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Abstract: With an extensive growth in user demand for high throughput, large capacity, and low
latency, the ongoing deployment of Fifth-Generation (5G) systems is continuously exposing the
inherent limitations of the system, as compared with its original premises. Such limitations are
encouraging researchers worldwide to focus on next-generation 6G wireless systems, which are
expected to address the constraints. To meet the above demands, future radio network architecture
should be effectively designed to utilize its maximum radio spectrum capacity. It must simultaneously
utilize various new techniques and technologies, such as Carrier Aggregation (CA), Cognitive Radio
(CR), and small cell-based Heterogeneous Networks (HetNet), high-spectrum access (mmWave),
and Massive Multiple-Input-Multiple-Output (M-MIMO), to achieve the desired results. However,
the concurrent operations of these techniques in current 5G cellular networks create several spectrum
management issues; thus, a comprehensive overview of these emerging technologies is presented in
detail in this study. Then, the problems involved in the concurrent operations of various technologies
for the spectrum management of the current 5G network are highlighted. The study aims to provide
a detailed review of cooperative communication among all the techniques and potential problems
associated with the spectrum management that has been addressed with the possible solutions
proposed by the latest researches. Future research challenges are also discussed to highlight the
necessary steps that can help achieve the desired objectives for designing 6G wireless networks.

Keywords: 6G; spectrum management; 5G; Carrier Aggregation (CA); Cognitive Radio (CR); small
cell; high-spectrum access; mmWave; M-MIMO

1. Introduction

Given the exponential increase in high-definition multimedia applications, the simultaneous
communication among various connected devices with new features, and the massive user demand
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for data, the mobile data traffic must be boosted by 1000x [1]. Records show that the amount of data
managed by wireless systems has increased from under 3 exabytes in 2010 to over 190 exabytes in
2020; therefore, if a data request is carried with the same speed, the demand for data is expected
to grow by more than 500 exabytes by 2025 and beyond [2]. This expected leap of high mobile
data demand and other machine-type communication services makes it necessary to ponder on
the requirements for future 6G networks [3]. Spectral efficiency, energy efficiency, high bandwidth,
and low power consumption are regarded as a critical challenge and should be considered before
designing 6G networks [4,5]. To substantiate future data necessities and support a diverse set of
devices, New Radio (NR) 6G networks are predicted to meet these demands with competently
managed spectrum resources [6]. According to researchers, NR is a combination of various radio
access technologies that help supply expected data with low latency, high-spectrum efficiency, and low
power consumption [7]. It is broadly classified as low-power small cells utilizing the millimeter-wave
(mmWave) spectrum, considering effective use of an unlicensed spectrum of Wi-Fi in a 5 GHz band
and the implementation of Massive Multiple-Input-Multiple-Output (M-MIMO) technology instead
of the conventional 2 X 2 MIMO system [8]. The utilization of high-spectrum access, i.e., mmWave
frequency band [9], Cognitive Radio (CR) [10], M-MIMO [11], Cooperative Networks (CNs) using
Relay Nodes (RNs) [12], Coordinated Multipoint Operation (CoMP) [13], Wireless Sensor Networks
(WSN) [14], Mobile Ad Hoc Networks (MANETS) [15,16], Device-to-Device (D2D) communication [17],
Internet of Things (IoT) [18,19], Ethernet Passive Optical Networks (EPON) [20], Heterogeneous
Networks (HetNet) [21], and cellular cloud computing, including big data [22], are some of the
current approaches that can be modified to deliver the 6G requisites. Moreover, the use of various
power optimizations [23,24], handover processes [25], interference cancellation [26], data security
management [27], routing protocols [28], and scheduling algorithms [29] with optimal enhancement
can also deliver ultimate results. New approaches, such as satellite communication at the mmWave
spectrum [30], Artificial Intelligence (Al)-based micro Base Stations (BSs) [31], machine learning-based
communication [32,33], blockchain [34], and human-centric communication [35], are some promising
ideas for designing 6G networks.

Furthermore, in 6G radio access technologies, Spectrum Sharing (SS) and Radio Resource
Management (RRM) are a critical part of the design of a future network [36]. Looking after and using the
spectrum resources wisely are important when moving toward a new frequency spectrum, specifically
in the mmWave frequency band [37]. The demand for a new spectrum has increased tremendously
as the number of users and diverse electronic communication devices expands exponentially [38].
On this basis, the available spectrum has minimal resources and cannot deliver the 1000x expansion in
users and devices with high data requirements [39]. Additionally, the technologies and techniques that
followed Long-Term Evolution (LTE), LTE-Advanced (LTE-A), and its predecessors cannot provide
prosperous results for future wireless communication [40]. Therefore, new spectrum resources and
advanced technologies must be determined to address the upcoming high data requirement for low
latency and extend the services to another decade and even more [41]. Nevertheless, the simultaneous
operation of new technologies in a cellular network structure results in many management issues [42].
Standardization organizations, research institutions, and governments of various countries focus on 5G
spectrum strategies and their effective usage [43]. The International Telecommunication Union (ITU),
European Telecommunications Standards Institute (ETSI), and Federal Communications Commission
(FCC) are the respective standardization organizations in the telecommunications industry that focus
on designing new mobile communication technologies [44,45].

Future cellular communication networks are considered ultra-dense; thus, a robust and frugal
network must be designed to accommodate numerous users with fairness in high throughput and
perform spectrum management systematically [46,47]. To enhance the spectral efficiency of cellular
networks, an ultra-dense small cell design can help achieve the objectives of future 6G cellular
networks [48]. Concurrent operations of macro-cells and low-power small cells, such as picocells,
femtocells, and RNs with wired and wireless backhaul links, are known as HetNet [49]. Adding the
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structure of many small cells conveys two positive outcomes: (1) it reduces the load on a BS
where numerous users compete to access the resources, and (2) it helps use the frequency spectrum
efficiently [47]. Thus, this method substantially improves the throughput for each user and provides
fairness among the users. However, ultra-dense small cell systems face some serious challenges, such as
interference, which is a major issue in HetNet deployment [50]. In addition, supporting mobility in
small cells leads to the increasing cost of installation, maintenance, and backhaul structure [51].

While researching on the MIMO technology for 6G goals, M-MIMO undoubtedly supports power
utilization and spectrum management efficiencies [52,53]. Conventional MIMO is equipped with two
to four antennas, whereas M-MIMO can use tens and hundreds of antennas for the simultaneous
transmission and reception of multiple signals over the same channel [54]. This method greatly boosts
the network capacity and accommodates the maximum number of users and devices on the same
frequency band, thereby reducing the usage of spectra. To maximize M-MIMO properties effectively,
a technique called beamforming can be used to deliver the desired results [55,56]. The use of CR,
which plays a vital role in spectrum management, is another novel idea. CR is an intelligent wireless
network technology that can automatically detect available channels in a cellular spectrum. It can be
implemented with the M-MIMO system to enable communication and execute simultaneously, besides
improvised cellular operational performance [57]. M-MIMO is efficiently handy for networks to which
many users connect (i.e., IoT) [58,59].

Another feature of current 5G communication is access to the mmWave spectrum [60]. However,
previously, it was considered unsuitable for cellular communication because of its propagation
characteristics, inability to travel over long distances due to its short wavelength, and penetration losses
due to objects and large structures and adverse atmospheric conditions [61]. However, the densification
of small cell networks and the parallel operation of innovative methods make the use of the
mmWave frequency band possible [62]. Even though most of the spectrum is unused in this region,
the Third-Generation Partnership Project (3GPP) already mentioned in its release 15 and 16 that it is
not harmful to utilize for wireless communication [63,64]. The 3GPP defines an NR 5G spectrum with
two different sets of frequency bands. The first is frequency range 1 (<6 GHz), where the frequency
using this region for 5G is approximately 3.5 GHz, and the maximum channel bandwidth available is
100 MHz [65]. As stated by the FCC, most of the spectrum used in this range is for 4G and its progenitor
technologies [66]. By contrast, frequency range 2 (>24 GHz, i.e., mmWave frequency band) is where
the maximum channel bandwidth is defined to be as low as 50 MHz to a maximum of 400 MHz [67].

The goal of 6G is to meet the needs of the information society ten years later (2030~); thus,
the 6G vision must address the needs that 5G cannot meet and the need for further up-gradation [68].
6G must be developed in response to the increasingly distributed Radio Access Network (RAN) and
the desire to maximize the Terahertz (THz) spectrum for increasing capacity and reducing latency [69].
The 6G wireless system must have the following key factors: enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low Latency Communications (URLLC), massive Machine-Type Communication
(mMTC), Al-integrated communication, tactile internet, low backhaul, and access network congestion
and enhanced data security [70-73]. In summary, the future 6G is a set of technologies that can deliver
the optimum results in terms of throughput, network capacity, spectral efficiency, energy efficiency,
lower power consumption, and latency, ensuring fairness among all the users, especially the cell-edge
users [74].

2. Contribution

The future 6G network is expected to deliver high data rates to each user to run high-definition
applications, which are facing various challenges with the current 5G network. Typically, the 6G
network supports a diverse range of applications and services, including enhanced indoor coverage,
large capacity for outdoor public spaces, improved spectral efficiency, and low power consumption [75].
To support essential user applications and increase the efficiency of communications among
interconnected devices with low latency and high throughput, primary technologies are expected to
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achieve the goals of 6G [76,77]. This study aims to describe the techniques involved in current 5G
network design and their issues, in accordance with spectrum management for designing future 6G
networks. The five major topics covered in this study are Carrier Aggregation (CA), CR, small cell,
high-spectrum access, and M-MIMO (Figure 1). The main concept of each of the involved approaches
and their potential results in current 5G is also presented. Furthermore, research issues are discussed
in this study:.

