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Abstract: This study presents the Location Routing Problem (LRP) for which we have created
a model for the integration of locating facilities and vehicle routing decisions to solve the problem.
The case study is the Palm Oil Collection Center, which is also important for the supply chain system.
A mathematical model was made to minimize the total cost of a facility-opening cost, fixed cost of
vehicle uses and fuel consumption cost. The fuel consumption cost relies on the distance and road
conditions, in case of poor physical condition of a road, and its width, which can be affected the speed
of the vehicle as well as the used fuel. Thus, we propose an Adaptive Large Neighborhood Search
(ALNS) based on heuristic for solving the LRP. The ALNS method was tested with three datasets
of samples divided into small, medium and large problems. Then, the results were compared with
the results from the exact method by the Lingo program. The computational study indicated that
the ALNS algorithm was competitive to the results of the Lingo for all instance sizes. Moreover, the
ALNS was more effective than the exact method; approximately 99% in terms of processing time.
We extended this approach to solve the case study, which was considered to be the largest problem,
and the ALNS algorithm was efficient with acceptable solutions and short processing time. Therefore,
the proposed method provided an effective solution to manage location routing decision of the palm
oil collection center.

Keywords: location routing problem; adaptive large neighborhood search; fuel consumption;
renewable energy crops

1. Introduction

Logistics management and operations cost management are the major driver of economic growth
in many countries. According to the World Bank in 2016, the logistic capability index (LPI) of the G20
countries is at the highest level. Germany is the country that has the highest level of LPI at 4.23. As for
Southeast Asian countries, Singapore is ranked 5th, followed by Malaysia ranked 32nd with an LPI score
at 4.14 and 3.43, respectively [1]. Thailand is ranked 45th with an LPI score of 3.26, which shows that
the logistics performance of Thailand is at a low level. Therefore, it is influenced by the development
of logistics in various sectors, especially in the agricultural sector, which is considered the main sector
of Thailand.

Road transport is the preferred mode of transport, and is thus widely used for transportation of
agricultural products in Thailand. This mode of transport relies on energy from fuel, resulting in high
transportation costs. In 2017, total fuel consumption of road transport increased by 0.37%; compared
to the previous year in terms of diesel and gasoline usage, this rate increased by 2.68% and 3.43%,
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respectively. These data also show the trend of increasing road transport costs each year [2]. Therefore,
it can be seen that the higher the development of logistics, the more fuel consumption is required.

The energy crisis is a big problem that has a wide impact and will only grow to be more severe.
Additionally, Thailand is affected by the energy crisis because needs to import energy and fuel for
economic and social development have increased, especially in the industrial and transportation
sectors. Importing fuel from abroad causes Thailand to spend significant amounts of money each year.
Therefore, the government has launched the policy to promote alternative energy from agricultural
crops such as ethanol and biodiesel to reduce fuel imports. Biodiesel is fuel that is a blend of petroleum
diesel and natural raw materials such as palm oil, coconut oil, jatropha oil, sunflower oil and rape seed
oil. Although biodiesel can be produced from many plants, palm oil is the most suitable plant to be
used as raw material for biodiesel production. Palm oil can be used to produce a variety of products
for consumption; therefore, palms have been cultivated more extensively than other plants.

Palm oil is considered an important economic plant both nationally and globally. It can be
processed into vegetable oils used in cooking and as raw materials in various food industries, such
as sweets, instant noodles, condensed milk, cream, margarine, as well as chemicals and animal feed.
In addition, palm oil is a raw material for renewable energy production; for instance, biodiesel derived
from the mixing of petroleum diesel and natural raw materials. Thus, palm oil plays an important
role as an economic crop that generates income for farmers and the nation, as well as being supported
by the government to be cultivated in many areas of Thailand, particularly in the South of Thailand,
which is the biggest and most productive area for palm oil plantations in the country. To transport
palm oil to the processing plant, farmers have to collect palm oil and transport it to the collection point
first. Then, palm oil will be delivered to the processing plant. There are many palm oil plantations in
the case study area; thus, it made the problem more complicated for the plan to find a collection point
and transport to the palm oil processing plant. Inappropriate location of palm oil collection points,
as well as improper transportation routes can be resulted in the higher cost of logistics system [3].
Consequently, the management and decision making of logistics systems of palm oil in the South of
Thailand is therefore necessary to be considered.

Logistics costs are currently an operation that requires high budget, which can be reduced
by solving the Location Routing Problem (LRP). LRP combines two problems of the supply chain
management together: the location selecting problem and the vehicle routing problem. In the past,
these two problems were considered and resolved separately. Once there is enhancement of the
optimization techniques, it is possible to combine both problems together and solve them at the same
time, which will make the total cost of the system lower than separated solutions. Therefore, LRP has
been very popular in research studies.

The purpose of this research was to study the selection of locations of palm oil collection points
and to arrange vehicle routes for transportation, as well as proposing the form of problem and heuristic
method used to solve Location Routing Problem. Moreover, this research also investigate the palm oil
transportation routes from farms to the collection point with the lowest total cost which include fuel
consumption cost and is consistent with constraint satisfaction. Then, the solution from the heuristic
method will be compared with the solution from the Lingo program.

The rest is presented as follows. In Section 2, a review of literature is presented. The explanation
of the Mathematical model used in solving the problem is also clarified in Section 3. Furthermore,
a heuristic method is introduced as the solution approach in Section 4. Section 5 presents the effectiveness
of solving problem method of case study. Finally, the conclusion and future outlook are proposed in
Section 6.

2. Literature Review

In recent decades, the environmental effects of transportation have become a topic of increasing
importance around the world. It impacts the environment, such as energy consumption, air pollution,
noise and source of the Greenhouse Gas (GHG) emissions [4]. Kim [5] studied the environmental
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effects of greenhouse gas (GHG) emissions from the transportation section in Korea from 1990 to 2013.
The results indicate that economic growth, population growth and the transportation sector are the
factors that can cause GHG emissions expansion. This study recommended some strategies for GHG
deduction to achieve the national goal for transportation sector. Many countries in Asia have a number
of REDD (Reducing Emissions from Deforestation and Degradation) projects that focus on reducing
emissions from deforestation and forest degradation all over the world. Even though the benefits
of REDD projects are clearly interesting, and environmental responsibility has become an important
aspect of development both at the micro and macroeconomic level, these carbon deduction strategies
may be hard to attain, because it depends on an area or country’s specific circumstances [6].

