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Abstract: Transformerless inverters are the economic choice as power interfaces between photovoltaic
(PV) renewable sources and the power grid. Without galvanic isolation and adequate power convert
design, single-phase grid connected inverters may have limited performance due to the presence of
a significant common mode ground current by creating safety issues and enhancing the negative
impact of harmonics in the grid current. This paper proposes an extended H6 transformerless inverter
that uses an additional power switch (H7) to improve common mode leakage current mitigation in
a single-phase utility grid. The switch with a diode in series connection aims to make an effective
clamp of common mode voltage at the DC link midpoint. The principles of operation of the proposed
structure with bipolar sinusoidal pulse width modulation (SPWM) is presented and formulated.
Laboratory tests’ performance is detailed and evaluated in comparison with well-known single-phase
transformer-less topologies in terms of power conversion efficiency, total harmonic distortion (THD)
level, and circuit components number. The studied topology performance evaluation is completed
with the inclusion of reactive power compensation functionality verified by a low-power laboratory
implementation with 98.02% efficiency and 30.3 mA for the leakage current.

Keywords: common mode inverters; photovoltaic; leakage current elimination; pulse width modulation

1. Introduction

The energy demand for industrial, commercial, and residential consumers is a fact in the 21st
century. One way to accomplish this demand without harming the environment has been seen through
the incorporation of distributed generation (DG) systems in distribution networks. Large and as
well as small-scale photovoltaic (PV) arrays for home applications have become popular rather than
other DG sources due to the improvement in manufacturing techniques and significant advances in
power electronic interfaces. Electrical energy produced by a PV installation is basically a DC system.
Therefore, it must be converted into AC power to make it available in power utility through a grid-tie
inverter [1–3]. Transformerless voltage source inverters (VSIs) are the standard choice in detriment of
current source inverters (CSIs), because they show better conversion efficiency, smaller size, and lower
manufacturing costs for the same power rating. Transformerless inverters generally have two classes of
connection such as galvanic or non-galvanic categories. When a high-frequency low-size transformer
on the DC side or low-frequency large-size transformer on the AC side are used, the electric connection
is removed, which means electrical isolation between the two electrical systems [4]. This electrical
separation improves operation security and reliability. However, it deteriorates power conversation
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efficiency. If the transformer is removed (following protection guidelines [5,6]), renewable power
generation investment cost is considerably lower. Many studies have been conducted so far on this
issue to explain how common mode current (CMC) could be surpassed [7]. CMC circulation is only
possible, since there is no galvanic isolation which, combined with the stray capacitance that appears
between PV installation and the DC side ground, allows a path for ground current to be injected into
the neutral point at the AC side. The stray capacitance level may depend on:

• Class of PV cells;
• Climate type and residential localization;
• The height between PVs and ground on the DC side;
• Voltage level; and
• Electromagnetic Interference (EMI).

To guarantee grid reliability, modern grid-connected PV standards propose leakage current
protection device actuation according to CMC amplitude. This means that CMC values below 300 mA
are permanently acceptable, while above this point, the protection must react and trigger a break by
isolating the transformerless inverter from the utility grid. Furthermore, this current must not continue
over 0.3 s during the operation scheduling period. If the CMC increases, the maximum permissible
time to trip will be decreased, correspondingly. Table 1 depicts the recommended tripping time as a
function of CMC amplitude.

Table 1. Maximum common mode current (CMC) [7].

