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Abstract: Antibiotic resistance is increasing to an extent where efficacy is not guaranteed when treating
infection. Biofilm formation has been shown to complicate treatment, whereby the formation of
biofilm is associated with higher minimum inhibitory concentration values of antibiotic. The objective
of the current paper was to determine whether biofilm formation is variable among uropathogenic
Escherichia coli isolates and whether formation is associated with recurrent urinary tract infection (UTI),
and whether it can be predicted by phenotypic appearance on culture medium A total of 62 E. coli
isolates that were reported as the causative agent of UTI were studied (33 from patients denoted as
having recurrent UTI and 29 from patients not specified as having recurrent UTI). The biofilm forming
capability was determined using a standard microtitre plate method, using E. coli ATCC 25922 as the
positive control. The majority of isolates (93.6%) were found to be biofilm formers, whereby 81%
were denoted as strong or very strong producers of biofilm when compared to the positive control.
Through the use of a Wilcox test, the difference in biofilm forming propensity between the two patient
populations was found to not be statistically significant (p = 0.5). Furthermore, it was noted that
colony morphology was not a reliable predictor of biofilm-forming propensity. The findings of this
study indicate that biofilm formation is very common among uropathogens, and they suggest that
the biofilm-forming capability might be considered when treating UTI. Clinical details indicating a
recurrent infection were not predictors of biofilm formation.
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1. Introduction

Urinary tract infections (UTI) are among the most common infections affecting both men and,
particularly, women, 50–60% of whom will at some time become infected with uropathogenic bacteria [1].
Enterobacteriaceae, including Escherichia coli, are the most common uropathogens, accounting for 80%
of all reported infections [2]. While most cases of UTI can be successfully treated with oral antibiotics,
recurrent infections are not uncommon, and several studies have pointed to biofilm formation and
the associated antimicrobial resistance as a key factor leading to recurrence in UTIs. The majority of
recurrent infections have previously been shown to be caused by biofilm positive strains [3], and it
has been stated that the point of recurrence might be the bladder, as biofilm formation assists the
organism in its colonisation, forming intracellular pod like biofilm structures within the bladder
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epithelial cells [4]. The treatment of biofilm associated UTI is further complicated due to the high levels
of antibiotic resistance as compared to cells in a planktonic state [5].

Some antibiotics have been shown to be more effective than others when treating biofilm associated
infections due to differences in mechanisms of action and ability to penetrate bladder urothelial cells
to destroy inter-dwelling cell reservoirs. The cell wall synthesis inhibitors penicillin G, cefadroxil,
and fosfomycin have been shown to inhibit biofilm development and eradicate pre-existing biofilm
communities in uropathogenic Escherichia coli (UPEC), while the β-lactam antibiotic nafcillin was found to
enhance biofilm formation [6]. A recent paper by our group on the subject of antimicrobial resistance rates
among uropathogenic E. coli found that only one of six commonly-used oral antibiotics (nitrofurantoin)
showed a resistance rate of <20% among all patient groups, which suggests that empirical treatment of
UTI is likely to fail [7]. Therefore, it could useful to determine the biofilm forming propensity of UPEC
prior to recommending treatment, so that the choice of antibiotic and regime time can be best directed
to prevent the selection of resistant pathogens and reoccurrence of infection.

We sought to investigate the prevalence of biofilm formation among uropathogenic E. coli (UPEC)
from patients with UTI whose clinical details suggested either recurrent UTI or non-recurrent infection,
and to investigate whether colonial phenotypes might be a predictor of biofilm forming propensity,
as inappropriate antibiotic treatment is associated with the development of antibiotic resistance, and the
efficacy of antibiotics is significantly reduced when treating biofilm associated infections.