Along with concerns about energy crisis and environmental impact, more researchers pay attention
to the energy saving logistics. Since the logistics industry is a significant source of energy consumption
and carbon emission, it is becoming more important to relieve the situation in logistics operation.
Chen et al. [7] found that the ordinary navigation system generally provides the shortest path for
drivers as maintained by geographic maps; however, the provided path may be slower because of
traffic congestion. This study introduced a navigation system to determine a fuel saving transportation
route by collecting and analysis real time traffic data. Bektaş and Laporte [4] used an exact method
by using the CPLEX program to solve the Pollution-Routing Problem (PRP), a special case of the
classical Vehicle Routing Problem (VRP) with the objective function that considers for the sum of GHG
emissions, travelling times, travelling cost and fuel. Xiao et al. [8] proposed a Simulated Annealing
(SA) heuristic with a hybrid exchange rule to solve the Capacitated Vehicle Routing Problem (CVRP)
with the objective of minimizing fuel consumption. Furthermore, Wang and Li [9] introduced a hybrid
heuristic algorithm with two phases to solve the low carbon emissions model of Location Routing
Problem with heterogeneous fleet, simultaneous pickup-delivery and time windows. They combined
the Genetic Algorithm (GA) and Variable Neighborhood Search (VNS) into the method. From the
literature, the meta-heuristics method is quite popular and effective to solve the energy and pollution
minimization model.

The classical LRP consist of finding facility locations, assigning customers and determining vehicle
routes to transport product. The LRP is classified as a NP-Hard problem and usually resolve by
clustering-based, iterative or hierarchical meta-heuristics (Nagy and Salhi) [10]. There are extensive
studies conducted on LRPs and the majority of research concerned with the distributed problem.
Alumur and Kara [11] proposed a new model for the hazardous waste location-routing problem
to manage waste hazardous. The model is to find the solution of problems: the treatment centers
location and suitable technologies, disposal centers location, hazardous waste transportation route
to which of the suitable treatment technologies, waste residues transportation route to disposal
centers. Karaoglan et al. [12] studied an LRP with simultaneous pickup and delivery (LRPSPD), which
is included decisions for finding depot locations and planning transportation routes. The model
minimized overall cost with as a special feature pickup and delivery customer demands, which
must be executed with same vehicle while minimizing the overall cost. In a contrasting problem,
Albareda-Sambola et al. [13] studied the multi-period LRP, in which travelling costs were combined
together with location costs to plan the operating facility pattern through a time horizon. Moreover,
depots were able to be closed or opened but only in a subgroup of time periods. Samanlioglu [14]
also proposed the multi-objective location routing model which consisted of three objectives; (1) total
cost minimization, which included total travelling cost of waste residues and hazardous materials
plus fixed cost of the treatment construction, recycling and disposal center, (2) total transportation
risk minimization associate with the population exposure throughout transportation routes of waste
residues and hazardous materials and (3) total risk minimization associate with the population
located around the disposal center and treatment center. Vincent and Lin [15] introduced the open
location-routing problem (OLRP), which is an extension of the LRP. The special characteristic of OLRP
is that after servicing all customers, vehicles do not return to the depot. The objective of this model is
to minimize the total cost, consisting of transportation costs, depot opening costs and vehicle fixed
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cost. Moshref-Javadi and Lee [16] studied the Latency Location Routing Problem (LLRP), of which
the objective was different from the traditional LRP model. LLRP focused on minimize latency and
waiting time of recipients in the post disaster area. Furthermore, the depot location and distribution
routes needed to be decided. Moreover, Schiffer and Walther [17] presented an Electric Vehicles (EVs)
location routing problem. EVs had a limited driving distance, thus, the location of charging station
and travelling routes have to be designed. The objectives of this model were to minimize travelling
distance, number of vehicles used and number of charging stations. They also proposed contrasting
recharging alternatives owing to real world restrictions.

From the logistic viewpoint, most of the studies formulated LRP in the context of the distribution
problem, such as supply products or commodities to customers and when dealing with reverse flow.
Thus, it is in the field of hazardous waste management. Zhao and Verter [18] provided an analytical
framework of used oil location routing problem to find the solution of these problems: the used oil
storage location, treatment center and disposal center location, the capacity level of used oil for these
centers and the used oil transportation routes in collection network. They presented a model for the LRP
problem to minimize the total cost and an environmental risk. In addition, Vidović at al. [19] proposed
the 2 Echelon Location Routing Problem (2ELRP) model of non-hazardous recyclables collection, which
aimed to maximize the profit calculated as income acquired from the collected recyclables. However,
there were only few studies in reverse flows of non-hazardous products same palm oil problem.

The traditional LRP formulates an objective function to minimize the total cost, which consists of
the following three aspects; (1) location opening cost, (2) the fixed cost associated with vehicle uses and
(3) the travelling cost which these objectives have been widely studied. As mentioned above, the risk
and time minimization are taken into the account while the total transportation cost reduction is still
popular [11–15,20]. However, there were few papers that studied fuel consumption minimization.

Most studies on LRP proposed meta-heuristic method as the solution approach to solve the
problem. Since the LRP is an NP-hard problem, the model is unable to find optimal solutions for
medium and large size problem. Therefore, meta-heuristics seem to be the suitable method to find
the optimal solutions in appropriated processing time. Prodhon and Prins [21] compared the recent
meta-heuristics on LRP, which considered two indicators to assess the performance for each method:
(1) the percentage gap in either the best known solutions from the previous studies or the lower bounds
and (2) the calculation time in seconds. The result showed that meta-heuristics is effective to solve
LRP problem.

An adaptive large neighborhood search (ALNS) was first proposed by Ropke and Pisinger [22].
Since then, ALNS has been successfully used to solve various combinatorial optimizations. Yu et al. [23]
applied ALNS to solve a robust gate assignment problem; the results were compared with the
benchmark algorithm and showed the competitiveness of the proposed ALNS in solving the considered
problem. Carvalho and Santos [24] also used ALNS to solve the electronic circuits design problem.
Their objective was to connect its nets. The proposed algorithm was tested on seven datasets from
the literature. The proposed ALNS improved the best known result of some instances. Furthermore,
He et al. [25] applied ALNS to the satellite scheduling problem. They used the destroy and repair
concept to design the algorithm and combine it with the excellent perturbation method. The ALNS
performance is more efficient than competing previous studies of satellite scheduling problem.

