Synthesis and Pharmacological Evaluation of Fenamate Analogues: 1,3,4-Oxadiazol-2-ones and 1,3,4- Oxadiazole-2-thiones

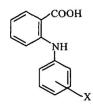
Aida A. El-Azzouny¹* , Yousreya A Maklad², Herbert Bartsch³, Wafaa A. Zaghary⁴, Waleed M. Ibrahim⁵, Mosaad S. Mohamed⁵.

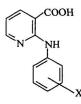
Pharmaceutical Sciences Dept. (Pharmaceutical Chemistry group¹ and Pharmacology group²), National Research Center, Tahrir St. Dokki, Giza, Egypt. ³Institut für Pharmazeutische Chemie, Pharmazie Zentrum der Universität Wien.

⁴Pharmaceutical Chemistry Dept., ⁵Organic Chemistry Dept., Helwan University, Faculty of Pharmacy, Ein Helwan Cairo, Egypt.

Abstract

A series of fenamate pyridyl or quinolinyl analogues of 1,3,4-oxadiazol-2-ones **5a-d** and **6a-r**, and 1,3,4-oxadiazole-2-thiones **5e-g** and **6s-v**, respectively, have been synthesized and evaluated for their analgesic (hot-plate), antiinflammatory (carrageenin induced rat's paw edema) and ulcerogenic effects as well as plasma prostaglandin E_2 (PGE₂) level. The highest analgesic activity was achieved with compound **5a** (0.5, 0.6, 0.7 mmol/kg b.wt.) in respect with mefenamic acid (0.4 mmol/kg b.wt.). Compounds **6h**, **6l and 5g** showed 93, 88 and 84% inhibition, respectively on the carrageenan-induced rat's paw edema at dose level of 0.1mmol/kg b.wt, compared with 58% inhibition of mefenamic acid (0.2mmol/ kg b.wt.). Moreover, the highest inhibitory activity on plasma PGE₂ level was displayed also with **6h**, **6l** and **5g** (71, 70, 68.5% respectively, 0.1mmol/kg b.wt.) compared with indomethacin (60%, 0.01 mmol/kg b.wt.) as a reference drug. In addition **6i**, **6k**, **6p**, **6r**, **6t** and **6v** were devoid of any ulcerogenicity.

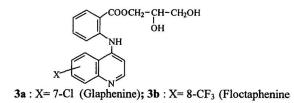

Keywords:

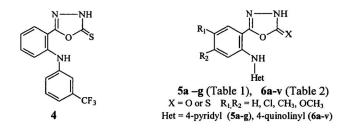

Analgesics; nonsteroidal antiinflammatories; 1,3,4-oxadiazol-2-ones and 2-thiones; fenamate analogues

A.A. EI-Azzouny et al.:

Introduction

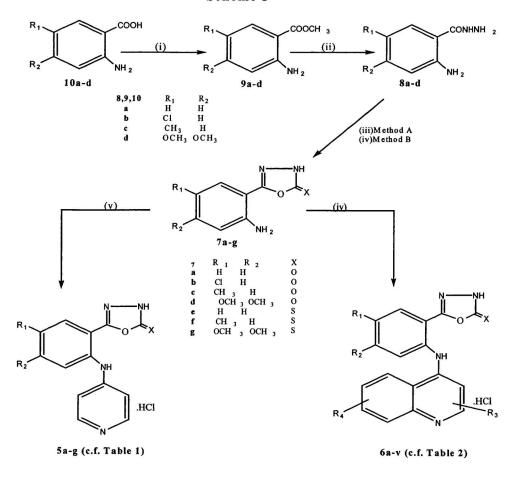
Many nonsteroidal antiinflammatories (NSAIDs) are now widely used in the treatment of inflammatory disorders. However, despite their wide spread use, none of the presently available agents are ideal, each has its shortcoming [1]. The need for more effective and safer agents for treating inflammatory conditions is reflected in the growing list of new compounds undergoing clinical trials. The fenamates represent a class of NSAIDs that share as their common structural feature an N-arylanthranilic acid [2]. Their mechanism of action is inhibtion of cyclooxygenase (COX) activity and thereby the production of prostaglandins [3]. The fenamates are differentiated by their aryl substituents as shown by meclofenamic acid (1a) [4], mefenamic acid (1b) [5] and flufenamic acid (1c) [6]. The most active derivatives have substituents at positions 2, 3 and 6 of the ring attached to the anthranilic acid nitrogen atom. Also, the pyridyl moiety of clonixin (2a) [7] and niflumic acid (2b) [8] can be considered isosteric to the aryl one of fenamic acid derivatives.