Carrier Aggregation: The current 5G network is compatible with its predecessor’s technologies,
including Carrier Aggregation (CA). CA was first introduced in 4G LTE, and it is now implemented
in the current 5G system. The core objective of CA is to utilize the spectrum resources of a cellular
network effectively.

Cognitive Radio: Another promising technology for the current 5G system is CR. It is an adaptive
and advanced radio network technique that can automatically discover available channels in a wireless
cellular spectrum.

Small Cell: To support numerous users of up to almost 100 times more than that of the
previous network, small cells with Full-Duplex (FD) communication are introduced to resolve the
spectrum issues.

High-spectrum Access: Accessing high-spectrum assets is inevitable due to the scarcity of
available spectrum resources. A new high-spectrum space, i.e., mmWave frequency bands, ranges
from 24 GHz to 300 GHz.

M-MIMO: It allows the simultaneous transmission and reception of more than one signal over
the same channel. Standard MIMO comprises two to four antennas, whereas the M-MIMO network
contains several antennas for transmitting and receiving data. No preset figure is required, but in
M-MIMO, we can implement 10 s and even 100 s of antennas for transmitting and receiving data over
a common channel.

High-
Spectrum
Access

Carrier
Aggregation

Resource
Management
Issues

Small Cell
Sizes

Cognitive
Radio

Figure 1. Spectrum management issues.
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3. Spectrum Management Issues

This section addresses the overview, challenges arises, and recent studies available in the literature
related to spectrum management for the designing of the future wireless network.

3.1. A. Carrier Aggregation

One of the ways to achieve the extensive bandwidth required for the next-generation 6G network
is through the CA technique [78]. For the current 5G network, CA or channel bonding (between the
licensed and unlicensed carriers) is considered an efficient technique, although it can be used further by
effectively handling the frequency resources for designing 6G networks [79]. CA can be implemented
in three different methods, which can be identified based on the patterns in which the Component
Carriers (CCs) are arranged (Figure 2) [80]. These methods include (a) intra-band contiguous in which
a wide contiguous bandwidth of more than 20 MHz is utilized, as in LTE-A [81,82]. Because of the
frequency allocation strategies as it is today, this may be a less likely scenario but can function in some
situations, as a 3.5 GHz frequency band allocates in broadband [83]. The next method is (b) intraband
noncontiguous in which the CCs work in the same spectrum as that of contiguous; this method can
be used and aggregated for data transmission while adjacent resources are unavailable [84]. The last
method is (c) interband noncontiguous in which communications are performed by simultaneously
using two or more different operating frequency spectra, such as 800 MHz and 2 GHz bands [85].
In this manner, various wireless transmission attributes of varying frequency channels can be used
to improve the robustness of mobility [86]. In the context of the physical layer, contiguous CA can
be easily implemented without much modification to the LTE-A physical layer design [87]. To attain
contingency in CA and support previous generation compatibility, i.e., LTE-A UE unit, a single Fast
Fourier transform (FFT) module and a single Radio Frequency (RF) unit can be utilized [88]. In most
cases, for both non-contiguous CA bands, multiple FFT and RF chains are mandatory. From the
perspective of management and resource allocation, contiguous CA is also applicable [89]. Different
CCs usually experience various Doppler shifts and path loss propagation characteristics that greatly
affect network performance [90]. Several studies have been performed in CA, which helps maximize
the use of the spectrum. Some of the recent studies that focus on four important areas, i.e., resource
sharing, energy efficiency, capacity improvement, and transmission performance, are discussed below.

(a) Intra-band

contiguous L | L |
! |
Frequency Band A Frequency Band B
(b) Intra-band
non-contiguous \ | \ |
Y [
Frequency Band A Frequency Band B

Component Component

(c) Inter-band / Carrier 1 Carrier 2
non-contiguous \ | \ ,

! [
Frequency Band A Frequency Band B
Figure 2. Carrier Aggregation types.
3.1.1. Resource Sharing

The authors in [91] have discussed the RRM shortcomings of the currently utilized CA technique.
The issues persist with the CC selection and Resource Block (RB) allocation of selected CCs, as mentioned
in 4G standards. Nevertheless, a method is developed on the basis of the head of line delay and delay
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threshold, which enhances the overall data rate and Quality of Service (QoS) of the user, with low
computational complexity. However, no significant outcome is observed in user fairness. In [92],
researchers suggest fewer studies that have been undertaken on the findings of several performance
parameters on the packet scheduling algorithm in the CC system. Therefore, a newer and orderly
scheduling algorithm of packets is considered for multiple CC systems on fair criteria equivalence
for downlink propagation. The technique supports real and non-real-time traffic with good energy
efficiency and better utilization of spectrum resources. However, the performance results of the
designed algorithm based on overall system throughput, fairness, and mean delay largely improve in
comparison with those algorithms of independent CC without aggregated. The resource allocation
and joint optimization of CC selection are observed in the current 5G CA system in the study [93],
and the researchers have delivered a greedy-based algorithm method to resolve the issue. Therefore,
the proposed technique helps improve performance by comparing existing schemes and computational
complexity at an acceptable level. In another study [94], authors have worked on an enhanced method
of CC selection algorithm to overcome the issues of the existing CC selection scheme. An innovative
channel quality and traffic load algorithm approach are used in each CC. The simulation output shows
that downlink performance is vastly improved as a newly designed CC selection approach provides
high throughput and good QoS to all user equipment. However, the method still suffers from power
equality when the number of users in a cell is high.

3.1.2. Energy Efficiency

The authors in [95] have highly focused on the energy efficiency of a system alongside capacity
and coverage fairness for users. This study has analyzed the outage capacity of a system and proposed
a relaying scheme on energy-efficient methods to maximize the capacity, coverage, and fairness of
CA-based networks. This relaying method also enhances low-frequency CCs for greater capacity
fairness among all users in a cell. Conversely, an advanced and efficient algorithm is still in
demand for user mobility. Another energy-efficient multi-stream Carrier Aggregation for HetNet
is proposed in [96]. It utilizes a Bisection Method for Energy Minimization (BIMEM) algorithm to
minimize energy consumption and capacity maximization by analyzing the problem as multi-objective
optimization. The results have proved that the trade-off curve between energy minimization and
capacity maximization delivers a large amount of energy savings by reducing the network capacity.

3.1.3. Capacity Improvement

The authors in [97] have focused on the issue of network capacity maximization in the CA.
The approach is based on the joint cell association and user scheduling; in this approach, the user can
connect BSs by using multiple carrier bands. This technique helps solve convex optimization issues,
but it suffers from high computational complexity when the number of users in the cell is high. Another
study on increasing radio resource efficiency has focused on adaptive CA with differentiated cloud
services [98]. It proposes a cross-layer scheduling approach based on three mechanisms: (1) Markov
Decision Process-Based Cost Reward Packet Selection (MDP-PS), (2) Adaptive Packet Scheduling
(APS), and (3) Adaptive Component Carrier Scheduling (ACCS). The simulation results have proved
that the suggested method delivers improved results for capacity, network reward, and packet failure
rate; however, authors have suggested that an analytical method for C-RAN (Cloud/Centralized Radio
Access Network) and energy-efficient CR techniques are needed for future cellular networks.

3.1.4. Transmission Performance

Another study [99] has proposed a novel design of the receiver for CA LTE-A and NR for the
current 5G network. It has implemented the cascade-shutoff low-noise transconductance amplifier
method. Consequently, the proposed generic receiver structure supports inter-band and intra-band
CA with various CA scenarios, and the single-gm receiver design provides good linearity, especially
for out-of-band blockers; however, it is limited to Single-Input-Multiple-Output scenarios. The authors
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in [100] have proposed a latency-efficient Code-Division Multiplexing (CDM) CA approach, which is
based on the least-squares approximation. This approach helps mitigate the Peak-To-Average Power
Ratio (PAPR) for the scenario of 5G NR Mobile Fronthaul (MFH). The results show that the approach
can reduce the number of iteration and latency with efficient transmission performance.

Below is Table 1, which summarizes the techniques, advantages, and limitations of the
above-discussed studies.

Table 1. Summary of the related work for Carrier Aggregation (CA).