Many researches have been successful by using ALNS to solve transportation problem. Riberiro
and Laporte [26] presented ALNS heuristic for the cumulative capacitated vehicle routing problem
(CCVRP). Their objective was not to minimize the total routing cost, but to minimize the total
arrival times at customers. The ALNS was tested with state-of-the-art instances and compared with
memetic algorithms in related studies. Azi et al. [27] proposed ALNS for solving the Vehicle Routing
Problem with Multiple routes (VRPM). VRPM is the extension of VRP, but the vehicles are allowed to
travel multiple routes during a working day. The multi-objective model was presented; the number
of customers was maximized and the transportation distance was minimized. The results show
the benefit of ALNS for this approach. Emec et al. [28] developed ALNS for solving an E-grocery
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Delivery Routing Problem by presenting new destroy and repair operators to select, insert and allocate
vendor. The results showed that the proposed solution is effective to obtain high quality solutions
rapidly. Li et al. [29] also proposed ALNS to solve the pickup and delivery problem with time windows.
The algorithm performance show that the ALNS remarkably outperforms the competitor, both in
solution quality and processing time. Alinaghian and Shokouhi [30] combined ALNS and Variable
Neighborhood Search (VNS) to solve the model for multi-depot multi-compartment vehicle routing
problem. The computational results show good performance of the proposed hybrid algorithm. Sirirak
and Pitakaso [31] also developed ALNS to manage marketplace location decision making and tourism
route planning in the Chiang Rai province, Thailand. Six destroy methods and five repair methods
were applied to solve the tourism routing problem in order to find the best travelling route that tourist
can visit all attractive places. The result showed that the proposed ALNS provides an effective solution
for the tourism route problem. The previous research demonstrated the effectiveness of ALNS method
which often used for solving transportation problems. Although the solution obtained by ALNS is not
an exact solution, the result is statistically accepted. Therefore, the ALNS was chosen to solve the LRP
problem for this case study.

Reviewing literature led to the following LRP observation: (a) for the single objective LRP model,
most studies aimed to minimize total cost, which were comprised of opening cost, fixed cost of vehicle
uses and travelling cost and (b) a few studies deal with the reverse flows of non-hazardous products;
most of them deal with the recyclable product.

This paper includes the following aspect considering the contributions of this paper:
(1) the real-world problem, which is the special case of the LRP that has been introduced, (2) the objective
of the model is to minimize the fuel consumption cost which relies on the road and vehicle conditions
and (3) the characteristic of problem is the palm oil collection as the reverse flows logistic system of
non-hazardous product.

3. Problem Statement and Mathematical Model

3.1. Problem Statement

The case study consisted of 80 palm oil farms. These farms can be selected as the collection center.
We aimed to choose the suitable location and set transportation route as shown in Figure 1.
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Figure 1. Problem framework.

The objective was to minimize the total cost. According to fuel consumption cost, we categorized
the roads into five types, which were classified by using the average driving speed and the fuel
consumption rate that was adopted from Akararungruangkul and Kaewman [32]. Table 1 show the
road type and fuel consumption rate.
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Table 1. The road type and fuel consumption rate.

Road Type Average Speed (km/hr) Fuel Consumption Rate (Liter/km)

A 50 0.112
B 60 0.090
C 70 0.098
D 80 0.098
E 90 0.102

Because of road condition, the average speed of vehicles is different on each road type. The wider
the road is, the faster a vehicle can travel. We collected the data of speed used for the road, then calculated
the average speed. After that, road type and fuel used were converted by using average speed data. The
fuel consumption rate the amount (liter) of fuel used after travelling 1 kilometer. A road type metric of
6 palm oil farms was used, as shown in Table 2.

Table 2. Road type from farm to farm.

1 2 3 4 5 6

1 - A C B B C
2 A - B C A A
3 C B - B B C
4 B C B - D A
5 B A B D - C
6 C A C A C -

From the distance metric shown in Table 3, the fuel consumption rate was multiplied by the
distance of farm location. Finally, we obtained the fuel consumption metric of the road for travelling
between six farms as shown in Table 4. For example, the distance from farm 1 to farm 2 is 12 kilometer;
the type of road is A and the fuel consumption rate is 0.112 liter/km. Thus, the fuel consumption was
12 (0.112) = 1.344 liter.

Table 3. Distance from farm to farm.

1 2 3 4 5 6

1 - 12 34 32 22 18
2 12 - 23 26 14 19
3 34 23 - 37 11 21
4 32 26 37 - 24 13
5 22 14 11 24 - 34
6 18 19 21 13 34 -

Table 4. The fuel consumption metric.

1 2 3 4 5 6

1 - 1.344 3.332 2.880 1.980 1.764
2 1.344 - 2.070 2.548 1.568 2.128
3 3.332 2.070 - 3.330 0.990 2.058
4 2.880 2.548 3.330 - 2.352 1.456
5 1.980 1.568 0.990 2.352 - 3.332
6 1.764 2.128 2.058 1.456 3.332 -

For the traditional LRP, the travelling cost would directly depend on the distance, but this is not
the case for the current LRP model. The distance from farm 2 to farm 3 and the distance from farm 2 to
farm 6 are 23 km and 19 km, respectively. On the other hand, the fuel consumptions from 2–3 and 2–6



J. Open Innov. Technol. Mark. Complex. 2019, 5, 27 7 of 19

are 2.070 liter and 2.128 liter, respectively, which shows that in some routes, the fuel consumption is
not increased because of the distance, but rather caused by road conditions.

Another example: we consider a different routing in case farm 1 was selected to be the collection
center. Therefore, the two possible routings were 1-4-2-6-5-3-1 and 1-4-3-2-5-6-1, which have a total
distance of 156 km and 158 km and fuel consumptions of 15.210 liter and 14.944 liter, respectively.
However, the traditional LRP model selects routing of 1-4-2-6-5-3-1 because it concerns with the
distance minimization. On the contrary, fuel consumption model chooses routing 1-4-3-2-5-6-1, which
found that the shorter path consumes more fuel than the longer path. Nevertheless, this study focused
on fuel consumption.

