

Electronics 2020, 9, 1381 5 of 14

2.4. Entropy

Entropy is a model-dependent approach that can be interpreted as a measurement of homogeneity
(or uncertainty) in the data. Using Bayesian Active Learning the information gain can be expressed in
terms of predictive entropy, and parameter uncertainty can be minimized. Higher weight is given to
samples that maximize the decrease in expected posterior entropy. In this work, we used Bayesian
Active Learning by Disagreement [32] (BALD) algorithm and it computes entropies in the binary
output space. Using BALD, the new point xnew that minimizes the entropy can be obtained as:

xnew = arg max
x

H[y|x, D]− Eθ∼p(θ|D) [H[y|x, θ]] (7)

= h

Φ

 µx,D√
σ2

x.D + 1

− C√
σ2

x.D + C2
exp

(
−

µ2
x,D

2
(
σ2

x.D + C2
)) (8)

where θ is a latent parameter that controls the dependence between input x and output variables y,
i.e., p[y|x, θ] with p being the posterior distribution. The BALD algorithm requires posterior mean
and variance to be computed. These posterior for each x can be easily computed using a GP model.
For any x, the objective in Equation (7) is simplified to Equation (8) for a GP model. H[y|x, D] can be

approximated to h
(

Φ
(

µx,D√
σ2

x.D+1

))
, C is

(√
π log 2

2

)
, and H[y|x, D] = h(Φ(f (x))) can be expressed in

terms of the entropy function h as h(p) = −p log p− (1− p) log(1− p).

2.5. Classifier Description

In this section, various classifiers (SVM, GP, and LR) that are used in this work are briefly discussed.
For a detailed discussion, interested readers are referred to [25–27]. Firstly, the SVM classifier can be
given as:

s(x) = b +
M

∑
j=1

λiyiK(xi, x) (9)

where b is a scalar quantity, which is also noted the bias and λi are the Lagrange multipliers.
K is the SVM kernel function. A suitable selection of the kernel function is vital for the performance
of the SVM model. The Gaussian process model is widely used in regression problems owing to its
well defined posterior formulation and computation. For classification problems, it is not possible to
compute posterior quantities directly and a suitable approximation is required to compute posterior
quantities. Classification models aim to predict the class label (yi) for given test inputs (xi). In a binary
case, the probability to classify xi in one of the two classes is given by:

p(yi = 1|xi, M) =
∫

p(yi = 1|xi, f)p(f |xi, M)d f (10)

where M is the training set and f is a function to map. In many cases, the above expression is intractable
and suitable approximation (such as Laplace approximation, expectation propagation) is required in
order to obtain prediction mean and variance. Finally, in a binary case the probability to classify in one
of the two classes using Logistic Regression is:

p(xi) =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)
(11)

where the coefficients β j can be obtained by maximum likelihood estimation.
In the next step, SVM, GP, and LR classifiers are trained on the training data collected by all

adaptive algorithms. The constructed classifiers are validated against labeled test data to assess model
performance. In the final step, the performance of all considered adaptive sampling algorithms is
compared on different classifiers using various classification performance metrics [33]. The complete

Electronics 2020, 9, 1381 6 of 14

adaptive classification process is summarized in Figure 2. The initial samples are obtained by
the Latin Hypercube Design (LHD [34]) and the corresponding output values (labels) are obtained by
micromagnetic simulations. Next, a new batch of samples (sample) is obtained via an adaptive design
algorithm. The output (labels) are computed for additional samples by micromagnetic simulations
for mode M1 and by sub-sample from a dense grid sampling for mode M2. The process is repeated
until the stopping criterion is reached. The classifier is then constructed on the final training data
set. Note that in Figure 2, the highlighted portion and dotted area corresponds to the loop for
model-dependent techniques only.

(a) (b)
Figure 2. (a) Work flow for the model-independent process. (b) Work flow for the model-dependent
process for adaptive sampling and classification.