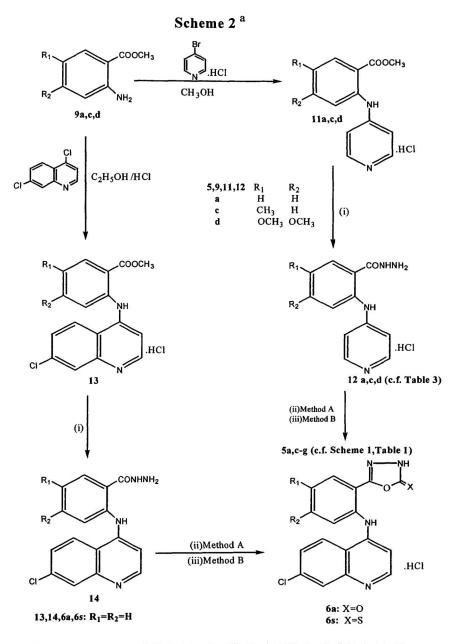

1a: X=2,6-Cl₂, 3-CH₃ (Meclofenamic acid)
1b: X=2,3-(CH₃)₂ (Mefenamic acid)
1c: X=3-CF₃ (Flufenamic acid)

2a: X=2-CH₃, 3-Cl (Clonixin) 2b:X= 3-CF₃ (Niflumic acid)

Despite the significant potency exhibited by these fenamates, they display various side effects as gastrointestinal disturbances, ulcerogenicity [9] and renal toxicity [10]. Thus, among the attempts to achieve safer agents is the esterification of the carboxylic function. This is well represented by glaphenine (3a) [11] and floctaphenine (3b) [11], in which the N-aryl ring of fenamic acid is replaced by the substituted heterocylic quinolinyl moiety.



Further development in this area is extended through search for other active heterocylic biological isosteres of N-arylanthranilic acid. Thus, the replacement of the carboxylic acid functionality of several fenamates with acidic heterocyles e.g. 1,3,4-oxadiazole-2-thione **4** provided dual inhibitor of cylooxygenase and 5-lipooxygenase enzymes [12].


All these premises focused the intense interest for the search of novel analgesic and antiinflammatory agents that belong to the class of fenamates having the general framework 5 and 6 in order to modulate the biologic effects and abolish others.

The synthesis and pharmacological screening of the analgesic, antiinflammatory activities, as well as the ulcerogenic effect of series of: a): 5-[2-(4-pyridyl) aminoaryl]-1,3,4-oxadiazol-2(3H)-ones (5a-d) and-2(3H)-thione analogues (5e-g) ; b):5-[2-(4-quinonalinyl) aminoaryl] 1,3,4-oxadiazol-2(3H)-ones (6a-r) and -2(3H)-thione analogues (6s-v), have been carried out. The synthetic pathways are illustrated in Schemes1 and 2.

Scheme 1^a

^aReagents:(i) CH₃OH/SOCl₂; (ii) NH₂NH₂(80%);(iii) Method A:carbonyldiimidazole, THF, X=O; (iv) Method B: CS₂, KOH/H₂O, ethanol, X=S; (v) 4-bromopyridine HCl, ethanol, compounds **5a-d** when X=O, compounds **5e-g** when X=S; R₁=H, Cl, CH₃, R₂=H,OCH₃; (vi) 4-chloroquinoline derivatives, ethanol/HCl, compounds **6a-r** when X=O, compounds **6s-v** when X=S; R₁=H, Cl, CH₃, OCH₃; R₂=H, OCH₃; R₃= 2-CH₃, 3-COOC₂H₅; R₄= 7-Cl, 7-CF₃, 8-CH₃, 8-CF₃

*Reagents:(i) NH₂NH₂(80%); Method A:carbonyldiimidazole, THF, **5a,e,d**; (ii) Method B: CS₂, KOH/H₂O, ethanol, **5e** -g.

A. A. El-Azzouny et al .:

Experimental

Chemistry:

All Melting points were determined with electrothermal capillary melting point apparatus and were uncorrected. Infrared (IR) spectra were recorded as KBr pellets with Philips PU 9712-IR and FTIR spectrometers (300E Jasco Ishikawa-Cho, Tokyo, Japan) and values are presented in cm⁻¹. ¹H-NMR spectra were run on a Jeol Ex-270 MHz instrument (Jeol Ltd, Tachikawa, Tokyo, Japan) as solutions in DMSO-d₆, using tetramethylsilane (TMS) as an internal standard and chemical shift values are recorded in ppm on δ scales (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad). The mass spectra were run on Finnigan Mat SSQ-7000 spectrometer, 70 eV. Elemental analyses were determined in the Microanalytical Centre, Cairo University,.

The methyl anthranilates 9b-d[13] (Scheme 1), were obtained according to the procedure cited in ref. [12]. A methanolic solution of the corresponding anthranilic acid derivative was refluxed for 14 h with thionyl chloride.

2-Aminobenzoic acid hydrazides 8a-d [14](Scheme 1).