Approach Methodology/Technique Advantages Limitation/Future Work  References
Component Carrier (CC) Increase network
selection based on the head of  throughput and reduce  No improvement in [91]
the line delay and computational fairness index
threshold delay complexity
Design an efficient packet
scheduling algorithm based Support both real and ~ Inefficient when packet [92]
on proportional fairness to use  non-real-time traffic traffic is fluctuating
Resource sharing in multiple CC’s systems
Joint optimization technique Computgtmnal Low fairness index for
based on a greedy-based complexity cell-edee users [93]
algorithm for CC selection is decreased 8
Traffic and channel-driven CC Better performance as . .
. i compared to least-load  Low fairness index when
selection by considering .
R and max channel a high number of users [94]
channel quality and o .
traffic load quality indicator inacell
(CQI) algorithm
Relaying scheme to improve Work for both More advance algorithm
the coverage, fairness, and intra-and is needed for the [95]
capacity for CA-based system  inter-band CA mobility of users
- The Bisection Method for
Energy efficiency Energy Minimization
&y : . Reducing network Interference effect due to
(BIMEM) algorithm is used to . . .
L capacity and improves  multiple BSs on the [96]
minimize the energy massive energy savin, same layer
consumption and capacity &y & Y
maximization
User scheduling and
combined cell association, Convex optimization Computational
where the user can connect solutions to enhance complexity increases for [97]
BSs by using multiple the network capacity high users
carrier bands
-1 heduli
Copny Sl g o
improvement . An analytical method is
mechanisms: (1) Markov .
. Better results for needed for centralized
Decision Process-Based Cost . .
- capacity, network radio access network
Reward Packet Selection reward, and packet (C-RAN) and [98]
(MDP-PS), (2) Adaptive Packet . oros andp e
. failure rate energy-efficient
Scheduling (APS), and (3) cognitive radio (CR)
Adaptive Component Carrier en
Scheduling (ACC)
Receiver design architecture Support both Limited to
based on cascade-shutoff . . .
. inter-band and Single-Input-Multiple-Output ~ [99]
Low-Noise Transconductance intra-band (SIMO) scenario onl
Transmission Amplifier (LNTA) y
performance A latency-efficient Limited transmission
Code-Division Multiplexing Reduce the number of . .
distance of maximum [100]

(CDM) CA approach based on iteration and latency

. R 10 km
least-squares approximation

3.2. Cognitive Radio

One of the prominent strategies to attain a high level of spectrum resource optimization required
for the current 5G is through a flexible sharing and allocation of available spectrum resources through
flexible and opportunistic usage [101]. The existing spectrum regulatory policies do not encourage
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flexible frequency utilization and opportunistic spectrum access in the cellular systems. Recently,
the FCC has committed to the implementation of the shared utilization of the 3550-3650 MHz
bands [102]. CR, based on a software-defined radio, offers the opportunity for flexible spectrum access
in wireless systems [103]. It is also regarded as one of the key players of the current 5G cellular
network. CR work is classified into three main sections, namely, spectrum management, intelligence
management, and interference management [104]. Spectrum management determines and manages
various spectrum issues for primary and secondary users [105-107]. Intelligence management is built
on an efficient cognitive engine that uses a diverse range of synthetic intelligence methods (e.g., genetic
algorithm and rule-based systems) and neural networks to manage the network resources [108,109].
Interference management focuses on the implementation aspect of the CR, which involves various
characteristics of the radio channels (such as resource allocation for the users), in addition to link quality
and channel awareness, which highly depend on the precise selection of transmission power [110].

Small cells have low transmission power; thus, the coverage areas under such small cells can
apply CR for efficient resource optimization and high data rate services [111]. To utilize the CR
paradigm in the most efficient way for higher throughput, spectrum sensing is a fundamental element
in it. Moreover, its methodology is close to the spectrum opportunity definition [112]. Spectrum
sensing can be presented in three different scenarios, namely, (a) local spectrum sensing by the small
cell BS; (b) centralized cooperating spectrum sensing, where users are activated by the small cell
BS, apply spectrum sensing, and deliver the outcomes to the small cell BS that serves, performs as
a central unit; (c) distributed cooperating spectrum sensing, where users are activated by the small
cell BS, apply spectrum sensing, and report the consequences to the closest neighbors, as shown in
Figure 3. A considerable portion of radio spectrum resources is largely underutilized in most cases
and has necessitated the adoption of CR to maximize resource usage [113]. In [114], the authors have
suggested that the concept of spectrum allocation through SS is used mainly for optimal spectrum
usage, especially for small cells. Given that spectrum allotment is under the governance and control
of regional regulatory authorities and policies, the prospective newly licensed bands in each region
probably lie in the range of 3-10 GHz, whereas the 95-150 GHz bands can be obtained through the SS
mechanism facilitated by opportunistic utilization [115]. Several types of research have been conducted
on spectrum management issues related to spectrum sensing, throughput enhancement, spectrum
allocation, channel estimation and optimization, and cluster formation. A few of the latest studies are
discussed in further subsections.

3.2.1. Spectrum Sensing

Another spectrum sensing approach has been presented for real-time configuration [116]. The idea
is to utilize the Filter Bank Multicarrier (FBMC) approach, which is based on the adjustment by using
the non-linear fractional program and stationery Karush-Kuhn-Tucker (KKT) condition. It helps
achieve the efficient utilization of network resources that can be used for IoT applications. The authors
have suggested that in the future, various bio-inspired optimization techniques can be used for efficient
CRintegration. Another method to minimize interference and enhance sensing accuracy is discussed
in [117]. Itis a group-based multichannel synchronized spectrum sensing approach that is based on the
Dynamic Multi-Channel Slot Allocation (DMCSA) algorithm. The idea is to introduce a special entity,
i.e., a spectrum agent that is used to execute only spectrum sensing and report to the fusion center.
The extracted results have proved that the proposed technique could deliver optimal performance in
terms of throughput, detection probability, delay, and sensing overhead.
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Figure 3. Cognitive Radio (CR)-based spectrum sensing.
3.2.2. Throughput Enhancement

In [118], the authors have investigated equilibrium strategic behavior for two classes of users,
i.e., Primary User (PU) and Secondary User (SU) based on three information cases, namely, no queue
length information, partial queue length information, and full queue length information for CR
systems. An efficient approach using theoretical and numerical analyses is derived to enhance PU
and SU performance. The study has concluded that with minimum sojourn time, improved QoS and
throughput can be achieved, but the increase in service rate does not necessarily improve the data rate
of the CR network. Therefore, a more robust and precise algorithm is required. In the account of future
work, the designed model can be further extended to trilateral work among the PU, SU, and manager of
the CR system. A detailed study on the congested routes for PUs in the CR network is performed [119].
The undercover routing protocol technique is introduced with a joint venture of three-layer routings
and beamforming methods. The proposed protocol is evaluated via NS2 simulations, and the results
show that it enhances the goodput to up to 250% in comparison with other routing protocols with
lower overhead. For future recommendations, a technique to improve group construction time remains
a challenge.

3.2.3. Spectrum Allocation

In [120], the authors have worked on expanding the utilization of the available spectrum
by dynamically assigning channels to SUs, and this problem is considered a spectrum allocation
problem. A method called Chaotic Biogeography-Based Optimization (CBBO) evolutionary algorithm
is derived. The results show that CBBO is a generally suitable optimizer for solving combinational
optimization problems. Therefore, the technique enhances or at least maintains the performance of
the other algorithms in the CR network. In the future, one can work on the same model that can use
QoS parameters for nonlinear migration models and on the application of BBO in next-generation
technologies. A study [121] has suggested to resolving the issue of spectrum management requirements
and heterogeneity for the CR users. The study has provided an innovative Channel Management
Framework (CMF) for CR sensor networks. The framework is strongly constructed on Opportunity
Scheduler (OSR), Opportunity Detector (ODR), and Opportunity Ranker (ORR) to tackle the
shortcomings of CR sensor network-aided IoT. Consequently, the proposed CMF scheme surpasses all
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current methods with respect to blocking and detection probability, collision probability, and idle time
probability, and throughput. In the future, a system that uses a single optimization problem to execute
ORR and ODR can be designed.

3.2.4. Channel Estimation and Optimization

The limiting factor that has been left as a challenge is designed as a multilayer complex algorithm
for the more agile cluster. In [122], a channel status evaluation parameter, i.e., Signal-to-Noise Ratio
(SNR), is observed. The research is conducted by implementing the Second- and Fourth-Order Moment
technique based on Kalman filter theory. The simulation proves that in the range of SNR (0-15 dB),
the estimation and prediction methods exhibit low error rates with a high prediction error of up
to 0.14 dB. Therefore, this method is viable and can be utilized to estimate the channel quality of
the CR system. The authors in [123] have presented an energy-efficient resource allocation for the
CR-enabled 5G network and proposed an alternative optimization framework to optimize the variables
of subcarrier assignment and power allocation. It has adopted a heuristic subcarrier assignment and
a convex approximation technique. The results are estimated to achieve efficient energy efficiency
in comparison with the conventional resource allocation scheme. However, the proposed approach
is based on some impractical assumptions, such as a single user in one cell, a single antenna for
transmitter and receiver, and well-synchronized PUs and SUs.

3.2.5. Cluster Formation

The authors in [124] have proposed a weight-based cluster formation scheme to overcome the
clustering issues caused by node mobility and dynamic channel availability in the CR network.
Furthermore, they have compared their designed protocol with competing protocols in the CR network.
Subsequently, the developed algorithm produces better results than conventional protocols, especially
in adverse conditions. Another cluster-based scheduling approach is proposed in [125]. The authors
have proposed two scheduling approaches, i.e., Frame Intra Cluster Multichannel Scheduling algorithm
denoted Frame-ICMS and the Slot Intra Cluster Multichannel Scheduling algorithm denoted Slot-ICMS.
The performance is evaluated in terms of accurate and bad PU activity. It enables spatial reuse with
noninterfering users, reduces delays, and saves energy.

The above-discussed researches have been summarized in Table 2.

Table 2. Summary of the related work for CR.

Approach Methodology/Technique Advantages Limitation/Future Work  References

A new Filter Bank Multicarrier  Efficient utilization of
(FBMC) approach based on network resources for ~ Bio-inspired techniques
the adjustment by using the real-time Internet of for more efficient [116]
non-linear fractional program  Things (IoT) optimization approach
and stationery KKT condition  applications

Spectrum sensing A group—‘?ased multi-channel Optimal performance
synchronized spectrum .