3. Logic Device Description

The structure of the logic device[15] evaluated is shown in Figure 3a. The device dimensions
are 2 nm thick, 20 nm wide, and 80 nm long. It consists of two regions: Input (R1) and output (R2).
R1 and R2 are interconnected through a magnetic bus and have in-plane and out-of-plane magnetic
anisotropy along the ŷ direction respectively. To achieve a bistable canted magnetization, the length
of the R1 and R2 regions are fixed as 20 nm. To avoid any strong exchange coupling between R1/R2,
the interconnect length is set to 40 nm. Four possible combinations for the R1/R2 states can be
defined based on the bistability of the canted magnetic regions. In the absence of an external magnetic
field these states are defined in Figure 3b. The regions R1 and R2 can have a magnetization state ‘0’
and ‘1’ described by My/Ms ∼= 0.2 and My/Ms ∼= −0.2. The device is triggered by the application
of an external magnetic field as shown in Figure 3a and a logic operation is performed. The applied
magnetic field is parameterized by amplitude (HR) and duration (TR) and the behavior of the device
responds according to these values. The external field will be applied at region R1 and it is desired to
control the response of region R2. Thereafter, via magnetic exchange interaction, the logic state (0/1)
of the region R1 is transmitted to region (R2).

In order for the device to perform logic, two possible logic operation modes M1 and M2 are
defined, with both modes described in Table 1. For any ‘XX’ with X → (0, 1) in Table 1 represent
the logic state of the entire structure, for instance: ‘01’ represent the logic state of the entire structure
where ‘0’ and ‘1’ are the logic state of the region R1 and R2 respectively. Four possible stable states of
the structure’s magnetization are given as: ‘00’, ‘01’, ‘10’, and ‘11’ as shown in Figure (Figure 3b).

Electronics 2020, 9, 1381 7 of 14

Table 1. Logic operation modes: ‘XX’ represents state of the region R1 and R2 where X is the unknown
logic state of R1/R2 regions. The arrow represents the transition from the initial state of the structure
to the final state.

Mode Logic Operation

M1: State initialization XX→X0 or XX→X1

M2: State propagation (BUF) 0X→X0 or 1X→X1
M2: State propagation (INV) 0X→X1 or 1X→X0

(a) (b)
Figure 3. (a) The device under study: Input (R1) and output (R2) magnetic regions are interconnected
through a ferromagnetic bus region of length 40 nm. [15] (b) Possible initial magnetization states of
the structure with magnetization canted along the y-direction. BUF and INV corresponds to the buffer
and inverter mode respectively.

Under the application of input field (triggering field) the magnetization dynamics of the input
and output regions in the structure (see Figure 3a) change. The switching behavior is dependent on
the magnitude, direction, and duration of the input field. For this purpose, we have considered two
cases based on the direction of the applied input field, see Figure 4.

(a) Input field applied along the y-axis: corresponds to mode M1;
(b) Input field applied along the z-axis: corresponds to mode M2 (BUF and INV).

In this work, field amplitude and duration are parameterized in the domain: 0.5 ≤ HR ≤ 8
(in kA/m) and 0.1 ≤ TR ≤ 0.5 (in ns) respectively for input field application along the y-axis. In
the case of field application along the negative z-axis the field amplitude is parameterized in the
domain: −8 ≤ HR ≤ −0.5 (in kA/m) while TR is the same as in case (a). The initial and final state
of the regions R1/R2 corresponds to before and after the application of the external field. Based on
the input and output states of the regions, it can be determined whether each region switched or
not. Henceforth, from all input field conditions, interesting operating conditions can be extracted.
For any triggered field the logic behavior of the structure in the mode M1/M2 can be extracted by
micromagnetic simulations.

(a) (b)
Figure 4. (a) Field amplitude along ±y. (b) Field amplitude along ±z.