To 0.032 mol of each of the methyl anthranilate esters **9a-d** was added 11ml (0.07 mol) of **80%** hydrazine hydrate. The reaction mixture was refluxed overnight. After cooling, the required hydrazides **8a-d** were precipitated and purified by crystallization from 2-propanol. **8d:** m.p.129 °C, yield 95%, elemental analysis, calcd. for $C_9H_{13}N_3O_3$; C: 51.18; H: 6.20; N: 19.90. Found: C: 51.35; H: 6.41; N: 19.97.

General procedure for synthesis of 5-(2-aminoaryl)-1,3,4-oxadiazol-2(3H)-ones 7a-d [14]. Method A (Scheme 1)

A solution of 0.01 mol of each of the 2-aminobenzoic acid hydrazides **8a-d** in 30 ml of tetrahydrofuran, was heated under stirring to 40-50 °C, followed by portionwise addition of 1.78 g (0.011 mol) of carbonyldiimidazole during 15 min. Then, the reaction mixture was refluxed for 14h. Most of the organic solvent was distilled under reduced pressure, then water was added to precipitate **7a-d**, which were filtered and purified by crystallization from 2-propanol: water.**7d:**m.p.263 °C, yield 62%, elemental analysis, calcd. for $C_{10}H_{11}N_3O_4$: C: 50.63; H: 4.76; N: 17.71. Found: C: 50.76; H: 4.92; N: 17.54.

General procedure for the synthesis of 5-(2-Aminoaryl)-1,3,4-oxadiazole-2(3H)-thiones 7e-g [15]. Method B (Scheme 1)

To a solution of 1.4 g (0.025 mol) of potassium hydroxide in 5 ml water and 25 ml ethanol was added dropwisely under stirring and cooling (5 °C) a solution of 0.025 mol of the hydrazide **8a** or **8c-d** in 75 ml of ethanol. Carbon disulfide (0.55 ml, 0.027mol) was added to the previous mixture and the temperature was raised to 50-60°C during 1h and heating was continued overnight. The residual solid after concentration under reduced pressure was dissolved in water, neutralized with 2N hydrochloric acid to precipitate **7e-g**, filtered and purified by cystallization from methanol. **7g**: m.p.262 °C, yield 57 %, elemental analysis, calcd. for $C_{10}H_{11}N_3O_3S$: C: 47.42; H: 4.38; N: 16.59. Found: C: 47.53; H: 4.12; N: 16.76.

General procedure for synthesis of 5-[2-(4-Pyridyl) aminoaryl]-1,3,4-oxadiazol-2(3H)ones (5a-d) and/or -2(3H)-thione analogues (5e-g) hydrochlorides, Scheme 1.

To a stirred solution of 0.01 mol of either **7a-d** or **7e-g** in 30 ml of absolute ethanol was added in portions 1.92 g (0.01 mol) of 4-bromopyridine hydrochloride. The reaction mixture was refluxed for 3h. The organic solvent was concentrated and the residual solid of either **5a-d** or **5e-g**, respectively, was crystallized from 2-propanol (c.f. Table 1).

General procedure for synthesis of 5-[2-(4-quinolinyl) aminoaryl]-1,3,4-oxadiazol-2(3H)-ones (6a-r) and/or -2(3H)-thione analogues (6s-v) hydrochlorides, Scheme 1.

A stirred solution of 0.01 mol of either 7a-d or 7e-g in 30 ml of absolute ethanol containing 1 drop of concentrated hydrochloric acid was heated gradually to 60 °C. The appropriate 4-chloroquinoline derivative (0.01mol) was added at once to the previous mixture, then refluxed for 3h. The formed yellow precipitate of either **6a-r** or **6s-v** was filtered and crystallized from 2-propanol: ethanol (c.f. Table 2).

2-(4-Pyridyl)aminobenzoic acid methyl ester hydrochlorides (11a,c,d) were synthesized according to the procedure cited in ref. [16] in 60-70% yields, (c.f. Scheme 2). **11c:** m.p.65 °C, yield 58%, elemental analysis, calcd. for $C_{14}H_{14}N_2O_2$.HCl : C: 60.33; H: 5.42; N: 10.05. Found : C: 60.47; H: 5.61; N: 10.17. **11d** : m.p.101 °C, yield 68%, elemental analysis, calcd. for $C_{15}H_{16}N_2O_4$.HCl: C: 55.48; H: 5.28; N: 8.63. Found : C: 55.57; H: 5.42; N: 8.80.

Hydrazides of 2-(4-Pyridyl) aminobenzoic acids (12a,c,d).

A mixture of 0.01 mol of the appropriate 2-(4-pyridyl) amino benzoic acid methyl ester **11a,c,d** and hydrazine hydrate (80%, 10 ml, 0.07 mol) was heated to reflux overnight. After cooling, the appropriate hydrazide **12a,c,d** was precipitated, filtered and crystallized from 2-propanol (c.f. Table 3, Scheme 2).