RMS Value Automatic Disconnection Time

CMI > 300 mA 0.3 s
CMI > 450 mA 0.15 s
CMI > 800 mA 0.04 s

To eliminate the leakage current presence, several topologies have been studied and analyzed in
the literature, which are shown in Figure 1. The Karschny structure depicted in Figure 1a [8] is based on
an asymmetrical output inductor. The topology works at low voltage on the DC side being configured
to be operated in two different modes. In one half cycle, its operation is very similar to a buck converter.
On the other hand, when S1 and S5 are switching in a complementarily way, the topology operates
as a buck-boost converter. This allows generating a semi-pure sinusoidal current. In practical terms,
it is not easy to implement because it requires a complex control technique. In addition, the three
switches that contribute to the current path lead to an increase in the active power loss. Other forms
of proposed topologies are based on dual-buck topologies [9,10], which can be seen in Figure 1b,c.
These structures are basically two buck converters that can be connected in series or in parallel being
operated complementarily to perform DC decoupling of the current path. Switches SL1 and SL2 are
commuted at a power grid frequency in order to prevent the reversal of the inductor current [10].
The half-bridge-based transformerless inverters as shown in Figure 1d may limit the CMC presence,
but at the cost of operating restrictions such as the requirement of the DC input voltage being at least
twice that of the utility grid voltage. In addition, from a design point of view, power switch components
are subjected to higher voltage stress and require a larger output filter size [11]. In Figure 1e, the neutral
point clamped (NPC) VSIs have been recently applied in grid-connected PV systems. Due to its
structure, extended switching frequency is possible, allowing in turn smaller filter size calculations
and reduced voltage stress on power switches. The NPC inverters can balance the voltage applied
to off-biased switches. Despite their advantages, the active power loss is not negligible, taking into
account the number of components used [12].
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Figure 1. The main configurations of transformerless photovoltaic (PV) inverters in the literature. 

(a) Karschny [8], (b) series buck [9], (c) parallel beck [10], (d) half bridge [11], (e) neutral point 

clamped (NPC) [12], (f) full bridge [13], (g) highly efficient and reliable inverter (HERIC) [14], (h) 

H5 [15], (i) H6 [16]. 
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Figure 1. The main configurations of transformerless photovoltaic (PV) inverters in the literature.
(a) Karschny [8], (b) series buck [9], (c) parallel beck [10], (d) half bridge [11], (e) neutral point clamped
(NPC) [12], (f) full bridge [13], (g) highly efficient and reliable inverter (HERIC) [14], (h) H5 [15],
(i) H6 [16].

The full bridge topology represented in Figure 1f that uses symmetrical inductor filters cannot
effectively decouple the CMC on the AC side, since high-amplitude CMC is generated with the
sinusoidal pulse width modulation (SPWM) technique [13].

A concept known as highly efficient and reliable inverter (HERIC) can be seen in Figure 1g.
It comprises a full bridge configuration where two additional high-frequency switches are arranged
in opposite directions on the AC side. The freewheel path is also produced by those high-frequency
switches in high-efficiency operation. The main disadvantage of HERIC VSI is that the exact regulation
of them results in output voltage and current chopping. The H5 topology shown in Figure 1h is
obtained from a full bridge converter by incorporating a switch on the DC side to decouple it from
the AC side, and therefore suppressing the CMC interference [14,15]. The three upper-side switches
are controlled by the power grid frequency, while the rest are under high-frequency signal switching
control. In the freewheel condition, only two semi-conductor switches are conducted, but in an active
state, three of them are tuned on, which results in large active power loss consequently. Adding an extra
switch to H5 topology will make those DC side switches work in pairs and will obtain the H6 topology
represented in Figure 1i. However, the modulation performance varies regarding H5 topology and the
most important drawback of this structure is the active power loss achieved in conduction operation
mode with three switches [16].

This paper is organized as follows: Section 2 presents the CMC conceptualization for a single-phase
PV inverter. The mitigation method and CMC evaluations are discussed in Sections 3 and 4, respectively.
The design considerations and maximum power point tracking (MPPT) algorithm are presented in
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Section 5. Section 6 analyzes the active power loss into two categories: switching and conduction.
The simulation results and experiments are conducted in Section 7, and finally, the reactive power
compensation is described in Section 8. Briefly, in this paper, a high-efficiency grid-tie inverter structure
for non-isolated PV systems is proposed. The main contributions of the presented VSI are briefly
mentioned below:

• An extended H6 topology by comprising seven switches, of which five are controlled in
high frequency. The remaining switches operate in line frequency modulation to create the
freewheel path.

• The 7th switch is used to clamp the common mode voltage; if the voltages (VAN ≈ VBN) are higher
than half of the DC link voltage, freewheeling current flows through S7 and D1 to the midpoint of
the dc link, which results in VAN and VBN being clamped at Vpv/2.

• The maximum power point tracking (MPPT) algorithm based on perturb and observe (P&O) is
considered to increase the total system efficiency.

• The AC decoupling strategy has been chosen.
• The unipolar SPWM pattern is applied to gate inputs.
• A reduced filter size is hired to decrease the unsolicited harmonic generated by output current

and restrict the total harmonic distortion (THD).