Electronics 2020, 9, 1381 8 of 14

4. Results

The adaptive sampling process starts with initial samples, which are based on LHD.
The corresponding labels are obtained by micromagnetic simulations using OOMMF. To assess
the performance of all techniques a test set of 1271 samples is used. These samples are generated based
on a full grid testing designed to sufficiently characterize device behavior. The results from adaptive
sampling strategies are also compared with equivalent one-shot design generated by LHD on various
classifiers. The performance of all considered approaches is assessed by employing the following
classification performance metrics given for a binary case as:

accuracy =
TP + TN

TP + TN + FP + FN
(12)

precision =
TP

TP + FP
, recall =

TP
TP + FN

(13)

where TP (true positives) is the number of positive class cases classified correctly, FP (false positives)
is the number of negative class cases incorrectly classified as a positive class, FN (false negatives) is
the number of positive class cases incorrectly classified as a negative class, ans TN (true negatives) is
the number of negative class cases classified correctly. Precision defines exactness, i.e., what percentage
of points that the classifier labeled as positive are actually positive. Recall measures what percentage
of positive labels the classifier labeled as positive (best score is 1). The OOMMF micromagnetic
solver [16] is used to perform all micromagnetic simulations whereas GPflowOpt [35], an open-source
python-based package, is used to perform adaptive sampling based on PoF and Entropy criteria.
The NV samples are generated using the SUMO toolbox [31,36]. To generate EDSD samples, the
CODECS toolbox [37] is used.

4.1. Input Field Along Y-Axis

A positive external field is applied along the +y-axis as shown in Figure 4a. In the absence of
any external field, the initial magnetization state of the structure is ‘01’. We are interested in the final
state of R2 after the application of the external field. After field application, the final magnetization
states of the structure will be either feasible (‘00’,‘10’) or infeasible (‘01’,‘11’). This presents a binary
classification problem where magnetization states ‘0’ and ‘1’ are represented by class 0 and class 1.
The adaptive sampling algorithms initiates with an initial 5 samples obtained by a space-filling LHD
design with an exception of EDSD where Centroidal Voronoi Tessellation (CVT) is used. The training
data is extended by adding one sample at a time (adaptively) until a total training budget of 30 samples
is reached.

The training samples generated by adaptive sampling techniques (EDSD, NV, PoF, and Entropy)
and one-shot design (LHD) are plotted in Figure 5. For reference purposes, the true operating and no
operation regions are also plotted in Figure 5a. While, EDSD performed (Figure 5c) more exploitation
around the class boundaries, NV samples maintained a balance between exploration and exploitation
(Figure 5d). In the case of Entropy and PoF, the samples obtained are well defined along the class
boundary (Figure 5e,f). On the contrary, LHD results in a spaced filled design (Figure 5b and clearly
neglects to sample around the class boundary. Overall, a good distribution of the obtained samples is
observed for EDSD, NV, Entropy, and PoF techniques.

Table 2 summarizes the performance of all classifiers built on different training samples.
In the case of PoF, 99.92% classification accuracy is achieved while one-shot design resulted in a
97.4% accuracy of the classifier. Note that, with a total number of 20 samples obtained adaptively
(5 initial + 15 adaptively) by using the PoF algorithm, 99 percent classification accuracy is achieved
on a GP classifier which is a significant improvement over accuracy obtained using a LHD design
of 30 samples. Overall, NV, EDSD, Entropy, and PoF performed marginally better than the one-shot
design. The sampling schemes EDSD, Entropy, and PoF sample well around the decision boundary

Electronics 2020, 9, 1381 9 of 14

which is highlighted in the higher precision and recall values. Moreover, EDSD performs exploitation
uniformly around the class boundary.

(a) (b) (c)

(d) (e) (f)
Figure 5. Sampling performed by Latin Hypercube Design (LHD), EDSD, Neighborhood-Voronoi
(NV), Entropy and Probability of Feasibility (PoF) when external field is applied along + y-axis is
shown in (b), (c), (d), (e) and (f) respectively. Red and blue squares represent points in the no operating
(negative class) and operating regions (positive class, state 1) respectively. The complete operating and
no operating regions are shown in (a).