. in terms of throughput, . .
sensing approach based on detection probabilit Limited to a smaller [117]
Dynamic Multi-Channel Slot delav. an dpsensin ¥ number of users
Allocation (DMCSA) v &
. overhead
algorithm
It derives an optimal service Bette.r Quality of
rate for increasing the Service (QoS) and Queue length factor is
throughput [118]

Throughput
enhancement

performance of primary and
secondary users

performance with
minimum sojourn time

not considered

The undercover routing
protocol, which consists of
collaborative beamforming
technique based on layer
three routing

Gain increased up to
250% as compared to
conventional protocols

Group construction time
needs to be improved

[119]
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Table 2. Cont.
Approach Methodology/Technique Advantages Limitation/Future Work References
The Chaotic
Biogeography-Based CBBO performance is 1 N
Optimization (CBBO) higher as compared to Ezgelllr;iirkil 1§;zgon [120]
algorithm to solve other traditional in futur
combinational algorithms ¢
Spectrum A
. optimization problems
allocation
Channel Management Improvement in a
Framework (CMF) is coﬁjisi(;]n blockin Mobility factor is not
introduced which is based on detec tior’1 and & considered in [121]
opportunity detector, i dle—time/ obabilit this scenario
scheduler, and ranker p y
The Second- And
Fourth-Order Moments Gives accurate and The prediction error is
(M2M4) method is introduced  reliable channel state hi hpas 0.14 dB [122]
to calculate real-time Signal to  information & ’
Channel estimation  Noise Ratio (SNR) value
and optimization An alternative optimization .
Better energy efficiency
framework to enhance the .
. - as compared to the Limited to one user per
variables of subcarrier . [123]
. conventional resource  cell only
assignment and .
. allocation scheme
power allocation
Localized clustering technique, Impro'v'e S stablhty., .
. . scalability, and efficient .
which shares weight to spectrum management Multi-layer complex [124]
neighboring nodes to solve the V\}; th low & algorithm
mobility issue
overhead delay
Cluster formation e lyster-based scheduling
approach is proposed, namely, .
Frame- Intra Cluster Enable °p atial reuse The overhead -
along with [125]

Multichannel Scheduling
algorithm (ICMS) and
Slot-ICMS.

non-interfering users

delay increases

3.3. Small Cell

The current 5G networks have been characterized by a combination of small cell networks,
also known as HetNet, due to mmWave integration (Figure 4) [126,127]. A straightforward but
exceedingly realistic way to maximize the network capacity is by reducing the cell sizes using the
concept of network densification [128]. For instance, during the 1 G era of cellular systems in the
early 80s, the cell sizes used were basically in the order of hundreds of square km [129]. From 1 G
up to the present time, the cell sizes have been progressively decreasing and have recently been
reduced to approximately 1 km for the outdoor and 100 m for the indoor scenario [130]. Nevertheless,
cell reduction has several benefits, including high chances of frequency reuse across a given geographic
area, resulting in a significant decrease in resource contention among users at each BS [131].

Several new techniques, including the utilization of RN, D2D, and IoT, also come to in design
due to the small cell deployment network [126]. However, the small cells based on HetNet also suffer
from several challenges due to the necessity of deploying additional BSs in a small geographical area.
Consequently, it suffers from the limitation of energy-efficient power sources. In this regard, many BSs
are operated entirely on various renewable energy sources, such as solar energy [132]. For example,
the main issue that has caused a drawback to the use of small cells in HetNet is the interferences among
the pico, macro, micro, and femtocells [133]. Given that the users are in the coverage of more than one
cell, the interference causes many severe issues to achieve optimum results [134]. The interference
can be of any type, such as intercell, intracell, BS to RN, and D2D interference. Many researchers are
recently focusing on new approaches to mitigate this issue [135].
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Figure 4. Small cell-based Heterogeneous Networks (HetNet).

Small cell networks face several other challenges, such as requiring additional frequency bands
to facilitate each cell user [136]. The capacity of the cell depends on the number of active users and
requires high bandwidths to achieve high throughput [137]. Moreover, fairness among cell-edge and
cell-center users is also a big challenge [138]. The use of 5G small cells is based on the mmWave
frequency band; these high-frequency signals are keen to degrade for several reasons, such as reflection,
refraction, and diffraction. These factors are due to trees, buildings, or even the moving people in the
coverage area, especially in urban environments [126]. The cost of the small cell network is also a
big challenge that requires considerable attention; thus, the end-user should not be affected by this
issue [139]. The backhaul connectivity of the small cell-based HetNet is essential in reducing the
delay in transmission and in preventing the signal loss during the handover process performed by a
user when it moves from one small cell to another [140]. Various major areas require considerable
attention, such as interference avoidance, throughput improvement, coverage planning, and capacity
enhancement. Several studies have been conducted to address these issues; some of the approaches
are discussed in the succeeding subsections.

3.3.1. Interference Avoidance

The authors in [141] have presented a massive SS approach for in-building small cells. They have
proposed a nonorthogonal interference-free SS approach to form 3D clusters and less distance among
co-channel small cells. The results have demonstrated that the average spectral efficiency is substantially
improved with the increase in the number of buildings, whereas energy efficiency is decreased with the
increase in the number of buildings. Overall, the results have proved that the suggested nonorthogonal
scheme is much better than the orthogonal spectrum for the Licensed Shared Access (LSA) and Licensed
Assisted Access (LAA) methods in terms of sharing the 60 GHz unlicensed spectrum. Another work
in [142] focuses on designing small cell size networks that broadly check the issues of spectrum
management. In particular, the researchers have focused on Wi-Fi and 4G wireless communication
systems that share the unlicensed spectrum. They have introduced a novel network structure for
both to utilize the unlicensed spectrum in the same proximity. They have also presented an Almost
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Blank Subframe (ABS) scheme to minimize interferences and proposed an interference avoidance
scheme to cancel out the effect of types of interferences encountered by both technologies in a network.
Consequently, the suggested architecture effectively contributes to cost reduction and interference
avoidance; however, the transmission range is limited.

3.3.2. Throughput Improvement

The researchers in [143] have accomplished the task of delivering high QoS to each user by
presenting a cache-enabled small cell network. In this scenario, optimal memory size is obtained in
closed form for a provided density of a small BS. Hence, the outcomes indicate that equipping the
optimal size of memory can minimize the capacity of backhaul and increases the throughput efficiency.
Another RRM scheme is discussed in [144] for enhancing the performance of a small cell network.
The idea is to propose a cooperative game radio resource-sharing scheme to improve the results for
user throughput; moreover, spectral efficiency is better than that in the no-game scenario. The author
has suggested that scaling up the environment for larger small cell networks requires additional
distributed learning approaches that can be applied for efficient coalition formation.

3.3.3. Coverage Planning

The authors in [145] have discussed two critical tasks of mmWave small cell network, i.e., coverage
and spectral efficiency. To evaluate the performance of spectrum resources, two techniques pursued
are frequency reuse-1 and frequency reuse-3. Similarly, an interference mitigation scheme is introduced
to validate the performance of both scenarios. The researchers have also added points on how small
cell radius inserts affect Multiuser MIMO (MU-MIMO) mode performance. Therefore, maximum
throughput achieves almost 2.5x when three additional channels operate within a small radius of up to
50 m. However, ultra-dense small cells are profoundly interfered with by intercell interferences; thus,
an additional investigation is required on small cells. The author in [146] has focused on the issue
of coverage holes (i.e., a location where a user does not receive an optimal signal level) in a macro
to small cell two-layer network. To validate this shortage, an energy-efficient coverage approach is
designed for implementation in a respective network. In conclusion, quality coverage, power usage,
and average transmission rate are observed by utilizing the proposed algorithm for comparison with
conventional methods. Regardless, a concrete algorithm that can extend to more than two-layer
networks is required. A density-aware, energy-efficient, and spectrum-efficient sleep scheduling
technique is presented in [147]. The solution is based on BS density adaptation and cell-zooming
algorithms. The idea is to prevent a coverage hole and increase network throughput along with
reducing Signal-to-Interference-plus-Noise Ratio (SINR) for cell-edge users. The results help improve
throughput, energy, and spectral efficiency.

3.3.4. Capacity Enhancement

In [148], the authors focus on budgeted cell planning issues in the small cell network. Their results
show high-spectral efficiency and capacity improvement for isolated mmWave MU-MIMO small
cell users. Besides, a relay node can be introduced to enhance the coverage area in a small cell
network. In [149], the authors have provided information for small cell networks, which focus on data
offloading among users. They have furnished an innovative file cloud service mechanism to offload
mobile user data when the demand for overall users increases. It can help share any kind of files and
information from the users associated with the nearby small cell. To this end, mobile users conserve
network capacity for high mobile data traffic. However, a delay is inevitable if the file size is extensive.
Another research [150] has highlighted the issue of self-organizing small cell-based HetNet because
its deployment suffers from challenges, such as backhauling, capacity provision, and dynamics in
spatiotemporally fluctuating traffic load. To solve this issue, they set a mathematical model of an
Artificial Immune System (AIS) that has the power to activate and deactivate the small cells as per
the demand of traffic. Consequently, the recommended scheme helps deliver high throughput for
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cell-edge users and enhances BS activation speed. By contrast, if intercell interference is high, the cell
activation and deactivation speed are also high.
Table 3 summarizes the above-discussed works for increasing the performance of small size cells.

Table 3. Summary of the related work for the small cell-based network.