Vehicle condition is also a factor of fuel consumption rate. For example, heavy duty trucks usually
consume more fuel than small trucks. Moreover, the age of the trucks also affects fuel consumption.
The older the trucks, the more fuel is needed due to the decrease of capability of engine. This paper
assumed an attribution of the vehicle, then classified them into three types categorized by age and
different fuel rate consumption as shown in Table 5.

Table 5. The vehicle type and fuel consumption rate.

Vehicle Type Fuel Consumption Rate (Liter/km)

X 0.226
Y 0.247
Z 0.281

3.2. Mathematical Model

This section present the formulation of mathematical model used to compute the LRP problem of
the case study.

Indices
V Set of node
i Potential collecting centers
j Palm oil farms
k Vehicle

Parameters
n Total of the farms
FRijk Fuel consumption rate from node i to node j by vehicle k
disij Distance from node i to node j
fc Fuel cost
Ei Fixed cost in opening node i to be collecting center
Hi Fixed cost of vehicle using by collecting center i
Qk Capacity of vehicle k
dj Palm oil quantity of farm j
Pi Capacity of collecting center i

Decision Variables

Xijk = 1 if travel from the node i to the node j by the vehicle k; i, j ∈ {N\{0} | i , j and k = 1, 2 . . . , q}
= 0 otherwise

Yi = 1 if collecting center i is opened
= 0 otherwise

Zij = 1 if farm j is assigned to collecting center i
= 0 otherwise

Objective function

Minimize Total cost =
∑
i∈I

EiYi +
∑
i∈V

∑
j∈V

∑
k∈K

FRi jkdisi j fcXi jk +
∑
k∈K

∑
i∈I

∑
j∈J

HiXi jk (1)
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Constraints ∑
k∈K

∑
i∈V

Xi jk = 1, ∀ j ∈ J (2)

∑
j∈J

di

∑
i∈V

Xi jk = Qk, ∀k ∈ K (3)

∑
j∈J

diZi j ≤ PiYi, ∀i ∈ I (4)

∑
j∈V

Xi jk −
∑
j∈V

X jik = 0, ∀i ∈ V, k ∈ K (5)

∑
i∈I

∑
j∈J

Xi jk ≤ 1, ∀k ∈ K (6)

∑
i∈S

∑
j∈S

Xi jk ≤ |S| − 1, ∀S ⊆ J, k ∈ K (7)

∑
j∈J

Xi jk +
∑

i∈V\{ j}

X jik ≤ 1 + Zi j, ∀i ∈ I, j ∈ J, k ∈ K (8)

Xijk = 0, 1 ∀i∈I, j∈V, k∈K (9)

Yi = 0, 1 ∀i∈I (10)

Zij = 0, 1 ∀i∈I, j∈V (11)

The objective function (1) measures the total cost consist of the fixed cost of opening the collection
center and the fuel consumption cost using for transportation and the fixed cost related with vehicle
uses. Constraint (2) ensures that each customer is in exactly one route and each has only one predecessor
in the route. Constraints (3) and (4) are capacity constraints related to the vehicles and collection center.
Constraints (5) and (6) assure the continuity of each route and terminate at the depot where the route
starts. Constraint (7) is a sub-tour elimination constraints which said that for any subset S of the set of
customers J and for any route k, the number of arcs belonging to route k that connect the members of S,
must not exceed the cardinality of S-1. Constraint (8) ensures that a customer must be assigned to
a depot if there is a route connecting them. Finally, constraints (9), (10) and (11) specify the binary
variables used in the formulation.

4. Solution Approach

We propose a heuristic method based on Adaptive Large Neighborhood Search (ALNS) as the
solution to this problem. The ALNS framework was presented by Rope and Pisinger [22] to solve
the variant of combinatorial optimization problem such as VRP and LRP. They developed the Large
Neighborhood Search (LNS), which was introduced by Shaw [33] for the Capacitated Vehicle Routing
Problem (CVRP). The procedure starts with an initial solution and gradually improves objective value.
A destroy and repair operator are applied in each iteration. The destroy operator removes a small
group of customers randomly, while the repair operator reinserts them to improve objective value.
Furthermore, Ropke and Pisinger [22] proposed an ALNS to improve LNS, which allowed the ALNS
to use several destroys and repair methods in the same search iteration. In each iteration, the operator
would destroy part of the current solution and repair it in a different way to create a new solution.
Destroy and repair operators are selected according to an adaptive probability mechanism, and in each
iteration, the operator has a probability of which the weights are adjusted dynamically depending on
how well it has performed in the past.

In this paper, however, we have adapted the ALNS algorithm of Lutz [34], in which the ALNS
starts with initialization of solution then select destroy and repair operator applying to the solution.
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Let D = {di | i = 1, . . . , k} be the set of destroy operator and R = {ri | i = 1, . . . , l} be the set of repair operator.
The initially equal weights of the operators are denoted by w(ri) and w(di). During the runtime, these
weights are adjusted periodically and an updated period contains pu iterations. The selection of these
operators of each iteration is based on their weights. The structure of ALNS is shown in Algorithm 1.

Algorithm 1. Adaptive Large Neighborhood Search (ALNS) algorithm.

Input problem instant I
create initial solution smin = s ∈ S(I)
while stopping criteria not met do
for i = l, . . . , pu do
select r ∈ R, d ∈ D according to probability p
s’ = ri (di(s))
if accept (s, s’) then
s = s’
if c(s) < c(smin) then
smin = s
adjust the weight w and probability p of the operators
return smin

4.1. Initial Solution

We constructed the initial solution with the following steps:

Step 1: Sorting the candidate locations as the product quantity by descending order, then calculate the
accumulation probability of each based on their product quantity. Next, randomly select the
location of the collection center by using a roulette wheel. The location thus has more product
quantity as well as more chance to select.

Step 2: Assigning a farm to collection center follow fuel consumption; the farm that has the lowest
fuel cost can be selected first.