2. CMC Origin in Transformerless Inverter

In the first categories of PV inverter topologies without galvanic connections mentioned before,
which may be known as switching inverters or transformerless inverters, many applications are verified.
The main drawback of these configurations is the CMC generation, which has appeared between the AC
mains and the DC side of the inverter. A general structure of a transformerless PV inverter highlighting
the path of ileakage (icm) is shown in Figure 2. As it can be seen clearly, the common mode current is
flowed in a loop that consists of a DC input voltage source or PV arrays voltage, inverter switches,
output filter inductances, AC grid, grounding impedance, and parasitic stray capacitances of PV
cells. The common mode voltage is the mean of voltages of node A and node B. Besides, Vdm is the
differential of the aforementioned nodes. Figure 3 has been depicted to represent the simple single-line
circuit of the discussing topology in order to calculate the total common mode voltage. Consequently,
according to these explanations, it could be expressed with the following equations.
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Vcm =
VAN + VBN

2
(1)

V′dm =
Vdm

2
(LB − LA)

(LB + LA)
(2)

Vdm = VAN −VBN (3)

Since icm appeared due to Vt,cm flows in the abovementioned loop, it could be proved that the
total common mode voltage is obtained in (4):

Vt,cm = Vcm +
Vdm

2
(LB−LA)
(LB+LA)

= VAN+VBN
2 + VAN−VBN

2
(LB−LA)
(LB+LA)

(4)

Clearly, it is observed that the criteria for the elimination of icm is to make Vt,cm remain constant.
Thus, we should have:

Vt,cm =
VAN + VBN

2
+

VAN −VBN

2
(LB − LA)

(LB + LA)
= cte (5)

In some configurations such as half-bridge family or Karschny inverters and some of those
indicated in Figure 1a, only one inductor is used in the output to filter the harmonics, so that the other
inductor is equal to zero or does not need to be considered. Thus, by assuming that LA = 0, we find
the Vt,cm as (6).

Vt,cm =
VAN + VBN

2
+

VAN −VBN

2
(LB)

(LB)
= VAN = cte (6)

If LB = 0, Vt,cm will be extracted in (7).

Vt,cm =
VAN + VBN

2
+

VAN −VBN

2
(−LA)

(+LA)
= VBN = cte (7)

In other PV transformerless inverter topologies, as shown in Figure 1, both inductors LA and
LB are existing and equal to each other. This equality results in Vdm = 0. Therefore, to eliminate the
leakage current flow, Equation (8) is being obtained:

LA = LB → Vt,cm =
VAN + VBN

2
= cte (8)

It is concluded that transformerless VSIs could be categorized into two groups. The first one is
called “asymmetrical inductor based inverters”, which trust in (6) and (7). Similarly, the second group
is named “symmetrical inductor based inverter”; Equation (8) is applied to them.

3. H7 Topology and Formal Analysis

The H7 topology combines the main H6 family characteristic with a symmetrical inductor-based
inverters group, as shown in Figure 4a. It consists of a full-bridge converter with two inductors,
which can generate an appropriate sinusoidal voltage with very low THD. The switches S1, S2, S3,
and S4 operate in high frequency with two remaining switches being turned on/off in line with grid
frequency. The switching pattern is depicted in Figure 4b. The proposed suppression process comprises
four modes of operation implemented by the control strategy in each period of the power grid frequency.
As it can be observed in Figure 4b, switch S7 is conducting when high-frequency switches S1, S2, S3,
and S4 are turned off. Therefore, S7 is conducting only in freewheel modes. The operation modes are
detailed in Figure 5.
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3.1. Mode 1, Negative AC Current

In this mode, switches S1, S3, and S5 are turned off, and switch S6 operates at grid frequency.
The SPWM technique is employed to generate the gate signals of the S2 and S4 switches. It is supposed
that switches S2 and S4 are conducted initially. Thus, the AC current flows from the DC part to the AC
side through S2 and S4. Therefore, voltages VAN is null and VBN sets at Vpv input voltage. This mode
is detailed in Figure 5a. If the voltages (VAN ≈ VBN) are higher than half of the DC link voltage,
freewheeling current flows through S7 and D1 to the midpoint of the DC link; as a result, VAN and VBN

are clamped at Vpv/2.
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3.2. Mode 2, Negative Freewheel Current

The switches S1, S3, and S5 are in an off state, while the switches S2 and S4 remain OFF for short
periods of time, as shown in Figure 4b. The common mode leakage current as observed in Figure 5b is
not allowed to circulate. Thus, it is temporarily eliminated. As a result, the AC grid is decoupled from
the DC PV system. Now, voltages VAN and VBN are brought to the same values around Vpv/2.