5- [2- (4-Pyridyl) aminoaryl] - 1,3,4- oxadiazol- 2(3H) - ones (5a,c and d), Method A (Scheme2) were prepared as described under 7a-d starting from the appropriate hydrazide 12a,c,d (c.f. Table 1).

5- [2- (4-Pyridyl) aminoaryl] - 1,3,4- oxadiazole - 2(3H) - thiones (5e-g), Method B (Scheme2), were prepared as described under 7e-g starting from the appropriate hydrazide 12a,c,d (c.f. Table 1).

Pharmacology:

1.Analgesic activity:

The analgesic effect of the prepared compounds **5a-g** and **6a-v** was investigated using the hot-plate method[17]. The method depends on observing the normal response to a pain stimulus in untreated animals and comparing it with the response to the same stimulus after the administration of the tested compound at definite time intervals. The mouse response to heat is a convenient application of this principle. The mice were dropped gently in a dry glass beaker of one litre capacity maintained at 55-55.5°C. The normal reaction time in seconds for all animals was determined. The tested compounds **5a-g** and **6a-v** in doses of 0.5,0.6 and 0.7 mmol/kg b.wt. as well as mefenamic acid in a dose of 0.4 mmol/kg b.wt. as reference drug were subcutaneously (s.c.) administered in groups of mice (n=6) as an aqueous suspension in 7% tween-80 and the reaction time was re-determined at 10,20, 30,45 and 60 minutes intervals. Thereafter, the relative potency as well as the duration of action of the test compounds was compared with that of the standard drug.

2. Antiinflammatory activity:

338

The inhibitory activity of the tested compounds on carrageenan-induced rat's paw edema were determined according to the method of Winter *et al*[18]. Groups of adult male albino rats (120-160 g) of 6 animals each were fasted for 18 h before beingorally dosed with the tested compounds **5a-g** and **6a-v** in a dose of 0.1 mmol/kg b.wt.[19] (as aqueous suspension in 7% tween 80) one hour before carrageenan challenge. Foot paw edema was induced by subplanter injection of 0.05ml of 1% suspension of carrageenan in saline into the plantar tissue of one hind paw. An equal volume of saline was injected into the other hind paw and served as control. Four hours after compound administration, the animals were decapitated, blood samples were collected and the paws were rapidly excised. The average weight of edema was estimated for the treated as well as the control groups and the percentage inhibition of weight of edema was also evaluated [20]. Mefenamic acid (0.2 mmol/kg b.wt.)[21] was employed as standard against which the tested compounds were compared.

3. Estimation of Plasma Prostaglandin E₂ (PGE₂):

Plasma was separated from heparinized blood collected from rats (n=6) by centrifugation at 12000g for 2 minutes at 4°C and immediately stored frozen at -20°C until assayed. The Assay Designs'Correlate-EIA Prostaglandin E₂ (PGE₂) Kit is a competitive immunoassay for the quantitative determination of PGE₂ in biological fluids [22]. The kit uses a monoclonal antibody to PGE₂ to bind, in a competitive manner, the PGE₂ in the sample. After simultaneous incubation at room temperature, the excess reagent was washed away and substrate was added. After a short incubation time, the enzyme reaction was stopped and the yellow colour generated was read on a microplate reader (DYNATECH, MR 5000) at 405 nm. The intensity of the bound yellow colour is inversely proportional to the concentration of PGE₂ in either standards or samples.

4-Ulcerogenic effect in rats:

Groups of adult male albino rats of six animals each (120-160 g), were fasted overnight, then orally given the tested compounds (0.1 mmol/kg b.wt.).Four hours later, animals were killed, their stomachs were removed, opened along the greater curvature, and

the number of ulcers were assessed by adopting the method of Corell *et al*[23]. The results were compared with that of mefenamic acid (0.2 mmol/kg b.wt.) as reference drug.

Statistical and data analysis:

Data are expressed as means \pm s.e.m. Statistical comparison between different groups was done using one way analysis of variance (ANOVA), followed by multiple comparison test (post hoc LSD). Significance was accepted at p <0.05.