Step 3: Assigning to the next farm through sequence of fuel consumption. Meanwhile, the total
amount of products needs to be checked to match with vehicle and collection center constraints.
When the capacity has satisfied the constraint, the assignment can be stopped.

Step 4: If there are farms left over, return to step 1-3 to open the next collection center and assign tasks
for the farms.

Step 5: If there are no other farms, the procedure is terminated.

4.2. Degree of Destruction

Degree of destruction (d) is the level of eradication that is applicable to the current solution.
For example, the current solution contains 30 farms and the degree of destruction is equivalent to 20%,
which means we need to remove six farms (30 × 0.2) from the current solution. Then, set q = 6 and
put them into the customer pool, and the repair operator puts them back and creates a new solution.
We designed the selection degree of destruction randomly from the interval {10%, 15%, 20%, 25%, and
30%} in every iteration.

4.3. Destroy Operators

The following describe the destroy operators used in the algorithm.

4.3.1. Random Removal (RaR)

This operator is a simple method in which q farms are chosen randomly and removed from the
solution, as shown in Figure 2.

Step 1: Randomly choose q farms from the current solution.
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Step 2: Remove them from the current solution to the customer pool.
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Figure 2. Example of two random removals.

4.3.2. Worst Removal (WoR)

The worst removal entails removing the worst value in order to improve the solution. This operator
considers the highest cost in current solution, shown in Figure 3.

Let the current solution be {1-3-5-2-4-6-1} and q = 2. This means farm location number 1 is selected
to be the collection center.

Step 1: Calculate the total fuel consumption of this routing by using data in Table 4, 11.658 liter
(3.332 + 0.990 + 1.568 + 2.548 + 1.456 + 1.764).

Step 2: Remove farms one by one, then calculate the remaining total fuel consumption. According to
the example of removal farm number 3 from the current solution, the routing is changed to
{1-5-2-4-6-1}. The remaining total fuel consumption is 9.316 liter (1.980 + 1.568 + 2.548 + 1.456
+ 1.764). When we remove farm numbers 3,5,2,4 and6 from the current solution, the remaining
total fuel consumptions are 9.316, 11.170, 9.894, 9.782, and 11.318, respectively.

Step 3: Calculate the different values between the current solution (step 1) and the solution without
each farm (step 2). The different maximum value will be removed. The different value without
farm numbers 3,5,2,4,6 are 2.342(11.658 − 9.316), 0.488, 1.764, 1.876 and 0.340, respectively.

Step 4: Ranking the farms by considering the different value by decreasing order. Thus, the list of
farms who have to be removed are number 3,4,2,5 and 6 respectively and set to q = 2; thus farms
number 3 and 4 will be removed.
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4.3.3. Related Removal (ReR)

This operator is similar to the one used by Hemmelmayr et al. [35]. A farm is randomly selected
for removal from the solutions as shown in Figure 4.
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Figure 4. Example of related removal. Number 2 is a seed farm, number 3 and 5 are related farms.

Let the current solution be {1-3-5-2-4-6-1} and q = 3.

Step 1: Randomly choose a farm (a seed farm), for instance number 2.
Step 2: Select q − 1 farms that consume the least amount of fuel when traveling to the seed farm.

For example, the fuel consumptions when traveling from farm number 2 to numbers 3,4,5 and
6 are 2.070, 2.548, 1.568 and 2.128, respectively (see Table 4). Select two farms (q − 1): numbers
5 and 3.

Step 3: Remove those farms from the current solution to the customer pool.

4.3.4. Collecting Centre Removal (CcR)

Step 1: Among all the opened collection centers, randomly choose one and close it.
Step 2: All assigned farms are removed and put into the customer pool.
Step 3: Randomly choose another one which is not opened yet and open it.

This operator is also important for diversification. Figure 5 illustrate the method of this operator.

J. Open Innov. Technol. Mark. Complex. 2019, 5, x FOR PEER REVIEW 11 of 19 

4.3.3. Related Removal (ReR) 

This operator is similar to the one used by Hemmelmayr et al. [35]. A farm is randomly selected 
for removal from the solutions as shown in Figure 4.  

Let the current solution be {1-3-5-2-4-6-1} and q = 3. 

Step 1: Randomly choose a farm (a seed farm), for instance number 2. 
Step 2: Select q-1 farms that consume the least amount of fuel when traveling to the seed farm. For 

example, the fuel consumptions when traveling from farm number 2 to numbers 3,4,5 and 
6 are 2.070, 2.548, 1.568 and 2.128, respectively (see Table 4). Select two farms (q − 1): 
numbers 5 and 3.  

Step 3: Remove those farms from the current solution to the customer pool. 

 

Figure 4. Example of related removal. Number 2 is a seed farm, number 3 and 5 are related farms. 

4.3.4. Collecting Centre Removal (CcR) 

Step 1: Among all the opened collection centers, randomly choose one and close it. 
Step 2: All assigned farms are removed and put into the customer pool. 
Step 3: Randomly choose another one which is not opened yet and open it. 

This operator is also important for diversification. Figure 5 illustrate the method of this operator. 

 
Figure 5. The collecting center removal operator. (a) The current solution: number 1 is the collecting 
center. (b) Close collecting center number 1. (c) Choose number 3 as the new collecting center. 

4.4. Repair Operators 

The repair operators re-insert the customers from the pool to the solution. 

4.4.1. Random Insertion (RaI) 

The farms which are removed from the destroy method are inserted randomly in both position 
and order as shown in Figure 6. 

1 3 5 2 4 6 1

1 4 6 1

Figure 5. The collecting center removal operator. (a) The current solution: number 1 is the collecting
center. (b) Close collecting center number 1. (c) Choose number 3 as the new collecting center.

4.4. Repair Operators

The repair operators re-insert the customers from the pool to the solution.

4.4.1. Random Insertion (RaI)

The farms which are removed from the destroy method are inserted randomly in both position
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4.4.2. Best Insertion: (BeI)

This operator is a solution improvement to find the best position of insertion considering minimal
fuel consumption as shown in Figure 7.
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Let the current solution be {1-3-5-2-4-6-1} and q = 2 as well as considering the removed farms
number 3 and 5.

Step 1: Attempt to insert farms in the routing that generate the lowest fuel consumption.
Step 2: Repeat step 1 until all the removed farms are inserted.