Table 2. Case 1: Performance comparison of Support Vector Machines (SVM), Gaussian Process (GP),
and Logistic Regression (LR) classifiers constructed on training data obtained from LHD, EDSD, NV,
Entropy, and PoF. Mis. Obs. are the number of observations misclassified by the classifier for class 0
and 1. ‘X’ represents that no intermediate model is required in sampling technique. The intermediate
models used in the model-dependent techniques are highlighted in the corresponding rows.

Algorithm Classifier Model
Dependent

Number
of
Samples

Test Set

Precision Recall Accuracy (%) Mis. Obs.

0 1

SVM 0.97 0.97 97.00 27 11
LHD GP X 30 0.97 0.97 97.40 20 13

LR 0.95 0.95 95.10 21 14

SVM 0.99 0.99 99.44 2 5
EDSD GP SVM 5 + 25 1.0 1.0 99.76 1 2

LR 0.96 0.96 95.59 22 24

SVM 0.98 0.98 97.95 6 20
NV GP X 5 + 25 0.98 0.98 97.63 4 26

LR 0.95 0.95 95.27 14 46

SVM 0.99 0.99 98.58 2 16
Entropy GP GP 5 + 25 0.99 0.99 98.81 0 15

LR 0.95 0.94 94.44 7 63

SVM 1.0 1 99.84 0 2
PoF GP GP 5 + 25 1.0 1.0 99.92 0 1

LR 0.95 0.95 94.80 9 57

Electronics 2020, 9, 1381 10 of 14

Moreover, in Table 2 the number of misclassified observations by a classifier is compared for each
class for different samplings. The results highlight how well a classifier can accurately predict labels
around the class boundaries on a test set. Overall, GP and SVM classifier built on PoF samples results
in the least misclassified observations in all classes.

The missclassification error (in percent), which is computed as the percent of total misclassified
observations predicted by a classifier is visualized in Figure 6a for all cases. PoF and EDSD resulted in
the least misclassified observations (0.078% and 0.236%) while LHD and NV (2.59% and 2.36%) have
the highest missclassification error for the best scenario. The worst performance is reported by the
LR classifier in all cases. Since LR is a linear model and the decision boundary is highly nonlinear,
this performance of LR was expected.

(a) (b)
Figure 6. Total misclassified observations reported for each classifier type for test data (total percent):
(a) External field along +y-axis and (b) external field along −z-axis.

4.2. Input Field Along Z-Axis

The case corresponds to the field application along the negative z-axis as shown in Figure 4b.
Two state propagation behaviors are possible i.e., normal state propagation (buffer mode: BUF)
and inverted state propagation (inverter mode: INV) corresponding to the transitions in mode M2
(Table 1). In the absence of any external field, the initial state of the structure is ‘01’ and ‘00’ for BUF
and INV mode respectively. The feasible and infeasible final states for the BUF mode are (‘00’,‘10’)
and (‘01’,‘11’) while for the INV mode are ‘01’,‘11’ and ‘00’,‘10’.

This is a multi-class classification problem with class labels 0, 1, and 2 are assigned to NOOP
(no operating), BUF, and INV modes respectively. This case is comparatively complex to classify as
there exist regions in the input space which have a significantly small area (Figure 7a). The adaptive
sampling initiates with 20 samples arranged in a TPLHD and a new sample is added one at a time
until a total training data of 100 samples is reached.