Approach Methodology/Technique Advantages Limitation/Future Work  References
Better results as
A non-orthogonal compared to the The results for larger
interference-free Spectrum orthogonal spectrum small cell size need to be
Sharing (SS) approach to form  for both Licensed investigated for the [141]
3D clusters and less distance Shared Access (LSA) validity of the
Interference among co-channel small cells  and Licensed Assisted  proposed approach
avoidance Access (LAA) method
It utilizes an Almost Blank er:l}l)i(t)esftd ?eeggl(i) rl;rs
Subframe (ABS) scheme to cost-e ffecliive anz Limited transmission [142]
analyze the operation effect interference range
between various small cells .
avoidance results
Optimal memory size is The optlmalv sie
,. memory delivers better It reduces the )
calculated based on the user’s . [143]
requesting probability throughput backhaul capacity
Throughput performance
improvement . Results for user Distributed learning
A cooperative game throughput and approach can be applied
theory-based RRM scheme for  spectral efficiency are PP ' be app [144]
for more efficient
small cell network better as compared to . .
. coalition formation
no game scenario
Spectral efficiency and . .
capacity improvement ilfi};j}elgovtizﬁfafh Advanced interference
technique for isolated . mitigation techniques [145]
cell sector operates in .
mmWave MU-MIMO small are required
cell users three channels
Coverage planning  Mitigating the coverage hole Better coverage, power A more eff}c1ent .
. algorithm is required to
issue for a two-layer usage, and support [146]
small network transmission rate PP
higher-layer network
Scheduling technique based Better coverage
on BS density adaptation th hput 8 (,:1 Can enhance work for [147]
algorithm and a S 2(21‘[1121 Elflfi,ciaerrllc the mobility of BS
cell-zooming algorithm p y
gzgihggsa;};:c;?:?a;f don Higher network Relay node can be added
power limited, bandwidth, capacity with low to enhance the [148]
and traffic reqlrlirement ! deployment cost coverage area
The file cloud service is used Hicher accessibilit
Capacity to offload the mobile user data incgreases the y Delay increases with the [149]
enhancement :ivel}ir; ;l;el Itllsferazeclata coverage area greater file size
Design of a self-organizing
Artificial Immune System Helps to increase the Activation and
approach that activates coverage and cell-edge eactivation process is 3
(AIS) approach th; i ge and cell-edge  deactivation p i [150]

and deactivates small cells
concerning the traffic load

user’s throughput

affected by interference

3.4. High-Spectrum Access

The channel characteristics of wireless communications mainly depend on several factors,
namely, the radio spectrum used, the air-interface design type, and the network architecture [151].
Existing cellular networks, such as 4G, are operated in frequency bands under 6 GHz because of
the favorable channel propagation characteristics available in those frequency bands for cellular
communications [152]. However, most of the frequency spectra below 3 GHz are nearly used up,
efforts to acquire new operating frequency bands for future terrestrial mobile communications have



Electronics 2020, 9, 1416 15 of 39

been intensified, and the primary focus has been shifted on the frequency spectrum in the mmWave
bands [153]. One of the few potential solutions to address the envisaged issue of a capacity explosion
in the next-generation radio network is by utilizing the massively untapped frequency resources. It can
be divided into three different frequency ranges, i.e., (1) below 6 GHz (sub-6 GHz), (2) NR mmWave
(24-100 GHz), and (3) above 100 GHz (100-300 GHz) (as shown in Figure 5) [154,155].

<€ 5GNR >
Sub - 6 GHz 24 GHz 100 GHz 300 GHz
<> <€ >€ >
4G 5G NR mmWave Beyond 5G

Figure 5. High-spectrum access (mmWave).
3.4.1. Below 6 GHz (Sub-6 GHz)

The current 5G network is compatible with its predecessor’s technologies, and the 4G spectrum
sub-6 GHz can be easily applied for 5G communication [156]. The management and effective utilization
of the current spectrum help avoid the unnecessary usage of mmWave frequency bands. For frequency
bands under 6 GHz, the communication band between 3.5 and 4.2 GHz is cleared for use with 5G,
and it can offer up to 300 MHz of bandwidth [157]. This novel idea would have some of the following
benefits: (1) The sub-6 GHz band can be used in the Line of Sight (LOS) and Non-Line of Sight (NLOS),
(2) co-channel interferences between mmWave and small cells are negligible, and (3) the channel
state information feedback rate for backhaul connection is smaller than that of 5G NR BS for user
equipment fading links because of high mobility [158]. The transmission between macro BS and small
cell BS would be a bottleneck due to high user capacity and interference-effect. Therefore, one of the
prominent solutions to overcome the issue is to use sub-6 GHz for backhaul communication [159].
The sub-6 GHz band is also advisable to be used by users near macro BS for uplink and downlink
transmission. Another author in [160] has focused on the effective implementation of the sub-6 GHz
for 5G HetNet for wireless backhauling.

3.4.2. NR mmWave (24-100 GHz)

For high frequencies, such as 28 GHz, 850 MHz of bandwidth is available; for 39 GHz, two available
bands offer 1.6 and 1.4 GHz bandwidths. For 73 GHz, 2 GHz of contiguous bandwidth, which is the
widest one of the proposed frequency spectrum, is available for communication [161-163]. The FCC
has defined several frequency ranges to be considered as potential candidates; for example, for the
frequency range of 24 GHz, the 24.25-24.45 and 25.05-25.25 GHz ranges are the candidate bands.
Similarly, for the 28-32 GHz range, the 27.5-28.35, 29.1-29.25, and 31-31.3 GHz ranges are considered.
Similarly, for 39 GHz, 38.6—40, for 37/42 GHz: 37-38.6 and 42—42.5, for 60 GHz: 57-64 and 6471, and for
70/80 GHz: 71-76 and 81-86 GHz frequency ranges have been selected [164]. Massive research on the
propagation characteristics, implementation, and spectrum, as well as resource management techniques
of mmWave band at 28, 38, 60, and 73 GHz, has been conducted in the last decade. Standard bodies,
such as 3GPP and 5G channel model, have suggested various channel models below the frequency of
100 GHz (e.g., CI, FI, CIF, and others). Furthermore, by using the data collected by standardization
authorities, various firms have performed 5G field trials. For example, a data rate of 1.2 Gbps is
achieved by a mobile user in a 400 MHz channel bandwidth at a 28 GHz frequency band, with a latency
of 9-12 ms at 150 m far from the cell location of AT&T [165]. A comprehensive study is conducted,
and the authors have explicitly mentioned that the mmWave spectrum is suitable for short-range
communication and the well-suited propagation model for LOS to receive the desired results [166].
However, in some cases, where LOS propagation is not achievable, NLOS can use the conditions.
The path loss and small- and large-scale fading must be addressed to comprehend the propagation
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characteristics of indoor and outdoor locations for wireless communication channels. A study [167]
has obtained remarkable results for NLOS mmWave environment by using passive reflectors. Another
study [168] is performed for an NLOS indoor localization system by proposing an RF-ECHO method
that attains high accuracy in long-distance indoor NLOS environments. The method presents a unique
time-of-flight estimation technique to minimize the NLOS constraints. Moreover, it is worth mentioning
that these frequency ranges are also suitable to consider as a wireless backhaul link [169]. The major
motivation for using these mmWave frequency bands is the possibility of achieving the multi-gigabit
wireless communication links. The frequency bands, such as 73 and 76 GHz, are also considered as the
viable solution for wireless backhaul links [170,171]. Several studies show the prominent results for
71-76 GHz and 81-86 GHz frequency bands by utilizing them as a backhaul link [172,173]. Besides, the
standardization organizations, e.g., ITU, have allocated 81-86 GHz frequency band for high capacity
wireless backhaul links [174].

3.4.3. Above 100 GHz (100-300 GHz)

The availability of large bandwidths at the mmWave band and Terahertz frequencies (frequencies
above 100 GHz) creates the possibility of replacing the end-to-end wire links of indoor and outdoor
mobile networks with a wireless system [175]. Currently, the New York University team is considering
allotting frequency bands above 100 GHz for licensed and unlicensed wireless communications
systems [176]. Considering the fact that only approximately 1177 MHz of the international mobile
telecommunications spectrum is currently being utilized, we can anticipate nearly 3-10x increase
in spectrum allocation over the next ten years [177]. The 60 GHz spectrum (between 110 GHz and
170 GHz) has the potential to be utilized in wireless fixed backhaul links, cellular and vehicular
communication, radar, and health monitoring networks. In addition, various frequency spectra are
degraded by different atmospheric absorptions. According to the current agreement on spectrum
resources in the 60 GHz frequency band, the 120, 183, and 325 GHz bands are expected to be applied to
provide optimum results for short-distance communication. The reason is that an increase in distance
of a couple of meters for large channel bandwidths in this range would be attenuated quickly [178].
With the present need to satisfy user requirements, these frequency ranges are not going to be used
in the current 5G plan; however, they have the potential to deliver high data rates and the ability to
support high user demand for future 5G networks and beyond.

The authors in [179] have reported that the Software-Defined Air-Interface (SDAI) design
significantly improves usage efficiency and widens the horizon of spectrum accessibility. The SDAI
design is proposed as a design framework for air interface; it involves controller and configurable
elements, such as signal processing, coding, and modulation. It can support frequency bands below
and above 6 GHz and can utilize the spectrum efficiently to provide full-spectrum service. Moreover,
several other features, such as IoT connections, ultralow latency, high data rate, energy efficiency,
coverage, and capacity, should be addressed by SDAI The spectrum accessibility is increased with
the help of other fundamental techniques, such as low-density parity-check codes, turbo codes,
MIMO, Orthogonal Frequency-Division Multiplexing (OFDM), and other rated techniques [180-182].
Moreover, recent advances in link-level technology in terms of antenna innovations, coupled with the
evolving system-level network architecture, are all expected to boost spectrum utilization efficiency in
future 6G networks; such advances include the emerging M-MIMO and distributed antenna systems.
Besides, MIMO antennas facilitate cooperation among different types of network terminals by allowing
opportunistic access [183,184]. The utilization of a high band spectrum, such as the mmWave band,
is being considered to be the most promising frequency spectrum to fulfill the bandwidth requirements
for the next-generation cellular systems [185]. However, the use of the mmWave spectrum leads to
disparate fading and signal penetration losses and scattering issues [186]. These problems can be
minimized comfortably if the channel properties have been identified earlier before transmitting the
signal [187,188]. The uncertain behavior of the wireless communication channel has forced many
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researchers to explore different propagation models so that the path loss could be predicted before
implementing the methodology in a real-world scenario [189].