3.3. Mode 3, Positive AC Current

In the next mode, switches S2, S4, and S6 are turned off. Switch S5 is working under line frequency
modulation. Moreover, switches S1 and S3 are operated in switching frequency. The switches S1 and
S3 are conducting, and then, switch S5 at this moment does not have a closed loop to flow the current.
Thus, the current flows from the DC side to the AC side of VSI through S1 and S3; therefore, we could
figure out VAN = Vpv and VBN = 0. This mode is depicted in Figure 5c. Similar to Mode 1, if the
voltages (VAN ≈ VBN) are higher than half of the DC link voltage, freewheeling current flows through
S7 and D1 to the midpoint of the dc link; as a result, VAN and VBN are clamped at Vpv/2.

3.4. Mode 4

Mode 4 is characterized by switches S1 and S3 being in a turn-off state. This means that the AC
current closes through the freewheel loop that comprises the S5 body diode, switch S6 in conduction
mode, and AC grid (Figure 5d). Due to the closed freewheel path, there is no way for the icm current
path. This operating state leads to VAN = VBN ≈ Vpv/2.

4. H7 Topology Evaluation

In order to evaluate the common mode leakage current impact on the proposed topology,
we derived the equivalent circuit of the loop from Figure 6 that imports the novel structure presented
in Figure 6. Since the input capacitances CPV are very small, they are not considered for calculation
purposes. In addition, Cout has no influence in icm derivation, being discarded, too. Manipulating
Equations (1) and (3) can be reorganized as:

VAN = Vcm +
Vdm

2
(9)

VBN = Vcm −
Vdm

2
(10)
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Based on that, the CM equivalent circuit of Figure 6 is converted in Figure 7a. Further simplification
can be obtained in the form of a single loop arrangement (Figure 7b).
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Using the single loop circuit simplification, CM voltage and current values are computed as
follows:

(a) In mode 1:

Vt,cm = VAN+VBN
2 + VAN−VBN

2
(Lg−Lg)
(LB+LA)

=

=
0+Vpv

2 =
Vpv

2 = cte
(11)

(b) In mode 2:

Vt,cm = VAN+VBN
2 + VAN−VBN

2
(Lg−Lg)
(LB+LA)

=

=
Vpv

2 +
Vpv

2
2 =

Vpv
2 = cte

(12)

(c) In mode 3:

Vt,cm = VAN+VBN
2 + VAN−VBN

2
(Lg−Lg)
(LB+LA)

=

=
Vpv+0

2 =
Vpv

2 = cte
(13)

(d) In mode 4:

Vt,cm = VAN+VBN
2 + VAN−VBN

2
(Lg−Lg)
(LB+LA)

=

=
Vpv

2 +
Vpv

2
2 =

Vpv
2 = cte

(14)

5. Prototype Design Consideration

This part of the paper is organized in three sections: filter inductance design, filter capacitance
selection, and semi-conductor components sketching. In these topologies, typically the maximum
ripple of the current is considered between 10% and 25% of the root meat square (RMS) current [17].
Therefore, for a 36 W prototype fed a load with 30 V at 8 kHz switching frequency, the filter inductance
is obtained as (15).