The training samples obtained by running various sampling techniques are plotted in Figure 7.
While for reference purpose, true BUF, INV, and NOOP regions are also plotted in Figure 7a. It is
observed that in the case of Entropy and PoF, the samples are densely selected around the edges of the
feasible regions (class boundaries). Moreover, with the same initial design for PoF, Entropy, and NV,
both Entropy and NV are able to identify all operating/NOOP regions (fully/partially) while the PoF
completely failed to identify narrow the BUF region. The EDSD algorithm is able to sample around
all decision boundaries. However, it focused on local exploration around decision boundaries while
missing global exploration (Figure 7c). The NV algorithm is able to perform global exploration and
exploitation and results in sparser samples than EDSD. The performance of SVM, GP, and LR classifiers
constructed on different training sets is reported in Table 3 for all cases. A significant improvement is
observed in the classification accuracy of models constructed on adaptive samples over LHD. Overall,
the best accuracy is achieved by a GP classifier with the PoF criteria. It shows an improvement of
4.72%, 5%, and 5% in accuracy, precision, and recall over the best performing classifier built on LHD

Electronics 2020, 9, 1381 11 of 14

respectively. Moreover, the number of misclassified observations predicted by a classifier for each class
is also reported in Table 3.

(a) (b) (c)

(d) (e) (f)
Figure 7. Sampling performed by LHD, EDSD, NV, Entropy, and PoF when external field is applied
along the−z-axis is shown in (b), (c), (d), (e) and (f) respectively. Red, blue, and green squares represent
points in: No operating, buffer, and inverter regions respectively. The complete operating, buffer, and
inverter regions are shown in (a).

Table 3. Case 2: Performance comparison of GP classifier for all adaptive sampling and one-shot
design. Mis. Obs. are the number of observations misclassified by the classifier for class 0, 1, and 2. ‘X’
represents that no intermediate model is required in the sampling technique. The intermediate models
used in the model-dependent techniques are highlighted in the corresponding rows.

Algorithm Classifier Model
Dependent

Number
of
Samples

Test Set

Precision Recall Accuracy (%) Mis. Obs.

0 1 2

SVM 0.94 0.93 93.15 53 11 23
LHD GP X 100 0.94 0.94 93.86 28 22 28

LR 0.88 0.90 89.53 29 64 40

SVM 0.98 0.98 97.79 11 8 9
EDSD GP SVM 20 + 80 0.98 0.98 97.95 4 11 11

LR 0.82 0.88 87.64 15 72 70

SVM 0.98 0.98 97.95 9 6 11
NV GP X 20 + 80 0.98 0.98 98.34 3 8 11

LR 0.83 0.88 88.43 19 72 56

SVM 0.97 0.97 96.69 17 5 20
Entropy GP GP 20 + 80 0.97 0.97 96.93 14 3 22

LR 0.90 0.91 90.79 21 64 32

SVM 0.98 0.98 98.19 16 4 3
PoF GP GP 20 + 80 0.99 0.99 98.58 3 7 8

LR 0.81 0.86 86.46 13 72 87

The probability of missclassification is higher in the regions around the boundaries.
The missclassification error also highlights how accurate boundaries are identified. In Figure 6b,

Electronics 2020, 9, 1381 12 of 14

the analysis of the total number of misclassified observations is performed for all classifiers. It can be
seen that SVM and GP classifiers built on PoF, EDSD, and NV have similarly low missclassification
errors, i.e., regions around the boundary are well identified. Moreover, the GP classifier utilizing PoF
shows an improvement of 4.72% over a GP model built on LHD. The LR model performs poorly in all
cases because of its linear behavior. These results are visualized in Figure 8 where true and learned
class boundaries and misclassified observations are plotted for selected cases.

(a) (b) (c)

(d) (e) (f)
Figure 8. Misclassified observations by various classifiers which are trained on various sampling
techniques: (a) SVM + TPLHD, (b) LR + TPLHD, (c) SVM + EDSD, (d) SVM + NV, (e) GP + Entropy
and (f) GP + PoF.

5. Conclusions

The novel application of Data-Efficient Machine Learning techniques (DEML) is presented to
characterize the behavior of non-charge-based logic devices. The adaptive sampling techniques
substantially minimize the number of simulations (samples) required to characterize the dependence
of input field conditions on the logic behavior. The performance of the various models
and input-output-based adaptive sampling techniques are evaluated on classifiers built for binary
and multi-class classification problems. The classification based on the adaptive sampling strategy
significantly outperformed one-shot design and full grid sampling. In future work, the application of
data-efficient machine learning techniques will be expanded to more challenging problems such as
majority-based logic structures.