The next subsections discuss some recent studies on the high mmWave spectrum band for outdoor
and indoor environments.

3.4.4. Outdoor Investigation

In [190], the authors have demonstrated a 26 GHz mmWave propagation measurement model
for outdoor parking spaces in areas, such as Kuala Lumpur, Malaysia. The research is conducted by
implementing a technique of Close-In Free Space (CI) and Floating Intercept (FI) path loss models.
Besides, the directional horn and omni antennas are used for Tx (Transmitter) and Rx (Receiver),
respectively. They have concluded that the CI model outperforms the FI model. However, a more
robust model is required for a moving car scenario. The architects in [191] have focused on the
capability of the channel at the mmWave frequency band of 15 GHz by using MIMO technology
in outdoor rural and urban environments. Moreover, the Okumura Hata model for rural regions
and the microcell path propagation model in urban areas are used as a path loss model to validate
the performance. Results have suggested that it is a viable option for future networks because it
provides a substantial amount of throughput due to diversified MIMO systems in this frequency
band. A study [192] has figured out the free space propagation path loss model for LOS and NLOS
environments. It has developed a Cl and FI propagation model at various frequency ranges. As a result,
the probabilistic path loss model can deliver high bandwidth data rates in mmWave frequency bands,
where CI and FI cases show an almost equal output. For a more effective approach, we can apply
advanced path loss models, such as Alpha-Beta-Gamma (ABG) and Close-In Frequency Weighting
(CIF). The scholars in [193] have analyzed the channel characteristics of the mmWave frequency
bands at 28 and 73 GHz and compared the output within the operation of the LTE-A frequency band
at 2.14 GHz. They have implemented the ABG model and evaluated results in terms of average
user throughput and spectral efficiency average cell throughput for various user capacity. Therefore,
the results have proved that the mmWave frequency band has a higher overall network performance
compared with the 2.14 GHz frequency band of LTE-A. Nonetheless, the interference effect, such as
intercell interference, is higher in mmWave, especially for the cell-edge users, due to the signals coming
from the adjacent sector of the same cell; cochannel interference also occurs due to the usage of the
same frequency in the adjacent. The effect of interference will be analyzed for the multiple-cell scenario
for LOS and NLOS environments, thus requiring an efficient methodology to overcome this problem
before being implemented in a real-world scenario.

In [194], outdoor propagation parameters are observed with various antenna deployment scenarios
at 32 GHz frequency band for LOS and NLOS environments. FI and CI free space path loss models are
observed for the outdoor environment. The results have proved that the CI model is more effective
than the FI path loss model for NLOS measurement, and cross-polarization increases slower than
co-polarization under LOS conditions. Nevertheless, FI shows better performance for the NLOS
environment in the horn-horn and horn-omni antenna deployment. For future work, 26, 28, and 38 GHz
bands will be inspected under the same environmental conditions. In [195], the investigators have
discussed the joint contribution of channel models at 28, 38, 60, and 73 GHz and mmWave propagation
measurements at four particular scenarios, such as BS-mobile, BS-BS, peer-peer, and V2V. They have
applied wideband sliding correlator channel sounder with horn-horn antenna configuration for the
outdoor environment. The results have achieved high values of path loss exponent (PLE), whereas a
more scrupulous antenna setting is required.

3.4.5. Indoor Investigation

The author of [196] has presented single- and multifrequency path loss models to identify the
channel behavior at mmWave frequency bands, i.e., 28 and 73 GHz, in three typical indoor office
layouts. All the measurements are conducted by using a 400 mega chips-per-second broadband
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sliding correlator channel sounder. It has 800 MHz null-to-null RF bandwidth for 48 Tx-Rx location
combinations. Additionally, co-and cross-polarized antenna configurations with LOS and NLOS
environments are observed with antenna distance ranging between 3.9 and 45.9 m. Thus, a CI free
space path loss model is implemented for single- and multifrequency systems because it provides
simplicity and higher network performance without damaging accuracy in comparison with other
path loss models, such as FI and ABG. However, the frequency band at 73 GHz is affected by scattering
and other penetration losses due to a small wavelength.

In [197], researchers have discussed error performance using different antenna polarization at a
60 GHz frequency band for the LOS environment. It is based on implementing an improvised IEEE
802.15.3c channel model to incorporate with polarization effects and extend it to calculate the error
performance of mmWave communication systems that use circular polarization. The result has shown
system performance in terms of ray experience and Bit Error Rate (BER) in comparison with linear
polarization. The circular polarization in the LOS environment minimizes the multipath effect and,
therefore, delivers high performance, specifically when the network operates at high throughput.
In [198], the authors have presented mmWave propagation measurement at 28 and 73 GHz for an indoor
office environment by using a correlator channel sounder and highly directional horn antennas. RMS
delays spread with directional and omnidirectional path loss models; the figures show LOS and NLOS
environments for co- and cross-polarized antenna configurations. The authors have concluded that the
presented channel models can be utilized for mmWave wireless networks in an indoor environment for
current 5G communication. However, an accurate and more vigorous antenna alignment is required
for the LOS environment. The features of indoor propagation channel at four mmWave frequencies
28, 39, 60, and 73 GHz are investigated in [199]; propagation signal qualities measured based on
building materials are also presented. To validate the behavior of these frequency bands, reliable
ray-tracing software is implemented for LOS and NLOS conditions. Results have revealed that as the
frequency increases, the received power and delay spread decreases. By contrast, a more robust power
optimization method is in demand.

Table 4 shows a summary of the above-discussed latest work for high-spectrum access.

Table 4. Summary of the related work for high-spectrum access.

Issues/Approach Methodology/Technique Advantages Limitation/Future Work References
Channel characterization
performed at 26 GHz for
tI‘ORlCﬁl outdoor p§r~k1.ng The CI model‘ ‘ More efficient model is
environment by utilizing performance is higher needed for mobile users [190]
Close-In Free Space (CI) and than the FI model
Floating Intercept (FI) path
loss model
MIMO ch'anr}el Suggested 15 GHz
characterization at 15 GHz for .
. . band has high data, . .
the outdoor scenario by using s Limited bandwidth [191]
Outdoor which is suitable for

. L Okumura Hata and

investigation . future network
microcell model

Propagation characteristics for
28 and 73 GHz for the outdoor
environment by using CI and
FI propagation model

Higher frequency
spectrum delivers
more data rate

More accurate path loss
model, such as Close-In
Frequency Weighting
(CIF) and
Alpha-Beta-Gamma
(ABG), can be used

[192]

Propagation characteristics
comparisons of 28 and 73 GHz
for the outdoor scenario using
the ABG path loss model

Better throughput and
spectrum efficiency

Signal degrades when
interference increases

[193]
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Channel characteristics for 28,
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scenarios using a wideband Precise horn antenna -
1 path loss exponent . . [195]

sliding correlator channel (PLE) is achieved alignment is needed
sounder with the horn-to horn
antenna configuration
Channel behavior in an indoor ~ Offer simplicity and 73 GHz signal suffers
environment for 28 and better network from more [196]
73 GHz using the CI model performance scattering issue
Polarization effect estimation
for indoor LOS environment Performance error is Can enhance the [197]
at 60 GHz using identified throughput with 73 GHz
ray-tracing simulation
Indoor office environment

Indoor investigation at 28 and 73 GHz

investigation using horn and Calculate delay spread  Precise alignment is
omnidirectional antenna in co-  values and determine required for [198]
and cross-polarization the factor of time delay = LOS scenario
antenna settings for both LOS
and NLOS environment
Indoor effect of material’s
conductivity and permittivity =~ Amount of received M -
ore efficient power
at 28, 39, 60, and 73 GHz for power and delay optimization scheme [199]
LOS and NLOS using 3D spread decreases along .
. . . is needed
ray-tracing wireless with the frequency
insite software
3.5. M-MIMO

M-MIMO technology has been utilized to maximize system capacity and bitrate since the evolution
of LTE-A frameworks [200,201]. However, critical work has been conducted in the previous years to
help the potential addition of this arrangement of strategies to current 5G networks [202,203]. Different
techniques, such as beamforming, Spatial Division Multiple Access (SDMA), and spatial multiplexing,
have been utilized in M-MIMO [204-206]. It straightforwardly enhances system throughput and
bandwidth efficiency [207]. In contrast to the existing conventional MIMO antenna systems, M-MIMO
offers more spectrum and higher power utilization efficiency for the future cellular networks by using
the massive array gains provided by the low-complex transmission framework [208]. It is also expected
to provide flexibility to avoid interference with the adaptive beamforming technique [209,210].