Results and Discussion

1. Synthesis:

In Scheme 1, the methyl anthranilate esters 9a-d were prepared from their corresponding anthranilic acid derivatives 10a-d by treating with SOCl₂ in methanol [13], which were converted to the corresponding hydrazides 8a-d [14] by heating with hydrazine hydrate in methanol. Compounds 5-(2-aminophenyl)-1,3,4-oxadiazol-2(3H)-ones 7a-d [14] were obtained in 60-83% yields by reaction of the hydrazides 8a-d in THF with 1,1carbonyldiimidazole (Method A). On the other hand, treatment of the hydrazides 8a,c or d with carbon disulfide under basic condition (Method B) afforded the corresponding 5-(2aminophenyl)-1,3,4-oxadiazole-2(3H)-thiones 7e-g [15] in 58-65% yields. The target compounds 5a-g (Table 1) and 6a-v (Table 2) were achieved by refluxing either 4bromopyridine hydrochloride or 4-chloroquinoline derivatives with 7a-g in an ethanolic solution, respectively; while catalytic amount of HCl was added in case of 6a-v (Scheme1). Several trials failed to convert the N-(7-chloroquinoline) anthranilic acid hydrazide (14) to the target compounds 6a or 6s via Methods A or B, respectively, (Scheme 2), due to the difficulty of solubility of 14 in various solvents. On the other hand, the desired 2-(4-pyridyl) aminophenyl-1,3,4-oxadiazol-2(3H)-ones 5a and thiones 5c-g were achieved in good yields (Scheme 2, Table 1) through the reactions of 2-(4-pyridyl) aminobenzoic acid hydrazides (12a,c,d, Table 3) either with 1,1-carbonyldiimidazole in THF (Method A) or carbon disulfide in ethanolic aqueous KOH (Method B). The IR spectra of 1,3,4-oxadiazol-2(3H)-ones 5a-d and 6a-r showed a strong C=O absorption bands near 1790 cm⁻¹, while the 2(3H)-thiones 5e-g and 6s-v exhibited C=S absorption bands at 1125 –1140 cm⁻¹. Furthermore, the ¹H NMR data of **5** and **6** (Tables 4 and 5) showed the NH signal of 1,3,4-oxadiazol–2(3H)-ones and 2(3H)-thiones at δ 12.00-12.80 and δ 14.25- 14.55 ppm, respectively (and were exchangeable with D₂O). The mass spectra of **5** and **6** revealed compatible molecular ion peaks (Tables 4 and 5).

2.Pharmacology:

2.1. Analgesic activity

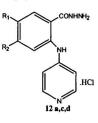
The data presented in Table 6 revealed the analgesic activity of both the pyridyl 5a-g and quinolinyl 6 a-v series. Compound 2-(4-pyridyl) aminophenyl-oxadiazol-2(3H)-one (5a) was the most active one in the pyridyl series 5a-g (Fig. 1). The analgesic activity of the pyridyl oxadiazol-2-ones 5a-d was arranged in the following decreasing order :5a>5b>5d, while compound 5c lacked the analgesic activity. Concerning the pyridyl oxadiazole-2-thiones 5e-g, the 5-methylphenyl substituent 5f displayed the highest analgesic activity. The analgesic potential was arranged in the following decreasing order: 5f > 5g > 5e. Regarding the analgesic activity of the quinolinyl oxadiazol-2-ones 6a-r, it was found that compound **6i** was the most active one, where both the phenyl and quinolinyl rings are substituted with 5-Cl and 7-CF₃, respectively. Meanwhile, compounds 6k and 6owere devoid of any activity. The analgesic effect of the different congeners of this group was arranged in the following decreasing order: 6i> 6q> 6p> 6e=6c> 6r=6d> 6a =6l=6n> 6m=6f> 6h> 6b> 6j. Concerning the quinolinyl oxadiazole - 2- thiones 6 s-v, compound 8 trifluoromethyl-quinolinyl oxadiazole-2-thione 6v was the most active one. The analgesic activity of the other congeners was arranged in the following order: 6v>6s>6u>6t. Conclusively, analgesic activity was augmented by the pyridyl oxadiazol-2-one and 2thione moieties, in addition to the trifluoromethyl quinolinyl one as achieved with compounds 5a > 5f > 6i > 6v, respectively at a dose level of 0.6 and 0.7 mmol/kg b.wt. 30 to 45 min from compound administration. Their analgesic activities were higher than that of mefenamic acid (0.4 mmol/kg b.wt.) used as reference drug.

2.2. Antiinflammatory activity

The evaluation of the antiinflammatory activity of the pyridyl 5a-g and quinolinyl 6a-v series was illustrated in Table 7. In the pyridyl oxadiazol-2-ones 5a-d, compound 5-[4.5dimethoxy-2-(pyridin-4-ylamino)-phenyl]-3H-[1,3,4]-oxadiazol-2-one (5d) was the most active one and showed higher inhibitory activity (76%, 0.1 mmol/kg b.wt.) compared with mefenamic acid as reference drug (58%,0.2 mmol/kg b.wt.). The antiinflammatory activity of the other congeners was arranged in the following decreasing order: 5d >5a >5c >5b. Regarding the pyridyl oxadiazole-2-thiones 5e-g, the 4,5-dimethoxy substituent of the phenyl moiety in 5g augmented the inhibitory activity (84%, 0.1 mmol/kg b.wt.) compared with mefenamic acid. The other congeners showed decrease in the antiinflammatory activity in the following order: 5g > 5f > 5e. On the other hand, in the quinolinyl oxadiazol-2-ones 6a-r, both the 5-chloro phenyl and the 7-chloro, 3-ethoxycarbonyl quinolinyl moieties of 6h potentiated the inhibitory effect (93%, 0.1 mmol/kg b.wt.) compared with mefenamic acid value. Moreover, compounds 6a-r significantly decreased the edema of the rat's paw in the following order: 6h >6l >6d >6o >6b >6f >6e >6i >6a >6p >6k >6r >6n >6g >6c >6j >6q. Concerning the quinolinyl oxadiazole-2-thiones 6s-v, compound 6t was the most effective analogue, where the quinolinyl moiety is substituted with ethoxycarbonyl and chloro groups in the 3 and 7 positions, respectively. It exhibited inhibitory activity (67%, 0.1 mmol/kg b.wt.) superior to mefenamic acid value as reference drug. The antiinflammatory activity was arranged in the following decreasing order : 6t > 6s > 6u > 1006v. Conclusively, the highest antiinflammatory activity was achieved with compounds 6h, 61, 5g, 6d (93, 88, 84 and 81%), respectively (c.f. fig. 2) using mefenamic acid as reference standard.