2. Materials and Methods

A total of 62 urines from patients with laboratory-confirmed UTI were provided by the Department
of Clinical Microbiology, Cork University Hospital during 2019. Cork Research Ethics Committee
granted ethical approval for this study (ECM4(q) 27/05/2019). The samples for the study were selected
on the basis that they contained a pure culture of E. coli. These strains were identified to species level
using Matrix Assisted Laser Desorption/Ionisation Time of Flight (MALDI-TOF; Microflex Biotyper,
Bruker Daltronics, Hamburg, Germany) at Cork university hospital).

Fresh overnight isolates of the test strains were identified while using MALDI-TOF. A colony of the
test sample was spotted onto the mass spectra (MSP) (main spectra library) 96 target polished steel plate
(Bruker Daltronics). Formic acid was added to the test colonies. The samples were then air-dried at
room temperature and overlaid with 1 mL Bruker HCCA matrix solution (a-Cyano-4-hydroxycinnamic
acid). Each test strain was analysed in duplicate. The results for each strain were matched to the
Bruker database, and an algorithm score was assigned to each generated result. Based on the peak
that was observed for each test strain, a logarithmic score was given, which ranged from 0 to 3.0.
The interpretative guidelines for the scores generated were as follows: A score of 0 to 0.1699 indicated
that a reliable identification was not possible. A score of 1.700 to 1.999 was indicative of a probable
genus identification. A score of 2.0 to 2.299 meant a definite genus identification and probable species
identification. A score of 2.300 to 3.0 meant a highly probable species identification. All were reliably
identified as E. coli.

Twenty-nine of the urines were from patients with no clinical details indicating recurrent urinary
tract infection (unspecified population), while the remaining 33 urines were from patients whose
clinical details indicated a recurrent infection (RUTI population). All of the specimens were cultured
using Cysteine Lactose Electrolyte Deficient (CLED) agar and isolates were photographed to record
colonial morphology in each case. E. coli ATCC 25922, previously described as a strong biofilm
former [8], was used as a positive control strain for biofilm formation.

Biofilm formation was determined using the microtitre plate method [9]. Fresh colonies of each
test sample were prepared by plating on Luria-Bertani (LB) agar and incubating at 37 ◦C for 24 h.
The suspensions were then prepared by adding colonies to sterile ringers’ solution to an optical density
equal to 0.5 MacFarland standard; 1µL of suspension was added to three wells of a 96-well microtitre
plate containing 200µL of sterile LB broth for each test organism and E. coli 25922. A set of three
wells containing LB broth were left uninoculated to serve as both a sterility control and as a blank to
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account for the unspecified binding of media. Plates were then incubated for 24 h at 37 ◦C. Media
and unattached cells were removed by turning the plate upside down and gently tapping it and wells
were washed three times with 0.8% sterile saline solution. The attached cells were then heat fixed to
the microtitre plate by placing them in a 50 ◦C oven for 1 h. The affixed cells were then stained by
adding 220 µL of 5% crystal violet (v/v) and incubated at room temperature for 20 min. The excess
crystal violet was then washed away with 0.8% saline. The remaining crystal violet was dissolved by
adding 220 µL of 30% acetic acid to each well and then incubating at room temperature for 20 min.
An automatic plate reader was then used to determine the absorbance at 590 nm. This process was
repeated, so that each strain was tested in triplicate, a total of three times, beginning with a separate
fresh overnight culture each time.

The absorbance of the uninoculated blank wells were subtracted from the absorbance of each strain
and the average among replicates was calculated along with the Standard Deviation (SD) to determine
test variability to calculate biofilm formation. The average biofilm formation found for E. coli ATCC 25922
was designated a score of 1 and each test strain was given a proportional score, so that a score of 2 would
indicate biofilm formation twice that of the control and a score of 0.5 would indicate biofilm formation
50% of the control, and so on. Isolates which scored between 0.9 and 2.0 were noted as strong biofilm
formers, with isolates forming more than 2.0 noted as very strong. Weak biofilm formers were determined
to be strains that scored less than 0.9, but at least 0.4 and those that generated less than 0.4 were arbitrarily
designated as +/− (indeterminate)biofilm-formers. The colony morphology of each isolate as it appeared
on CLED agar was noted along with the biofilm formed to determine whether the biofilm forming
propensity was predictable based on colony appearance (see Table 1).