It is noticed that the performance of MIMO is different for sub-6 GHz and mmWave frequency
band. Despite conceptual similarities, the way in which MIMO can be utilized in these bands is
fundamentally different due to their transmission behaviors and hardware characteristics. The major
differences in M-MIMO design for sub-6 GHz and mmWave frequencies concern to the propagation
mechanisms, transceiver design, and signal processing algorithms [211]. However, the data rate
in mmWave frequency band is achieved to be high of around 10 Gbps for a single user, whereas,
in sub-6 GHz, around 100 Mbps of data rate can be achieved when using 40 MHz of bandwidth [212].
The use of MIMO in sub-6 GHz has several advantages over the mmWave frequency band. Like,
the beamforming in sub-6 GHz delivers power-savings and better coverage; however, in mmWave,
it is not suitable for low data rate application as it increases the power overhead, especially for IoT
and mMTC application [213]. Besides, applications where the requirement of URLLC is necessary,
sub-6 GHz M-MIMO improves the network reliability, whereas mmWave M-MIMO faces propagation
unreliability due to blockage [214].
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In order to create communication, two different spectrum utilization techniques can be used,
i.e., Time Division Duplex (TDD) and Frequency Division Duplex (FDD). For the mmWave spectrum,
M-MIMO is expected to deliver better results in the TDD mode rather than in FDD mode; for sub-6
GHz, FDD provides remarkable results [215,216]. In the FDD communication mode, the uplink
and downlink transmissions usually occur in the same channel simultaneously, thus suppressing
a great deal of the spectrum gain, as shown in Figure 6 [217,218]. The FDD is designed for paired
uplink/downlink spectrum channel access, which requires two dedicated channels with constant
spacing between them. It involves high channel training overhead [219], resulting in linear growth of
the channel budget based on the number of the transmit antenna elements. This drawback makes the
FDD mode unattractive for M-MIMO system deployment [220]. Meanwhile, the TDD takes advantage
of channel reciprocity because the number of transmit antennas used has no direct influence over
the channel overhead [221]. In the TDD mode, the aggregation of unlicensed spectrum for downlink
and uplink serves the same purpose as in a typical LTE-A TDD CA, which offers the advantage of
flexible coordination of resources between the uplink and downlink [222]. Therefore, the M-MIMO
system is expected to function in the TDD mode for maximum spectral efficiency for the current 5G
networks [223]. Furthermore, when TDD is operated in the 4.5-5 GHz spectrum for radars running
service, the transmission must be coordinated through the dynamic frequency selection and transmit
power control mechanisms [224,225]. M-MIMO has been considered one of the likely ways to enhance
spectrum efficiency [226].

Various issues, such as minimizing BER, spectrum sensing, receiver design, and channel modeling,
must be addressed for the design of M-MIMO systems. Several studies have been conducted to explore
these areas; a few of them are discussed in the next subsections.

Time Division Duplexing (TIDI)

Figure 6. FDD (Frequency Division Duplex) vs. TDD (Time Division Duplex).
3.5.1. Minimizing BER

As the future radio 6G demands an extensive array of antenna deployment due to numerous
users and its data requirements, a technology that fulfills its desire is M-MIMO. M-MIMO has 20x
more antennas than a conventional MIMO system, and traditional methods are complex and inefficient
to support the M-MIMO system. In [227], the authors have contributed to the new design of signal
detection at BS by the antenna. For this reason, they have suggested a computationally less complex
approximate message passing algorithm for the discovery of the M-MIMO system by using MATLAB
simulations. Hence, the results are astoundingly amazing as a suggested technique provides a smart
and efficient tradeoff between computational complexity and BER performance; moreover, it is less
complex for the detection of M-MIMO systems. Furthermore, it can be stretched to large M-MIMO
systems with many antennas and users. A study [228] has compared M-MIMO and conventional MIMO
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based on channel parameters. To estimate the channel parameters for traditional and M-MIMO system:s,
a training-based and blind channel estimation technique is provided and matches the performance of
both the systems. Therefore, by implementing the proposed method, M-MIMO delivers a much better
BER count than 2 x 2 MIMO systems. However, a more agile algorithm is required to simplify the
complexities of M-MIMO more.

3.5.2. Spectrum Sensing

The authors in [229] have designed a unique compressed sensing framework that differentiates
LOS from NLOS signal paths and leads to better performance in comparison with existing approaches.
Even though it increases the localization accuracy and minimizes the execution time, a high
computational complexity algorithm is found. In [230], the researchers have discussed the importance
of throughput and spectral efficiency for higher user services and system performance. The technique
called Matched Filter Precoding (MFP) improves the system performance and cell-edge user’s
throughput in a cooperative M-MIMO network because of an increase in antenna numbers at a BS.
Additionally, MFP helps reduce intercell interference among users by using asymptotical orthogonality.
Overall, the cooperative M-MIMO mitigates the intercell interference and pilot contamination using
many antennas at a BS. However, for a pilot signaling, more comprehensive and refined channel
information is required to explore the extensive research work.

3.5.3. Receivers Design

As for the M-MIMO system, Huawei and NTT Docomo have conducted massive field trials to
evaluate the feasibility of M-MIMO for MU-MIMO schemes for future wireless communication [231].
They have modeled three types of MIMO precoding schemes, such as linear precoding: Eigen
Zero-Forcing (EZF), nonlinear precoding: Tomlinson Harashima Precoding (THP), and hybrid
precoding. By implementing the methodology, the results have proved that the hybrid scheme
brings positive outcomes due to its litheness on selecting EZP and THP to take benefits of both schemes
in a practical scenario. The authors in [232] have presented an uplink spectrum efficiency approach for
the M-MIMO system. The TDD realization is used based on the Zero-Forcing (ZF) and Maximum Ratio
Combining (MRC) schemes. The results have shown that spectral efficiency is significantly improved,
and the design condition is dependent on the number of antennas at the BS and pilot reuse factor.

3.5.4. Channel Modeling

In [233], the authors have investigated M-MIMO performance in a real propagation channel
environment. The channel measurements take on 2.6 GHz with virtual Uniform Linear Array (ULA)
and Uniform Cylindrical Array (UCA) in the presence of 128 antenna ports. However, the investigations
are held on the Rayleigh channels with theoretical channels and based on measurement data. The
channel behavior in three propagation scenarios is discussed, and the results are evaluated. Therefore,
the outcomes are achieved for both arrays defined, as the performance is close to that of i.i.d.
(independent and identically distributed) Rayleigh fading channels. A study [234] has derived an
attainable aggregate rate for time selective channel model for M-MIMO systems. The authors have
proved that a major difference is obtained in the sum rate between block fading and time selective
models. Moreover, results have shown that for constant amplitude pilots, the asymptotic SINR
performance is limited by the effect of interference from the time-selective channel. Additionally, they
have suggested that in a block fading, the optimal training is not appropriate for a time-selective channel
with ample antenna systems in the BS. However, given numerous antennas and multiuser systems,
the signal deteriorates due to interferences, and a constructive and sharp interference cancellation
scheme should be investigated. The authors in [235] have discussed the serious concern of pilot
contamination in multicell M-MIMO systems under correlated channels. The output is received
through simulation via MATLAB, pointing out that if channels are correlated, the performance of
M-MIMO degrades massively. They have added that when the channel correlation coefficient is lesser
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than the threshold value, the performance of M-MIMO increases with an increase in the number of
antennas. In contrast, for the large channel correlation coefficient, the performance gets better slowly
and steadily by increasing the number of BS antennas. The authors in [236] have proposed a scheduling
algorithm for the M-MIMO downlink system along with a ZF beamforming approach. The idea is
to utilize a channel mean gain and to select a user to achieve maximum sum rate. The results are
achieved in terms of error performance, sum rate, throughput, and fairness; however, the authors have
suggested that the proposed algorithm must be tested on a realistic model for multiantenna users.

Below is Table 5, which summarizes the techniques, advantages, and limitations of the
above-discussed studies.

Table 5. Summary of the related work for M-MIMO.

Issues/Approach Methodology/Technique Advantages lelta‘t/l\z’ r;ls(/ future References
Efficient and less
. . complicated uplink Can be extended to large
MATLAB simulations of . detection and the M-MIMO systems with a
approximate message passing [227]
S . . . excellent tradeoff vast number of antenna
Minimizing Better  algorithm for uplink detection between complexit and users
Bit Error Rate (BER) . performaf;ce y
Tra'mmg-based b.l ind channel BER count Complex algorithm [228]
estimation techniques
Direct localization algorithm, Decreases execution
which is based on the location time and enhances the Higher computational [229]
to source for narrowband Spectrum accurac complexity
S . multipath P y
pectrum Sensing
Performance analysis of More channel
spectral efficiency and BS Improves throughput . .
. X 2. information is needed [230]
antennas using match filter and spectral efficiency for the pilot sienal
pre-coding techniques P &
Multi-user MIMO precoding
schemes, i.e., Eigen Zero
Forcing (EZF), Flexibility in a practical ~ Limited to LOS [231]
Tomlinson-Harashima system design environment only
Precoding (THP), for different
UE deployment scenarios
Receiver design Spectral efficiency has
TDD realization based on Zero ian?;;,gr?‘fl;;rel;t and the
For.cmg (ZF). an d Maximum design condition is Limited to a smaller
Ratio Combining (MRC) [232]
schemes for uplink dependent on the number of antennas
M-MIMO svstem number of antennas on
Y the BS and pilot
reuse factor
Real measurement has been More transmission
performed at 2.6 GHz by using  Better performance factors, such as
the virtual Uniform Linear close to that in i.i.d. propagation delay, [233]
Array (ULA) and Uniform Rayleigh channels should be included
Cylindrical Array (UCA) in future
Utilizes first-order . Optimum results in the .
Gauss-Markov Rayleigh achieved Interference effect is [234]
fading channel model in agetezate-rate not considered -
Channel modeling  time-selective channels 88reE
. Achieves better
itol::lizs(’ilg;;;ig; I;:[_I\l/l[slﬁ/l[o performance by Correlated channels
. oY & increasing more reduce the overall [235]
MATLAB simulations to solve antennas at Base erformance
pilot contamination issue Station (BS) P
A scheduling algorithm based Better results in terms
on the downlink M-MIMO of error performance Need to test on the more
system along with Zero P ’ realistic model and for [236]