2.3. Plasma prostaglandin E₂ (PGE₂) level

The data presented in Table 8, illustrate the effect of compounds 5a-g and 6a-v on plasma PGE₂ level. In the pyridyl oxadiazol-2-ones 5a-d, compound 5-[4,5-dimethoxy-2-(pyridin-4-ylamino) -phenyl] -3H-[1,3,4]-oxadiazol-2-one (5d) was the most active one, and possessed inhibitory activity 64% of control value. The effect of the analogues of this


group on plasma PGE₂ level was arranged in the following order: 5d>5a>5c>5b. Concerning the pyridyl oxadiazole-2-thiones 5e-g, compound 5-[4,5-dimethoxy-2-(pyridin-4-ylamino)-phenyl]-3H-[1,3,4]-oxadiazole-2-thione (5g) exhibited the highest inhibitory effect. It reaches 68% at a dose level of 0.1mmol/kg b.wt of control value, while indomethacin (0.01mmol/kg b.wt.), as reference drug, exhibited an inhibitory effect on plasma PGE₂ 60% of control value. The different congeners of this group showed a decreased effect on plasma PGE_2 level as follows: 5g>5f>5e. In the quinolinyl oxadiazole-2-ones 6a-r, compound 5-[2-(7-chloro-3-ethoxy carbonyl -quinolin-4-ylamino)-phenyl]-3H-[1,3,4]-oxadiazol-2-one analogue (6h), showed the highest activity (71% at a dose level of 0.1 mmol/kg b.wt.) of control value, which was also superior to that of indomethacin (60%,0.01 mmol/kg b.wt.) as reference drug. The plasma PGE₂ level of **6a-r** was arranged 6m> 6g> 6c> 6j> 6q. Concerning the quinolinyl oxadiazole-2-thiones 6s-v, the highest activity was achieved by 5-[2-(7- chloro-3-ethoxycarbonyl-quinolin-4-ylamino)-phenyl]-3H-[1,3,4]- oxadiazole -2-thione (6t), which induced an inhibitory effect about 62% at a dose level of 0.1 mmol/kg b.wt. of positive control value. Moreover, the plasma PGE₂ level in this group was arranged in the following decreasing order: 6t>6s>6u>6v. In general, the highest inhibitory effect on plasma PGE₂ level was achieved with compounds 6h>6l>5g (0.1 mmol/kg b.wt.) in the previous decreasing order (Fig. 3).

2.4. Ulcerogenic effect

The data presented in Table 7 showed the ulcerogenic effect of the pyridyl **5a-g** and the quinolinyl **6a-v** series compared with mefenamic acid as reference drug. In the pyridyl oxadiazol-2-ones **5a-d**, compound 5-[4,5- dimethoxy -2- (pyridin-4-ylamino)-phenyl]-3H-[1,3,4] oxadiazol-2-one (**5d**) exhibited the highest ulcerogenic effect. Moreover, **5a** and **5c** both had similar ulcerogenicity. Their ulcerogenic effect was arranged in the following decreasing order: **5d>5a=5c>5b**. Concerning the pyridyl oxadiazole-2-thiones **5e-g**, compound 5-[4,5-dimethoxy-2-(pyridin-4-ylamino)-phenyl]-3H-[1,3,4]-oxadiazole-2-thione (**5g**) possessed the highest ulcerogenicity. The different congeners showed a decrease in the ulcerogenic effect in the following order : **5g > 5f >5e**. Regarding the quinolinyl oxadiazol-2-ones **6a-r**, compound 5-[2-(7-trifluoromethyl-quinolin-4-ylamino)-phenyl]-3H-[1,3,4]- oxadiazol-2-one (6d) exhibited the highest ulcerogenic effect. Furthermore, compounds 6l and 6n both had similar effects. Also compounds 6e, 6f, 6g and 60 possessed the same ulcerogenicity, as well as, 6b, 6j, 6m and 6q exhibited similar effects. On the other hand, compounds 6i, 6k, 6p and 6r were devoid of any ulcerogenic effect. The different congeners of this series showed a decrease in the ulcerogenic effect in the following decreasing order: 6d>6a>6l=6n>6h>6e= 6f=6g=6o>6b=6j=6m=6q=6c>6i=6k=6p=6r. In the quinolinyl oxadiazole-2-thiones 6s-v, the 5-[2-(7-chloro-quinolin-4-ylamino)-phenyl]-3H-[1,3,4]-oxadiazole-2-thione (6s) exhibited the highest ulcerogenic effect. On the otherhand, 6t and 6v were devoid of any ulcerogenic effect .The ulcerogenicity was arranged in the following decreasing order: 6s>6u>6t=6v. Conclusively, compounds 6i, 6k, 6p, 6r, 6t and 6v were devoid of any ulcerogenicity, while mefenamic acid, (as reference drug) exhibited an ulcerogenic effect superior to that of the tested compounds.