In the example of having farm 3 and 5 removed by the destroy method, the current solution is
{1-2-4-6-1}, after which step 1 is performed, which requires farm number 3 to be inserted in all of the
positions. The possible insertions are therefore 1-3-2-4-6-1, 1-2-3-4-6-1, 1-2-4-3-6-1 and 1-2-4-6-3-1;
fuel consumptions are 11.172, 9.964, 11.044 and 10.738, respectively. Thus, inserting farm number 3 of
position 1-2-3-4-6-1 is the lowest fuel consumption. In this way, we can insert farm number 5.

4.5. Adaptive Weight Adjustment and Acceptance Criteria

Let w(h) is the weight of an operator h which is either a destroy or repair operator and pu is the
update duration, i.e., the non-improved number of iteration. The amount of period time the operator
h has been used throughout the pu iterations is called uh. The success s(h) of h is set to zero at the
start of pu iterations. After h is used in an iteration, s(h) is improved by ωi if the new solution is of
corresponding quality:

ω1 = 10 If the new solution is the new global best.
ω2 = 7 If the new solution is better than the current.
ω3 = 4 If the new solution does not improve the current, it is accepted as the next current solution.
ω4 = 1 If the new solution does not improve the current and it is not accepted as the next

current solution.

The purpose of making the decision of the acceptance criteria of ALNS is whether to proceed
with the previous solution (s) or with the new solution (s’); the purpose of all acceptance criteria is to
accept solutions that improve the current situation. However, there are some criteria that allow them
to accept non-improving solutions. There are different ways in previous studies which have attempted
to solve this problem. Shaw [32] proposed the Greedy acceptance method. This method does not
accept any worse solutions than the previous one. This might be the limitation of the search because
the worse solutions are not fully considered, but often rejected at first sight. Ropke and Pisinger [22]
used a simulated annealing (SA) as an acceptance criteria. This is one of the most popular acceptance
method for the ALNS algorithm. Thus, we used the SA acceptance criterion in this paper, in which all
improving solutions s’ are accepted or rejected with probability p = exp(c(s) − c(s′)/kT, where T is
the temperature of the considered iteration and k is the constant used in the probability function to
determine whether to accept a worse solution or not.
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5. Computational Result

We performed the testing of mathematical model by Lingo program V.11 and the ALNS algorithm
(CPU: Intel Core i5 up to 2.7 GHz, RAM: 4 GB). The three datasets were provided and tested which the
datasets of sample consisted of small (n = 10), medium (n = 30) and large (n = 50). The parameters of
the test instances were randomly generated using uniform distribution. The distances between the
farm locations were randomly generated from 10 km to 50 km. The capacity of the collection center
and the vehicles included three levels; 10,000 kg, 20,000 kg and 30,000 kg. The palm oil quantities
were randomly generated from 500 kg to 6000 kg. The simulation was run for five times and the best
solution was selected to be the representative of the algorithm. The stopping criterion was the number
of iteration which was set to 500 iterations. Finally, we used the algorithm to solve the case study
problem. The result from the Lingo program and the ALNS algorithm are shown in Table 6.

5.1. Three Datasets of Sample

According to Table 6, the five small problems shown a global optimal status on Lingo that was
only 1 second different in Sm.2, Sm.3 and Sm.5 which could be concluded the Lingo program and
the ALNS algorithm calculated the same results for this sample size. As a result, the small-sized
sample contain 10 farms, so the problem was not complicated. The optimal solution for all small
problems was the average total cost at 1,037,791 Baht. Moreover, there was no gap between Lingo
program and ALNS algorithm, thus, the ALNS algorithm was effectively equal to the Lingo program
for small-sized samples.

For medium-sized samples, the result from ALNS was a different total cost compared with the
Lingo program. Although the ALNS result was slightly higher than the Lingo result, the Lingo program
required a longer processing time than ALNS. The Lingo program took an average processing time of
20.03 h but ALNS took only 5.57 min; in other words, it was able to reduce the processing time by
99.77%. Therefore, the Lingo program consumed long processing time as the number of farms increase.

For the large-sized sample, the Lingo program could not find a global or feasible solution even
though it had been taking more than 120 h of processing time. The Lingo program was able to find
a lower bound, which was compared with the ALNS result. The total cost obtained by ALNS was
slightly higher than Lingo result. However, the ALNS algorithm provided the acceptable result with
a fast processing time. The ALNS algorithm had taken only 14.47 min of processing time which was
able to reduce the computational time by 99.79%. Therefore, the Lingo program seemed ill-fitted for
large samples.

We performed the analysis using statistical methods to compare the performance. The result of
total cost and processing time of all problem sizes were tested normality with a 95% level of confidence
as shown in Table 7 which all the p-values were greater than 0.05. Therefore, the data for all datasets
were normal distribution and after that the data of all datasets were tested for the average difference
using a paired t-test with a 95% level of confidence and the results were presented in Table 8.

From Table 8, the statistics showed a significant p-value greater than 0.05 of total cost for all datasets.
It was insignificant difference between the Lingo program and ALNS algorithm with a 95% level of
confidence. The processing time for the small-sizes sample had p-value greater than 0.05, denoted that
insignificant difference between two method. However, the processing time for the medium-sized
sample and the large-sized sample had a p-value of less than 0.05, which denoted a significant difference
between the Lingo program and ALNS algorithm. Therefore, the ALNS algorithm was able to reduce the
processing time while finding a total cost was not different compared to the Lingo’s result. The ALNS
algorithm was the optimal method for solving the location routing problem with a large number
of farms.
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Table 6. The result comparison of exact method and ALNS algorithm.