Author Contributions: A.K., I.C., T.D., K.F., O.Z., A.V., and B.S. developed the main idea. O.Z. provided OOMMF
simulation model. A.K. performed analysis and wrote the manuscript. Funding acquisition, T.D., I.C., O.Z. and
B.S. All authors reviewed the manuscript. All authors have read and agreed to the published version of the
manuscript.

Funding: This work is partially supported by the Flemish Government under the “Onderzoeksprogramma
Artificiële Intelligentie (AI) Vlaanderen” programme.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhirnov, V.V.; Cavin, R.K.; Hutchby, J.A.; Bourianoff, G.I. Limits to binary logic switch scaling—A gedanken
model. Proc. IEEE 2003, 91, 1934–1939. [CrossRef]

2. Moore, G.E. Cramming More Components Onto Integrated Circuits. Proc. IEEE 1998, 86, 82–85. [CrossRef]

http://dx.doi.org/10.1109/JPROC.2003.818324
http://dx.doi.org/10.1109/JPROC.1998.658762

Electronics 2020, 9, 1381 13 of 14

3. Hutchby, J.A.; Bourianoff, G.I.; Zhirnov, V.V.; Brewer, J.E. Extending the road beyond CMOS. IEEE Circuits
Devices Mag. 2002, 18, 28–41. [CrossRef]

4. Theis, T.N.; Wong, H.S.P. The End of Moore’s Law: A New Beginning for Information Technology. Comput.
Sci. Eng. 2017, 19, 41–50. [CrossRef]

5. Wolf, S.A.; Lu, J.; Stan, M.R.; Chen, E.; Treger, D.M. The Promise of Nanomagnetics and Spintronics for
Future Logic and Universal Memory. Proc. IEEE 2011, 98, 2155–2168. [CrossRef]

6. Nikonov, D.E.; Young, I.A. Overview of Beyond-CMOS Devices and a Uniform Methodology for Their
Benchmarking. Proc. IEEE 2013, 101, 2498–2533. [CrossRef]

7. Bernstein, K.; Cavin, R.K.; Porod, W.; Seabaugh, A.; Welser, J. Device and Architecture Outlook for Beyond
CMOS Switches. Proc. IEEE 2010, 98, 2169–2184. [CrossRef]

8. Nikonov, D.; Bourianoff, G.I.; Ghani, T. Proposal of a Spin Torque Majority Gate Logic. IEEE ELectron Device
Lett. 2011, 32, 1128–1130. [CrossRef]

9. Manfrini, M.; Kim, J.-V.; Petit-Watelot, S.; Roy, W.V.; Lagae, L.; Chappert, C.; Devolder, T. Propagation of
magnetic vortices using nanocontacts as tunable attractors. Nat. Nanotechnol. 2014, 9, 121–125. [CrossRef]

10. Dutta, S.; Sou-Chi, C.; Nickvash, K.; Dmitri, N.; Manipatruni, S.; Young, I.A.; Naeemi, A. Non-volatile
Clocked Spin Wave Interconnect for Beyond-CMOS Nanomagnet Pipelines. Sci. Rep. 2015, 5, 9861.
[CrossRef]

11. Pan, C.; Naeemi, A. An Expanded Benchmarking of Beyond-CMOS Devices Based on Boolean and
Neuromorphic Representative Circuits. IEEE J. Explor. Solid State Comput. Devices Circuits 2017, 3, 101–110.
[CrossRef]

12. Cowburn, R.P.; Welland, M.E. Room Temperature Magnetic Quantum Cellular Automata. Science
2000, 287, 1466–1468. [CrossRef] [PubMed]