In conclusion, the highest analgesic activity was achieved with the pyridyl oxadiazol-2-one **5a** (0.5, 0.6 and 0.7 mmol /Kg b.wt.). Also, the replacement of both the N-phenyl and carboxylic acid functions of mefenamic acid, with either substituted quinolinyl and oxadiazol-2-one moieties as represented with **6h** and **6l** or with pyridyl and oxadiazole-2thione such as **5g**, augments the antiinflammatory activity compared with mefenamic acid as reference drug. Regarding the ulcerogenic effect of **5a**, **6h** and **6l**, it was much less than that of mefenamic acid, while the same effect was observed with **5g**. Since the mechanism of action of the fenamates is inhibition of cyclooxygenase (COX) activity and thereby the production of prostaglandins [3] and since carrageenan in the paw edema model, increases COX-2 and PGE2 level [1,24] and inflammation could be blocked by a selective COX-2 inhibitor [25, we can deduce from the present results that the most potent compounds under investigation may act through inhibition of COX-2.

Table 3: Hydrazides of 2-(4-pyridyl)aminobenzoic acids (12a,c,d).

Compd.	R ₁	R ₂	m.p. °C	Yield %	Mol. Formula mol. mass	Analysis% Calc. (Found)		
No.						С	Н	Ν
10.	TT	ŤŤ	1.41	0.0	C ₁₂ H ₁₂ N ₄ O	63.15	5.30	24.55
12a	н	Н	141	98	228.253	(63.26)	(5.42)	(24.34)
			10	0.0	C ₁₃ H ₁₄ N ₄ O	64.45	5.82	23.12
12c	CH3	Н	163	96	242.280	(64.64)	(5.79)	(23.33)
			100		C14H16N4O3	58.33	5.59	19.43
12d	OCH₃	OCH ₃	190	90	288.305	(58.42)	(5.48)	(19.67)

Table 4: Spectroscopic data of compounds 5a-g

Compd. No.	IR(cm ⁻¹)	¹ H NMR δ (ppm) (DMSO-d ₆)	MS(m/z)
5a	3350(NH), 1790(C=O),	6.90-8.35(m ,8H ^a),10.46(s ,1H,NH ^b),12.73	254 (M ⁺ ,C ₁₃ H ₁₀ N ₄ O _{2,}
	1610(C=C)	(s ,1H,NH-hetero ^b)	88%)
5b	3345(NH), 1785(C=O),	6.90-8.35(m ,7H ^a),10.42(s ,1H,NH ^b),12.70	288(M ⁺ ,C ₁₃ H ₉ ClN ₄ O _{2,}
	1615(C=C)	(s ,1H,NH-hetero ^b)	22%)
5c	3340(NH), 1790(C=O),	2.21(s,3H,CH ₃),6.90-8.35(m,7H ^a),10.46	268(M ⁺ ,C ₁₄ H ₁₂ N ₄ O _{2,}
	1610(C=C)	(s,1H,NH ^b), 12.73 (s,1H,NH-hetero ^b)	100%)
5d	3355(NH), 1790(C=O), 1610(C=C)	3.80(s, 3H,OCH ₃),3.83(s, 3H,OCH ₃),6.82- 8.35 (m, 6H ^a), 10.43 (s, 1H,NH ^b),12.70 (br s, 1H,NH-hetero ^b)	314(M ⁺ ,C ₁₅ H ₁₄ N₄O ₄ , 100%)
5e	3340(NH)),1610(C=C),	6.52-8.25(m ,8H [*]),10.45(s ,1H,NH ^b),14.38	270(M ⁺ ,C ₁₃ H ₁₀ N₄OS,
	1130((C=S)	(br s ,1H,NH-hetero ^b)	75%)
5f	3343(NH)),1610(C=C),	2.22(s ,3H,CH ₃),6.90-8.35(m ,7H ^a),10.45	284(M ⁺ ,C ₁₄ H ₁₂ N ₄ OS,
	1125((C=S)	(s ,1H,NH ^b), 14.25(br s ,1H,NH-hetero ^b)	28%)
5g	3300(NH)),1615(C=C), 1140((C=S)	3.80(s, 3H,OCH ₃),3.85(s, 3H,OCH ₃),6.92- 8.18(m,6H ⁴), 10.45 (s, 1H,NH ^b),14.36 (br s, 1H,NH-hetero ^b)	330(M ⁺ ,C ₁₅ H ₁₄ N₄O ₃ S, 65%)