Dataset No. Farm
Lingo Program ALNS Difference

Status Total Cost
(Baht)

Processing
Time (h)

Total Cost
(Baht)

Processing
Time (h)

Total Cost
(Baht)

Processing
Time (h)

% Gap
Total Cost

% Gap Processing
Time

Small

Sm. 1 10 Global Opt 1,021,377 00:01:24 1,021,377 00:01:24 0 00:00:00 0 0.00%
Sm. 2 10 Global Opt 1,032,533 00:01:36 1,032,533 00:01:35 0 00:00:01 0 1.04%
Sm. 3 10 Global Opt 1,033,765 00:01:32 1,033,765 00:01:31 0 00:00:01 0 1.09%
Sm. 4 10 Global Opt 1,049,518 00:01:28 1,049,518 00:01:28 0 00:00:00 0 0.00%
Sm. 5 10 Global Opt 1,051,763 00:01:34 1,051,763 00:01:33 0 00:00:01 0 1.06%

Average 1,037,791 00:01:31 1,037,791 00:01:30 0 00:00:01 0 0.64%

Medium

Me. 1 30 Feasible 2,065,619 16:09:17 2,065,720 00:05:36 −101 16:03:41 −0.005% 99.77%
Me. 2 30 Feasible 2,068,392 21:24:15 2,068,678 00:06:27 −286 21:17:48 −0.014% 99.76%
Me. 3 30 Feasible 2,068,690 22:38:28 2,068,706 00:06:32 −16 22:31:56 −0.001% 99.78%
Me. 4 30 Feasible 2,073,662 19:34:42 2,073,762 00:05:54 −100 19:28:48 −0.005% 99.77%
Me. 5 30 Feasible 2,074,331 21:00:15 2,074,413 00:05:15 −82 20:55:00 −0.004% 99.78%

Average 2,070,139 20:09:23 2,070,256 00:05:57 −117 20:03:27 −0.006% 99.77%

Large

La.1 50 Lower bound 4,055,126 >120 4,055,137 00:13:56 −11 119:46:04 0.000% 99.81%
La.2 50 Lower bound 4,056,264 >120 4,056,280 00:16:27 −16 119:43:33 0.000% 99.77%
La.3 50 Lower bound 4,056,541 >120 4,056,639 00:14:52 −98 119:45:08 −0.002% 99.79%
La.4 50 Lower bound 4,053,720 >120 4,053,880 00:15:54 −160 119:44:06 −0.004% 99.78%
La.5 50 Lower bound 4,058,125 >120 4,058,205 00:12:45 −80 119:47:15 −0.002% 99.82%

Average 4,055,955 120 4,056,028 00:14:47 −73 119:45:13 −0.002% 99.79%
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Table 7. Normality testing of Lingo and ALNS.

Small Medium Large

Total Cost Exact ALNS Exact ALNS Exact ALNS

p-value 0.418 0.418 0.330 0.291 0.854 0.886
Result Normal Normal Normal Normal Normal Normal

Processing
Time Exact ALNS Exact ALNS Exact ALNS

p-value 0.740 0.831 0.651 0.578 0.378 0.847
Result Normal Normal Normal Normal Normal Normal

Table 8. Result of paired t-test from all datasets.

Dataset
p-value

Total Cost Processing Time

Small 1.000 0.070
Medium 0.060 0.000 *

Large 0.058 0.000 *

* Significant difference of method.

5.2. The Case Study

We applied the ALNS algorithm for solving the case study problem, which was conducted to
demonstrate how the propose model could be used for the palm oil collection location routing problem.
The opened location, routing plan and total cost in each collection center are summarized in Table 9.

Table 9. Case study result.

Opened Location Optimal Routes Total Palm oil (kg) Total Cost (Baht)

14 14-6-9-8-22-12-14 19,270 621,415
18 18-26-27-28-18 19,846 621,588
25 25-5-15-1-4-19-25 19,983 621,723
3 3-2-7-17-16-11-3 18,578 621,498
13 13-23-20-29-30-21-10-24-13 18,929 621,805
76 76-42-55-32-38-45-76 19,275 621,875
61 61-33-40-54-48-65-71-61 18,953 621,982
46 46-31-52-60-72-34-46 19,096 621,663
68 68-35-44-66-49-68 18,921 621,532
36 36-41-73-79-56-39-36 18,909 621,774
51 51-37-43-47-50-59-51 19,183 621,689
58 58-53-62-67-77-70-58 19,660 621,852
64 64-63-57-69-75-74-78-80-64 19,230 621,668

Total 8,082,064

There were 80 customers (farm groups) in the case study. The exact method could not find the
solution in spite of taking processing time over 120 hours. On the other hand, ALNS took an average
of 20.46 min and came along with the solution as showed in Table 10.

As mentioned in Section 3.1, the traditional LRP dealt with distance minimization; however,
our model dealt with fuel consumption minimization. The conditions of the road affected to the fuel
consumption; thus, considering distance was did not minimize fuel consumption. Table 11 compares
the solutions of this study model to the solution from classical LRP; the distance was reduced, and it
saved 7.72% of fuel cost.
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Table 10. Comparison of the proposed ALNS and Lingo on case study problem (n = 80).

Run
Lingo Program ALNS

Total Cost (Baht) Processing Time (h) Total Cost (Baht) Processing Time (h)

1 N/A >120 8,343,126 00:21:07
2 N/A >120 8,342,341 00:23:18
3 N/A >120 8,344,554 00:19:25
4 N/A >120 8,344,128 00:19:04
5 N/A >120 8,345,297 00:20:55

Average N/A >120 8,343,889 00:20:46

Table 11. Comparison of solution of fuel minimization and distance minimization in perspective of
fuel cost.

Solution of Fuel Minimization Solution of Distance Minimization

Opened location Fuel cost (Baht) Opened location Fuel cost (Baht)

14 1415 14 1415
18 1588 18 1588
25 1723 26 1953
3 1498 3 1498

13 1805 15 2055
76 1875 76 1875
61 1982 61 1982
46 1663 48 1961
68 1532 63 1926
36 1774 36 1774
51 1689 51 1689
58 1852 56 2155
64 1668 67 1896

Total 22,064 Total 23,767

Dif. 7.72%

To verify the effectiveness of the proposed algorithm, we compare the ALNG algorithm with the
Differential Evolution (DE) algorithm from the literature [32]. This study proposed DE to solve the
problem and modified some points in the original DE, called MED. The computational results are
shown in Table 12. The ALNS has a percentage difference of fuel usage 7.72%, more than that of DE,
MDE-1 and MDE-2. MDE-3 has the best performance in term of the quality of solution with 15.05% of
fuel saving. However, the size of problem may effect to the percentage difference. Our problem is
smaller, thus the impact of percentage difference is lower than the bigger problem.