13. Csaba, G.; Imre, A.; Bernstein, G.H.; Porod, W.; Metlushko, V. Nanocomputing by field-coupled nanomagnets.
IEEE Trans. Nanotechnol. 2002, 1, 209–213. [CrossRef]

14. Breitkreutz, S.; Kiermaier, J.; Eichwald, I.; Hildbrand, C.; Csaba, G.; Schmitt-Landsiedel, D.; Becherer, M.
Experimental Demonstration of a 1-Bit Full Adder in Perpendicular Nanomagnetic Logic. IEEE Trans. Magn.
2013, 49, 4464–4467. [CrossRef]

15. Zografos, O.; Manfrini, M.; Vaysset, A.; Sorée, B.; Ciubotaru, F.; Adelmann, C.; Lauwereins, R.; Raghavan, P.;
Iuliana, P.R. Exchange-driven Magnetic Logic. Sci. Rep. 2017, 7, 12154. [CrossRef] [PubMed]

16. Donahue, M.; Porter, D. OOMMF User’s Guide, Version 1.0. 1999. Available online: http://math.nist.gov/
oommf (accessed on 15 January 2019).

17. Vansteenkiste, A.; Leliaert, J.; Dvornik, M.; Helsen, M.; Garcia-Sanchez, F.; Waeyenberge, B.V. The design
and verification of MuMax3. AIP Adv. 2014, 4, 107133. [CrossRef]

18. Singh, P.; Herten, J.V.D.; Deschrijver, D.; Couckuyt, I.; Dhaene, T. A sequential sampling strategy for adaptive
classification of computationally expensive data. Struct. Multidiscip. Optim. 2017, 55, 1425–1438. [CrossRef]

19. Omar, Y.A.J.; Paul, D.Y.; Muhaidat, S.; Karagiannidis, G.K.; Taha, K. Efficient Machine Learning for Big Data:
A Review. Big Data Res. 2015, 2, 87–93.

20. Singh, P.; Deschrijver, D.; Pissoort, D.; Dhaene, T. Adaptive classification algorithm for EMC-compliance
testing of electronic devices. Electron. Lett. 2013, 49, 1526–1528. [CrossRef]

21. Basudhar, A.; Dribusch, C.; Lacaze, S.; Missoum, S. Constrained efficient global optimization with support
vector machines. Struct. Multidiscip. Optim. 2012, 46, 201–221. [CrossRef]

22. Basudhar, A.; Missoum, S. An improved adaptive sampling scheme for the construction of explicit
boundaries. Struct. Multidiscip. Optim. 2010, 42, 517–529. [CrossRef]

23. Alexander, I.J.F.; Andy, J.K. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci.
2009, 45, 50–79.

24. Shannon, C.E. A Mathematical Theory of Communication. Assoc. Comput. Mach. 2001, 5, 3–55. [CrossRef]
25. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
26. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning (Adaptive Computation and Machine

Learning); The MIT Press: Cambridge, MA, USA, 2005.
27. Lee, W.S.; Liu, B. Learning with Positive and Unlabeled Examples Using Weighted Logistic Regression.

In Proceedings of the Twentieth International Conference on International Conference on Machine Learning,
ICML’03, Washington, DC, USA, 21–24 August 2003; AAAI Press: Palo Alto, CA, USA, 2003; pp. 448–455.