Table 1. Biofilm production expressed as a factor of the control organism E. coli ATCC 25922 with
colony morphology description.

Unspecified Recurrent

Isolate Score Biofilm
Designation

Colony
Description Isolate Score Biofilm

Designation
Colony

Description

CIT1 1.6 Strong 2L CIT30 12.8 Very strong 2L
CIT2 1.9 Strong 2L CIT31 2.5 Very strong 2L
CIT3 1.6 Strong 2L CIT32 2.2 Very strong 1L
CIT4 2.2 Very strong 2L CIT33 0.6 Weak 2L
CIT5 0.8 Weak 2L CIT34 0.3 +/− 2L
CIT6 5.8 Very strong 3LM CIT35 0.3 +/− 3N
CIT7 1.5 Strong 2L CIT36 0.4 Weak 1L
CIT8 0.9 Strong 2L CIT37 3.2 Very strong 2L
CIT9 7.7 Very strong 2L CIT38 5.5 Very strong 3N

CIT10 1 Strong 2L CIT39 0.7 Weak 3L
CIT11 1.5 Strong 2L CIT40 2.3 Very strong 2L
CIT12 1.1 Strong 2L CIT41 1.4 Strong 2L
CIT13 1.4 Strong 2L CIT42 1.1 Strong 3L
CIT14 1.2 Strong 3LM CIT43 0.4 Weak 2L
CIT15 2.4 Very strong 2L CIT44 0.9 Strong 2L
CIT16 2.7 Very strong 2L CIT45 1.1 Strong 2L
CIT17 1.6 Strong 2L CIT46 1.1 Strong 2L
CIT18 2.3 Very strong 2L CIT47 3.4 Very strong 2N
CIT19 1.4 Strong 2N CIT48 1.0 Strong 2L
CIT20 1.5 Strong 2L CIT49 1.5 Strong 3L
CIT21 1.4 Strong 2L CIT50 0.6 Weak 2L
CIT22 1.6 Strong 2L CIT51 2.1 Strong 2L
CIT23 0.1 +/− 1L CIT52 1.6 Strong 2L
CIT24 0.9 Strong 3L CIT53 1.5 Strong 2L
CIT25 0.3 +/− 3L CIT54 0.8 Weak 2L
CIT26 1.1 Strong 3L CIT55 0.9 Strong 2L
CIT27 1.2 Strong 2L CIT56 1.1 Strong 2L
CIT28 0.9 Strong 2L CIT57 0.8 Weak 1L
CIT29 0.9 Strong 2L CIT58 1.2 Strong 2L
25922 1 Strong 2L CIT59 2.3 Very strong 2L

CIT60 1.1 Strong 2L
CIT61 0.9 Strong 2L
CIT62 0.9 Strong 2L

Colony description key: 1, 2, 3 = small (<2 mm), medium (2–3 mm), large sized colonies (>3 mm). L = lactose
fermenting N = Non-lactose fermenting M = mucoid variant.
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3. Results

Strong or very strong biofilm formation, which was characterised by producing at least 90% of the
biofilm formed by the positive control ATCC 25922, was observed in 81% of the 62 isolates studied.
Among the RUTI population, 73% were found to be either strong or very strong biofilm formers, where
the biomass produced was equal to or exceeded the control organism, while, among the unspecified
population, 90% were found to be strong or very strong. A total of 93.6% of all test isolates were found
to be positive for biofilm formation, with the remainder (four isolates) showing indeterminate or very
weak biofilm formation. A moderate level of variability was seen in the biofilm formation of individual
strains between repeated runs, although the averages remain an accurate depiction of their biofilm
forming tendencies. Notable isolates that may be considered hyper producers of biofilm were found
between both populations. CIT30, isolated from a patient where a recurrent infection had been noted
produced 12.8 times the average biomass of the control organism, while CIT9, which was isolated from
a patient where recurrence was not specified produced 7.7 times the average biomass of the control.
Through the use of a Wilcox test the difference in biofilm formation between the two populations was
compared and found to not be statistically significant (p = 0.5).