L f = Ton
Vpv −Vac

2× ∆iMAX
ripple

∼ 2 mH (15)

where the maximum current ripple is assumed to be 20% of the nominal current. Consequently,
the capacitance of the output filter is generally designed based on the cut-off frequency. This frequency
is normally between 10% and 20% of the switching frequency [18]. Equation (16) is given to help the
selection of filter capacitance.

fcut−o f f ≤ (10% ∼ 20%) × fs
fcut−o f f =

1
2π
√

LgC f ilter

(16)

Therefore, filter capacitance will achieved as approximately 220 µF. In order to select the
semi-conductor components, it is noted to say that in high-frequency conditions, the switches
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S1 to S4 should work properly. On the other hand, the switches S5 and S6 are operated at line frequency.
According to peak inverse diode (PIV), total standing voltage (TSV), and nominal parameters of load,
the MOSFET IRFP150 was selected as a power switch that could withstand up to 100 V and 40 Amperes
as the nominal current. For the diodes configuration, the BY3099 reference was chosen, while the
MOSFET driver role is ensured by the ICL 7667. Finally, to guarantee galvanic isolation between the
gate signals and power circuit, we used a 6N137 optocoupler [19].

MPPT

The P&O approach is a well-known algorithm to perform the MPPT function. It works by applying
a small disturbance in the system; then, the set-point of PV arrays are going to be changed due to
tracking the maximum power point. The equation that describes the P&O algorithm operation is
shown in (17) [20].

MPPk+1 = MPPk ± ∆PPV = MPPk
+(MPPk −MPPk−1) × sign(∆PPV)

(17)

where ∆PPV = Pk − Pk−1. The MPPT flowchart of the P&O strategy is shown in Figure 8.
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6. Power Loss Analysis

Since the transformerless VSIs should be operated with maximum power conversion efficiency,
the characterization of internal power losses is evaluated in the proposed topology [21]. For a modeling
viewpoint, the AC current is given by Equation (18).

i(t) = Im sin(ωt) (18)

where Im is the current injected in the power grid and ω is the angular frequency related to the
utility frequency.

The voltage drop of these semi-conductors can be divided into two categories (19).

Vds(t) = i(t) ×Rds → f or MOSFETs
Vak(t) = V f + i(t) ×Rak → f or Diodes

(19)
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where Rds and Rak are the MOSFET and diode conducting resistance and V f is the forward voltage of
diode. Active and zero conditions regarding conduction time Tactive and non-conduction time Tzero of
semi-conductor components are given by (20) and (21), respectively.

Tactive(t) = M sin(ωt) (20)

Tzero(t) = 1−M sin(ωt) (21)

where M is the modulation index.

6.1. Steady-State Conduction Losses

The average conduction loss of MOSFETs and diodes are expressed as (22) and (23), respectively.
Since the switches S5 and S6 are working at a line frequency, the conduction losses should not be
ignored. Average power loss is calculated according to Equation (24).

Pc,MOSFET =
1

2π

π∫
0

i(t) ×Vds(t) × Tactive(t) × d(ωt) =
2M
3π

I2
mRds (22)

Pc,Diode =
1

2π

π∫
0

i(t) ×Vak(t) × Tzero(t) × d(ωt) = ImV f

( 1
π
−

M
4

)
+ I2

mRak

(1
4
−

2M
3π

)
(23)

Pc,MOSFET,line =
1

2π

π∫
0

i(t) ×Vds(t) × Tzero(t) × d(ωt) = I2
mRds

(1
4
−

2M
3π

)
(24)

6.2. Switching Losses

Ordinarily, the switching losses are calculated by multiplying instantaneous voltage and the
current of the commutation state, where they meet each other. This results in (25) and (26) for the
evaluation of ON and OFF conditions, respectively.

Psw,on =
1

2
√
π

fshIk
mKgon

Vds
Vtest

Γ
(

k+1
2

)
Γ
(

k
2 + 1

) (25)

Psw,o f f =
1

2
√
π

fsmIk
mKgo f f

Vds
Vtest

Γ
(

n+1
2

)
Γ
(

n
2 + 1

) (26)

It is proved Γ
(

n+1
2

)
÷ Γ

(
n
2 + 1

)
= 1
√
π

π∫
0

sin(ωt)nd(ωt). Here, coefficients h and k are turn-on energy

factors; m and n are turn-off energy factors, Kg is the correction factor to take account of the gate drive
impedance, and Vtest is the test voltage for the model parameters [22]. If the paralleled capacitors of
each switch are considered, the charge and discharge losses of them will be given by (27).

Pcap,sw =
1
2

CMOSFETV2
ds fs (27)
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The power loss during the reverse recovery period of diode performance due to the switching
is estimated by (28). However, the diode reverse recovery current not only contributes to its loss as
mentioned above, but it also generates the loss in the main switches as shown in (29) [23].