http://dx.doi.org/10.1109/101.994856
http://dx.doi.org/10.1109/MCSE.2017.29
http://dx.doi.org/10.1109/JPROC.2010.2064150
http://dx.doi.org/10.1109/JPROC.2013.2252317
http://dx.doi.org/10.1109/JPROC.2010.2066530
http://dx.doi.org/10.1109/LED.2011.2156379
http://dx.doi.org/10.1038/nnano.2013.265
http://dx.doi.org/10.1038/srep09861
http://dx.doi.org/10.1109/JXCDC.2018.2793536
http://dx.doi.org/10.1126/science.287.5457.1466
http://www.ncbi.nlm.nih.gov/pubmed/10688790
http://dx.doi.org/10.1109/TNANO.2002.807380
http://dx.doi.org/10.1109/TMAG.2013.2243704
http://dx.doi.org/10.1038/s41598-017-12447-8
http://www.ncbi.nlm.nih.gov/pubmed/28939909
http://math.nist.gov/oommf
http://math.nist.gov/oommf
http://dx.doi.org/10.1063/1.4899186
http://dx.doi.org/10.1007/s00158-016-1584-1
http://dx.doi.org/10.1049/el.2013.2766
http://dx.doi.org/10.1007/s00158-011-0745-5
http://dx.doi.org/10.1007/s00158-010-0511-0
http://dx.doi.org/10.1145/584091.584093
http://dx.doi.org/10.1007/BF00994018

Electronics 2020, 9, 1381 14 of 14

28. Kaintura, A.; Foss, K.; Couckuyt, I.; Dhaene, T.; Zografos, O.; Vaysset, A.; Sorée, B. Machine Learning for Fast
Characterization of Magnetic Logic Devices. In Proceedings of the 2018 IEEE Electrical Design of Advanced
Packaging and Systems Symposium (EDAPS), Chandigarh, India, 16–18 December 2018; pp. 1–3.

29. Crombecq, K.; Gorissen, D.; Deschrijver, D.; Dhaene, T. A Novel Hybrid Sequential Design Strategy for
Global Surrogate Modeling of Computer Experiments. SIAM J. Sci. Comput. 2011, 33, 1948–1974. [CrossRef]

30. Romero, V.J.; Burkardt, J.V.; Gunzburger, M.D.; Peterson, J.S. Comparison of pure and Latinized
centroidal Voronoi tessellation against various other statistical sampling methods. Reliab. Eng. Syst.
Saf. 2006, 91, 1266–1280. [CrossRef]

31. Herten, J.V.D.; Couckuyt, I.; Deschrijver, D.; Dhaene, T. Adaptive classification under computational budget
constraints using sequential data gathering. Adv. Eng. Softw. 2016, 99, 137–146. [CrossRef]

32. Houlsby, N.; Huszár, F.; Ghahramani, Z.; Lengyel, M. Bayesian Active Learning for Classification and
Preference Learning. arXiv 2011, arXiv:1112.5745.

33. Forman, G. An Extensive Empirical Study of Feature Selection Metrics for Text Classification. J. Mach. Learn.
Res. 2003, 3, 1289–1305.

34. Felipe, A.C.V.; Venter, G.; Balabanov, V. An algorithm for fast optimal Latin hypercube design of experiments.
Int. J. Numer. Methods Eng. 2010, 82, 135–156.

35. Knudde, N.; Herten, J.V.D.; Dhaene, T.; Couckuyt, I. GPflowOpt: A Bayesian Optimization Library using
TensorFlow. arXiv 2017, arXiv:1711.03845.

36. Gorissen, D.; Couckuyt, I.; Demeester, P.; Dhaene, T.; Crombecq, K. A Surrogate Modeling and Adaptive
Sampling Toolbox for Computer Based Design. J. Mach. Learn. Res. 2010, 11, 2051–2055.

37. Sylvain, L.; Missoum, S. CODES: A Toolbox For Computational Design Version 1.0. 2015. Available online:
www.codes.arizona.edu/toolbox (accessed on 15 January 2019).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/090761811
http://dx.doi.org/10.1016/j.ress.2005.11.023
http://dx.doi.org/10.1016/j.advengsoft.2016.05.016
www.codes.arizona.edu/toolbox
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Classification Methods
	Neighborhood-Voronoi
	Explicit Design Space Decomposition
	Probability of Feasibility
	Entropy
	Classifier Description

	Logic Device Description
	Results
	Input Field Along Y-Axis
	Input Field Along Z-Axis

	Conclusions
	References