The size and shape of the colonies that formed by each isolate were examined to determine whether
there existed a correlation that could be used to accurately predict the biofilm forming tendencies of
UPEC isolates prior to treatment in a clinical setting. A Kruskal–Wallis test was performed finding no
significant correlation between colony size and biofilm formation (p = 0.1). Non-lactose fermentation,
which was noted in four of the isolates (6.5%), was associated with three strong or very strong
biofilm-formers and one indeterminate or very weak biofilm-forming isolate. Statistical analysis of
these phenotypes in relation to biofilm formation could not assessed with only two strains of UPEC
noted as being mucoid, and the majority of strains being lactose fermenting.

4. Discussion

Biofilms provide extrinsic resistance by blocking the penetration of antimicrobials to the cells
within [10], and intrinsic resistance—where the cellular envelope that forms the target of many
antimicrobials are altered within the biofilm to inhibit antimicrobial action [11]. This resistance is
coupled with a slower growth rate, nullifying certain antimicrobials that require a fast-growing organism
to be effective, the end result of which are communities that can withstand antimicrobial concentrations
of at least 1 × 103 times above the MIC noted for the planktonic state [12]. The determination of
biofilm-forming capability among UPEC in the current study was sparked by recent research by
this research group, in which current empirical treatment guidelines were shown to be undermined
by having high levels of resistance among UPEC, to the extent that it was necessary to recommend
laboratory-guided treatment of all patients with suspected UTI [7]. Therefore, it was worth investigating
whether the phenotypic appearance of E. coli might possibly be linked to biofilm-forming propensity,
which in turn might point towards persistence of infection. It has been previously noted that UPEC
infections can persist within the bladder, even after the completion of antibiotic treatment and the
association of biofilm-like communities to the urothelium wall, in part, aids this persistence [6].

Biofilm formation is one component of multiple discernible microbial factors that can make
recurrence more likely, with the process itself being linked to as many as 110 genes in E.coli [13].
Notably, the yersiniabactin (fyn) gene and the aerobactin (aer) gene were found to be frequent among
strains leading to recurrence [3]. Therefore, it might then be an important clinical consideration when
deciding on a treatment plan, but the large number of genes previously suggested to be associated
with biofilm production suggests that molecular-based biofilm assays are unlikely to be used in
the diagnostic laboratory in the immediate future. The importance of biofilm estimation [10–12] is
underlined by the finding of several extremely high biofilm formers among the population in Table 1,
most notably CIT30 found in a patient with RUTI, which formed 12.8 times the biomass of the control
strain. The high level of positive strains found among the population is not unusual in studies of this
type, where typically 69–92% of UPEC have previously been reported as being positive for biofilm
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formation [14–16]. A significant statistical difference in biofilm formation was not found between the
two populations in the current study. However, the chance of recurrence after initial infection is high,
with one prospective study conducted in Finland finding 44% of female patients developing RUTI one
month after initial infection [17]. This implies that many of the unspecified strains may recur. No link
was found between mucoidy, colony size as it appears on CLED agar, or lactose fermentation due
to the predominant uniformity of the isolates, showing the inutility of phenotypic predictors in this
setting, unfortunately. One potential weakness of the study was that it was not possible to contact the
requesting clinician to determine whether all of the relevant clinical details were filled in on the request
form to ensure that, where RUTI was not indicated, there were no omissions and, ideally, the authors
would also like to examine more isolates while concurrently examining for any differences associated
with patient gender, given that UTI is more common among females.

5. Conclusions

This work indicates that phenotypic colonial appearance does not predict biofilm forming
capability. The work also shows that the capacity to form significant amounts of biofilm (at least
in vitro), while prevalent, is not universal among UTI-associated strains of E. coli, whether from patients
with recurrent or non-recurrent UTI.
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