Psw,Diode =
1

2π

π∫
0

(1
2

Vdc

)
×

(1
2

Irr

)
× fs × tb × d(ωt) =

VdcIrr fstb

8
(28)

PDrr =
1

2π

π∫
0

(
Im.sin(ωt).ta

+ Irr
4 (2ta + tb)

)
×Vdc × fs × d(ωt)

=
(

Imta
π +

Irr(2ta+tb)
8

)
Vdc × fs

(29)

7. Simulation and Experimental Results

In order to evaluate the H7 topology an inverter prototype was built. It can be seen in Figure 9 the
main elements of the inverter system used in bench tests. Table 2 gather the main electrical parameters
that characterize the electrical tests. The switching frequency is chosen as 8 kHz and the line frequency
is 50 Hz. Figure 10a,b represent the VAN and VBN signals obtained by simulation. Being signals with
pulsating periodic waveform, this behavior makes Vt,cm constant, as can be verified in Figure 10c.
Consequently, the common mode current elimination target is accomplished. For emulating as close
as possible a real scenario, it was chosen a stray capacitance of 75 nF. The experimental waveforms
are shown in Figure 11, demonstrating the effectiveness of the novel photovoltaic transformerless
inverter. The output voltage and load current amplitudes can be checked in Figure 11a. Voltage
THD measurement at inverter output is 1.51%, in accordance with the value estimated in simulation
whose result is 1.07%. Measured waveforms of VAN and VBN have approximately square waveforms
(Figure 11b), confirming that Vt,cm is constant (Figure 11c). Finally, in Figure 11d the CMC waveform
is presented. Due to experimental device restrictions, DC input voltage of 30 volts conditioned VAN
and VBN peak voltage around 30 V. The peak value of the output voltage and current are near 30 V and
1.2 A, respectively. From Figure 11d data the current measured in common mode is approximately 1.14
mA. Some undesirable peaks shown in these pictures appear due to non-ideality in components.
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Figure 9. Laboratory setup of proposed H7-type inverter.

Table 3 shows a comparative study concerning the proposed topology with published performance
data regarding some well-known single phase inverter structures. The comparison highlights that
the H7-type inverter with fewer components can not only reduce significantly the CMC circulation,
as well as the power conversion efficiency is one of highest. On the other hand, these results denote
that the CMC of the H6 topology is the lowest of all under comparison and the two others’ CMC is
practically the same. However, the efficiency analysis shown in Figure 12 relies on the best performance
of the proposed topology. To illustrate this, it can obviously realized by comparing our topology
with those evaluated in active and freewheel conditions. In the active state, the AC current flows
through only two switches in the proposed topology, similarly to HERIC-type inverter, while H6 and
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H5 topologies require three power switches translating into higher active power loss. In the freewheel
state, the H7-type design makes use of only one switch and one diode in line with the H6 structure.
The same is not true for the H5 and HERIC converters whose operation depends on the two switches,
generating consequently additional power losses.

The California efficiency that is used to calculate the diagrams shown in Figure 12 is supposed to
be what is written in (30) [12–15]. Figure 13 shows the total loss of active power through the energy
transmission process. As it is understood, the suggested topology has the least loss in equal condition.
When the same nominal output power is selected for all topologies, the power loss in terms of nominal
load percentages will be changed due to the current drawn. According to Figure 13, the proposed
topology has the least power loss among all during load variations.
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Table 2. System parameters.

Parameter Value

Vdc 30 V
fline 50 Hz
fsw 8 kHz

Pout 36 W
Lf 2 mH
Cf 220 µF

CPV 70 nF

η = 0.04η10% + 0.05η20% + 0.12η30% + 0.21η50% + 0.53η75% + 0.05η100% (30)

Figure 14 shows the percentage of each power loss shared during operation. As discussed before,
the proposed topology has a conduction loss that is the same as the HERIC and the freewheel loss is
the same as that of the H6 VSIs. The only difference between these converters appears in switching loss
calculations. Whereas the rated power is loaded, the share of switching loss in the proposed structure
obtains the biggest part among all quotas. This issue does not mean that lots of power transmitted
through the VSI is wasted during switching transitions, but this justifies that the power loss could
be decreased in terms of switching frequency. Consequently, the total loss will be mitigated in the
proposed topology, and its exclusive capability does not appear in other VSIs.
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Figure 11. Experimental results; (a) output voltage and current; (b) VAN and VBN ; (c) Vt,cm (d) CMC.