Forcing (ZF)
beamforming approach

sum rate, throughput,
and fairness

multi-antenna users
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4. Future Research Challenges

For future research directions, we present some of the challenges in current 5G networks that
need optimum solutions for designing 6G networks. The future research challenges for the studied
topics are summarized as follows:

4.1. Carrier Aggregation

An optimal SS framework to allocate multiple resources efficiently among users is crucial for our
future SS systems [237]. Multiple CCs across the available spectrum can be utilized to create a wider
bandwidth channel to increase the network data throughput and overall capacity [238]. Moreover,
an application-aware resource allocation scheme is needed for the users of HetNet to achieve fragmented
spectrum allocations and aggregate licensed and unlicensed carrier spectra [239]. A Clear Channel
Assessment (CCA) may be performed in response to the uplink grant to determine the availability
of an unlicensed spectrum [240]. Moreover, the Licensed Assisted Access (LAA) method is the latest
approach presented by 3GPP that can exploit high-spectrum bandwidth to address the limitation of
the current 5G network [241]. Various Machine Learning (ML)-based resource allocation techniques
can also be applied. For instance, a deep learning method can be used to overcome the resource
allocation management of BS by performing fractional spectrum access proactively and selecting the
channel dynamically [242]. Lack of dynamic control of wireless network resources leads to unbalanced
spectrum loads and introduces capacity bottleneck. Therefore, a solution similar to extended Dynamic
Spectrum Access (eDSA) is needed to provide quality load balancing in available spectrum bands, traffic
allocation, and capacity enhancement through the aggregation of current resources [243]. Moreover,
some Al-based solutions for resource management must be proposed; for example, Evolutionary
Programming (EP) algorithm [244].

4.2. Cognitive Radio

CR for spectrum utilization offers the opportunity for flexible spectrum access in the current
wireless systems [245]. Spectrum sensing involves the classification of a part of the spectrum or a
frequency band as either “occupied” or “unoccupied” [246]. Several types of CR-based schemes are
presented recently (e.g., matched filter, energy, and cyclostationary feature detection) [247]. When more
accurate information about the primary user is needed, then the best-matched filter is required
to perform optimal detection [248]. The cyclostationary approach can also be utilized by using
cyclostationary elements of the available spectrum [249]. Moreover, the implementation of cooperative
sensing must be performed in a distributed manner; that is, SUs receive information from the neighbors
and make a choice on an individual basis [250]. Another way to use the free spectrum efficiently is the
utilization of the dynamic genetic algorithm for PUs and SUs [251]. A new promising approach is
to utilize ML techniques with CR to improve the spectral and energy efficiency of the network [252].
The handover between the PUs and SUs during resource sharing is a critical task that needs some
dynamic handover schemes to achieve high QoS [253]. Moreover, various Al-based approaches are
required for effective resource management in CR networks [254]. Although this requires different
optimization parameters for different environments, real-time processing can be achieved by combining
CR with Al into the Multi-Agent System (MAS), and real-time processing can be achieved [255].

4.3. Small Cell

As the use of a high-frequency band in the current 5G network increases, the utilization of small
cell deployment is a mandatory approach to serve a higher number of subscribers [256]. However,
the existing spectrum allocation algorithms are insufficient to deliver optimum spectrum allocation
efficiency in the small cell network [257]. Therefore, an efficient algorithm, such as K-Nearest Neighbor
(KNN) learning algorithm, can be used to classify all the small cells according to their geographic
locations and interference radius; thus, the spectrum allocation efficiency can be improved [258].
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Additionally, for a limited backhaul capacity network, some efficient spectrum allocation solution is
required to provide significant performance improvement in throughput enhancement, delay reduction,
and energy savings for small-cell networks [259]. The switching between small cells and Wi-Fi remains
a challenging task that is being explored in the latest 3GPP releases [260]. Furthermore, in small
cell-based HetNet, which consists of multilayers with a shared spectrum, a dynamic spectrum and
multicell logarithmic resource allocation algorithm are required [261]. The utilization of various new
approaches, such as block-aware power allocation, efficient relay selection, and cooperative caching
algorithms, must also be developed to deliver the optimum results for the current 5G network [262,263].
The BS in HetNet is experiencing a seamless switching between different technologies, such as Wi-Fi
and cellular. This continuous switching makes the network suffer from negative parameters, such as
intercell interference, SNR, fading, and downstream power. Hence, an optimal solution for resource
and power allocation using a feed-forward neural network approach can be implemented for the
stability of the network [264]. Similarly, traffic offloading is a critical issue in multitier HetNet;
therefore, an autonomous traffic offloading technique based on machine learning is required to reduce
transmission delay [265]. Moreover, an efficient design for some new Al-based clustering approach can
manage the resource framework while enhancing the efficiency and throughput of the small cell [266].
To improve coverage, Al-based optimization approaches are required, especially for software-defined
networking controllers [267].

4.4. High-Spectrum Access

The modeling, as well as the measure of high-spectrum channels, play a vital role in guiding toward
the complete knowledge of how this spectrum differs from the currently used spectrum [268]. Limited
coverage is another big issue for the mmWave spectrum; therefore, detailed stochastic geometric
coverage analysis studies with the realistic channel and antenna radiation models are required [269,270].
Moreover, the use of passive reflectors of different shapes and sizes can help enhance the received
power, thus improving signal coverage in the NLOS region [271]. Besides, NLOS is assumed to be
more important for a lower 6 GHz band rather than in mmWave communication links. On the contrary,
high propagation losses and high absorption in mmWave makes the LOS inevitable [272]. However,
only a few research studies have focused on designing the channel models for the NLOS scenario to
deliver sufficient results [273,274]. Although existing channel models provide some insights into the
propagation characteristics of mmWave in cellular environments, further research is needed to capture
the shades of the propagation and fade in the mmWave scenario [275]. The utilization of clustering in
narrow-beam antenna [276] and accurate estimation of departure and arrival angles, as well as the
time-of-arrival for each observed radio propagation path, can be used to enhance the overall network
performance [277]. Various new frequency spectra, such as 60 and 73 GHz bands, can be studied for
various propagation environments and compared with the existing frequency band below 6 GHz.
Different multifrequency propagation path loss models (in particular, ABG, which is CIF) can be
investigated for the evaluation of future high-frequency mmWave networks [278]. Furthermore, some
new self-organizing techniques based on ML are required to provide clustering and efficient spectrum
allocation for the mmWave system [279]. Moreover, the beam selection for the uplink scenario requires
an efficient ML mechanism to deliver a high directional beamforming effect [280]. The Al-based
framework can also be used to optimize high-spectrum mmWave compressed sensing for high-speed
5G/6G image transmission [281].

4.5. M-MIMO

In mmWave frequency bands, the blockage and path loss phenomena are considerably high.
Nonetheless, it can be (partially) surmounted by keeping the structure of antenna array on the
basic physical size as it is used in lower frequencies; this can be accomplished by M-MIMO [282].
However, M-MIMO technologies are constructed, implemented, and utilized differently [283].
The main requirements regarding stability, flexibility, and coverage must be investigated for different
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frequency bands, antenna geometries, and propagation environments [284]. Besides, various current
precoding schemes have high-computational complexity and fail to maximize spatial information [224].
Conventional digital beamforming involves the complexity of large antenna arrays in addition to the
increased cost of the system, whereas analog beamforming can handle only a single data signal at a
time. Therefore, various low-cost and less complex hybrid precoding methods are required to model
efficient transmitters and testbeds to mitigate jamming for MIMO-based mmWave systems [285-289].
This goal can be achieved by designing architecture with a combination of analog and digital processing
that can be utilized to enable beamforming and spatial multiplexing with minimum complexity
in achieving optimal performance [290,291]. An ML algorithm can be utilized to predict various
channel characteristics and create a beamforming M-MIMO dataset framework [292,293]. The Al-and
M-MIMO-based systems can deliver good QoS performance for high altitude users [294]. Nonetheless,
the explainable Al-controlled based architecture would be useful for several current limitations while
performing resource allocation, energy optimization, and minimizing interferences [295].

5. Conclusions

The next-generation 6G wireless network is expected to support essential user applications
and increase the efficiency of communication with low latency and high throughput. Advanced SS
schemes should be formulated to acquire the full potential of the spectrum for the current 5G network.
Undoubtedly, spectrum management plays a critical role in achieving this goal; however, many issues
arise while designing such future networks. Therefore, this study provides a comprehensive review
to describe the technologies involved in the current 5G network design and the issues that occur
while performing resource sharing. The five major topics covered in this study are CA, CR, small cell
networks, high-spectrum access, and M-MIMO. Several main concepts of each of the approaches with
its recent related researches, including the methodologies, advantages, and limitations, are discussed.
This study concludes that from the perspective of design and measurement of future 6G networks,
the requirement to use different techniques concurrently in the current 5G network could enhance the
overall spectral efficiency. We also believe that the future research challenges presented in this study
can provide a new perspective for researchers to mitigate spectrum management issues in the design
of 6G wireless networks.
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