Table 12. Computational result of the DE and ALNS.

DE-Fuel Used (L) ALNS-Fuel Used (L)

n Current
practice DE MDE-1 MDE-2 MDE-3 n Current

practice ALNS

CASE 110 112.3 110.1 108.76 106.85 95.4 80 630.4 581.73

% difference 1.96 3.15 4.85 15.05 7.72

* % difference: percentage gap is calculated as (current practice - proposed method)/current practice.

In term of processing time, DE algorithm set stopping criteria by runtime limitation at 10 min
but ALNS set that by 500 iterations. Moreover, both algorithms were tested by different computer
specification. Therefore, we only present the performance of solution quality.

Figure 8 showed the nature of ALNS during searching the solution of the case study which
shows that ALNS continuously improved the solution from until stopping criteria were met.
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During 1–70 iterations, the solution was improved rapidly. After that, the solution was gradually
improved until 250 iterations, after which it was stable.

J. Open Innov. Technol. Mark. Complex. 2019, 5, x FOR PEER REVIEW 3 of 19 

Table 12. Computational result of the DE and ALNS. 
 DE-Fuel Used (L) ALNS-Fuel Used (L) 

 n 
Current 
practice DE MDE-1 MDE-2 MDE-3 n 

Current 
practice ALNS 

CASE 110 112.3 110.1 108.76 106.85 95.4 80 630.4 581.73 
% difference   1.96 3.15 4.85 15.05   7.72 

* % difference: percentage gap is calculated as (current practice - proposed method)/current practice. 

Figure 8 showed the nature of ALNS during searching the solution of the case study which 
shows that ALNS continuously improved the solution from until stopping criteria were met. During 
1–70 iterations, the solution was improved rapidly. After that, the solution was gradually improved 
until 250 iterations, after which it was stable. 

 
Figure 8. ALNS behaviors during the simulation run. 

6. Conclusion and Outlook 

The purpose of this study was to solve the Location Routing Problem in the case study of a palm 
oil collection center. The mathematical model has been formulated to minimize the total cost 
consisted of opening cost, fixed cost of vehicle uses and fuel cost. We have presented an ALNS 
algorithm for this LRP problem, which used several operators that were simple and relied on few 
parameters. 

Three datasets were tested (small, medium and large-sized samples) and the results were 
compared to the exact method that was computed by the Lingo program. The objective value from 
Lingo and ALNS of the small-sized sample were equal. In addition, the processing time of ALNS was 
slightly higher than the Lingo program. For the medium and large-sized sample, ALNS calculated a 
higher objective value than the Lingo program but the Lingo program consumed longer processing 
time. Although the Lingo program had a long processing time, it found only feasible and lower 
bounds for medium-sized and large-sized. ALNS on the other hand, was able to find an acceptable 
solution within a short processing time and it was faster than Lingo program. Thus, we could 
summarize that ALNS was the optimal method for solving large problems. 

We have also implemented ALNS of the case study problem, which was larger than the 
instances. The ALNS produced the solution in an average processing time of 20.46 min, while the 
Lingo consumed over 120 hours, but was unable to find the solution. Thus, ALNS was efficient to 
solve the case study problem. Furthermore, we extended a comparison between the model of fuel 
consumption and distance minimization with respect to fuel cost. The result showed that this model 
could reduce 7.72% of fuel costs as compared to the classical LRP, which is distance minimization. 

Figure 8. ALNS behaviors during the simulation run.

6. Conclusions and Outlook

The purpose of this study was to solve the Location Routing Problem in the case study of a palm
oil collection center. The mathematical model has been formulated to minimize the total cost consisted
of opening cost, fixed cost of vehicle uses and fuel cost. We have presented an ALNS algorithm for this
LRP problem, which used several operators that were simple and relied on few parameters.

Three datasets were tested (small, medium and large-sized samples) and the results were compared
to the exact method that was computed by the Lingo program. The objective value from Lingo and
ALNS of the small-sized sample were equal. In addition, the processing time of ALNS was slightly
higher than the Lingo program. For the medium and large-sized sample, ALNS calculated a higher
objective value than the Lingo program but the Lingo program consumed longer processing time.
Although the Lingo program had a long processing time, it found only feasible and lower bounds
for medium-sized and large-sized. ALNS on the other hand, was able to find an acceptable solution
within a short processing time and it was faster than Lingo program. Thus, we could summarize that
ALNS was the optimal method for solving large problems.

We have also implemented ALNS of the case study problem, which was larger than the instances.
The ALNS produced the solution in an average processing time of 20.46 min, while the Lingo consumed
over 120 hours, but was unable to find the solution. Thus, ALNS was efficient to solve the case study
problem. Furthermore, we extended a comparison between the model of fuel consumption and
distance minimization with respect to fuel cost. The result showed that this model could reduce 7.72%
of fuel costs as compared to the classical LRP, which is distance minimization.

The results provided by the ALNS algorithm were useful for palm oil logistic management.
The suitable locations were selected to be collection center and arranged the routing plan to collect
palm oil from farmers. The total costs of the system were minimized and the farmers would make more
profit compared to the past. Palm oil was one of the sources of renewable energy and this research
aimed to minimize fuel energy consumed as well. Therefore, this could be implied that this study
considered as green logistic management work as well as environmental improvement.

Future research will focus on extending this approach to solve a larger LRP problem or another
LRP variant such as 2E-LRP (2 Echelon Location Routing Problem); in the meantime, developing the
ALNS is needed. Because we will solve bigger problems, the algorithm should be more efficient to
compute both the high solution quality and a short processing time.
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The proposed algorithm is not only used to solve the case study problem, but can also solve the
similar problems. To develop the performance of the algorithm, a good software design is needed.
After software development, the software can be suitable for related businesses. The license of the
developed software can be customized and shared for worldwide usage. Therefore, this is not restricted
to palm oil businesses, but is also an open opportunity for other fields. We can imply that the open
innovation concept has been applied to the palm oil and related business. The main idea of open
innovation is to look for new technologies and ideas outside of the firm for other ways to increase the
efficiency and effectiveness of their innovation processes. An example of open innovation research
studies can be revealed in Yun et al. [36] and Yun et al. [37].
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