Figure 15 compares the total loss obtained between IGBT and MOSFET utilizations. Since the
switching frequency increases, the power loss growths, correspondingly, as expected. However,
MOSFTE utilization can decrease the power loss about 40% rather than using IGBT in all switching
scenarios. As a result, since the power loss increases as the switching frequency is enhanced,
the efficiency will be decreased, subsequently. Figure 16 represents the total efficiency of proposed
topology in terms of load power variations, considering switching frequency effects. If the switching
frequency is chosen as 30 kHz, the maximum efficiency is obtained as 97.42% in 2.75 kW of output power.
However, the maximum efficiency is being calculated as 98.02% for the other switching frequency in
Pout = 1.75 kW. The average efficiency is assessed nearly as 97.1% and 97.85% for fs = 30 kHz and
fs = 8 kHz, respectively, in all loading conditions. As the output voltage and current waveforms of
experimental results are achieved at 8 kHz switching frequency, due to our laboratory equipment,
the output power has been varied between 20 W and 150 W step by step. This verification implies
that the proposed prototype is working successfully with high efficiency and reliable performance,
as shown in Figure 17. The reactive power and its effect on efficiency is one of the most important
concerns in single-phase photovoltaic inverters.

The H7-type VSI is equipped with a capability to control the active and reactive power instantly by
the proposed switching pattern. The loading condition is considered as Sload = 44 W+ j 44 VAr = 62 VA,
and the load current is calculated as |Sload|/ Vload = 2.28 A. Then, the average and the rms amount of
current flowing through the diodes and switches are computed, and the loss calculation is obtained as
0.886 W at 8 kHz switching frequency. Then, the effective efficiency of the proposed topology will be
figured out as shown in (31).
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It should be noted that with a rise in load power, the current ripple and the sizing of passive
components are minimized due to the increment in current amplitude. Furthermore, the proposed
topology has the ability to accomplish the power factor correction (PFC) operation mode as an active
filter application.

η =
Pout

Pout + Ploss
× 100 =

44
44 + 0.831

× 100 = 98.02% (31)

1 
 

 

 

Figure 14. Percentage of self-VSI power loss sharing during operation. VSI: voltage source inverters.

1 
 

 

 
Figure 15. Percentage of device power loss in terms of output power.
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Figure 16. Efficiency analysis based on output power variations and frequency effects.

 

2 

 

 
Figure 17. Experimental and theoretical efficiency analysis at 8 kHz switching frequency.

8. Reactive Power Compensation

To evaluate the active/reactive power control, an active load is connected to the system and then
disconnected for a while in a time interval of 0.4 s to 1 s. At first, the system is loaded with a 50 W
pure resistive load without any reactive portion. Then, at t = 0.4 s a 250 W load is paralleled to the
previous load, which causes more current drawn from the DC side. While the transients resulting from
connecting/disconnecting the load are inevitable, it is noticed some reactive power sharp spikes during
the transient response. However, the spikes are rapidly eliminated by following the Qref reference
signal as depicted in Figure 18.
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9. Conclusions

This paper has presented a novel H7 architecture that was derived from the H6-type single-phase
transformerless inverter to address the suppression of common mode current. In this topology,
the number of components used on the current flow path is minimized, resulting in increased power
conversion efficiency. In addition, the body diodes conduction in some not solicited time intervals
is solved with appropriate placement of components. The prototype built for testing the concept
was characterized at low power rating due to technical limitations in the laboratory infrastructure.
The results in laboratory have shown high-efficiency conversion of 98.02% efficiency. Comparing
to other common mode current mitigation structures, low CMC value was achieved below 40 mA
without compromising high power quality output. A satisfactory THD measurement in relation to
voltage output of 1.52% proves that is in line with other power conversion structures at disposable in
single-phase grid connected inverters The proposed design is satisfied with low-size LC filter, allowing
high power density with low weight. Due to elimination of the CMC, this paper recommends an
appropriate switching pattern with a unipolar PWM modulation technique that decouples the icm

flowing path. This results in the common mode voltage being constant.
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