a: Aromatic protons

b: D₂O exchangeable

345

Compd. No.	IR (Cm ⁻¹)	1Η NMR δ (ppm) (DMSO-d ₆)	MS (m/z)
6a	3350 (NH), 1790 (C=O), 1610 (C=C)	$6.50-8.85(m, 9H^{a}), 11.21 (s, 1H, NH^{b}), 12.60 (s, 1H, NH-hetero b)$	338 (M ⁺ , C ₁₇ H ₁₁ ClN ₄ O ₂ , 100%)
6b	3358 (NH), 1790 (C=O), 1620 (C=C)	2.20(s, 3H, CH ₃),2.61 (s, 3H, CH ₃), 6.42- 8.55 (m, 8H ^a), 11.22 (s, 1H, NH ^b), 12.60 (s, 1H, NH-hetero ^b)	332 (M ⁺ , C ₁₉ H ₁₆ N ₄ O ₂ , 25%)
6c	3345 (NH), 1792 (C=O), 1735 (C=O, ester), 1610 (C=C)	1.33 (t, 3H, CH ₃), 4.30 (q, 2H, CH ₂), 7.31- 9.10 (m, 8H ^a), 11.45 (s, 1H, NH ^b), 12.80 (s, 1H, NH-hetero ^b)	410 (M ⁺ , C ₂₀ H ₁₅ CIN ₄ O ₄ , 95%)
6d	3355 (NH), 1790 (C=O), 1615 (C=C)	6.65-9.30 (m, 9H ^a) 11.32 (s, 1H, NH ^b), 12.62 (s, 1H, NH-hetero ^b)	372 (M ⁺ , C ₁₈ H ₁₁ F ₃ N ₄ O ₂ , 93%)
6e	3352 (NH), 1790 (C=O), 1610 (C=C)	6.74-9.10 (m, 9H ^a), 11.32 (s, 1H, NH ^b), 12.61 (s, 1H, NH-hetero ^b)	372 (M ⁺ , C ₁₈ H ₁₁ F ₃ N ₄ O ₂ , 100%)
6f	3385 (NH), 1790 (C=O), 1610 (C=C)	6.81-8.93 (m, 8H ^a), 11.32 (s, 1H, NH ^b), 12.61 (s, 1H, NH-hetero ^b)	373 (M ⁺ , C ₁₇ H ₁₀ Cl ₂ N ₄ O ₂ , 21%)
6g	3350 (NH), 1792 (C=O), 1615 (C=C)	2.70 (s, 3H, CH ₃), 2.90 (s, 3H, CH ₃), 6.92- 8.25 (m, 7H ^a), 11.31 (s, 1H, NH ^b), 12.78 (s, 1H, NH-hetero ^b)	366 (M ⁺ , C ₁₉ H ₁₅ ClN ₄ O ₂ , 30%)
6h	3355 (NH), 1792 (C=O), 1740 (C=O, ester), 1615 (C=C)	1.30 (t, 3H, CH ₃), 4.31 (q, 2H, CH ₂), 6.81- 9.15 (m, 7H ^s), 11.00 (s, 1H, NH ^b), 12.80 (s, 1H, NH-hetero ^b)	444 (M ⁺ , C ₂₀ H ₁₄ Cl ₂ N₄O₄, 75%)
6i	3360 (NH), 1790 (C=O), 1610 (C=C)	6.94 -9.13 (m, 8H ^a), 11.32 (s, 1H, NH ^b), 12.73 (s, 1H, NH-hetero ^b)	406 (M ⁺ ,C ₁₈ H ₁₀ ClF ₃ N ₄ O ₂ , 27%)
6j	3350 (NH), 1790 (C=O), 1625 (C=C)	6.50 -9.15 (m, 8H ^a), 11.25 (s, 1H, NH ^b), 12.65 (s, 1H, NH-hetero ^b)	406 (M ⁺ ,C ₁₈ H ₁₀ ClF ₃ N ₄ O ₂ , 18%)
бk	3352 (NH), 1790 (C=O), 1620 (C=C)	2.45 (s, 3H,CH ₃), 6.41-9.11(m, 8H ^a), 11.13 (s, 1H, NH ^b), 12.65 (s, 1H, NH-hetero ^b)	352 (M ⁺ , C ₁₈ H ₁₃ ClN ₄ O ₂ , 100%)
61	3368 (NH), 1790 (C=O), 1735 (C=O, ester), 1610 (C=C)	1.30 (t, 3H,CH ₂ CH ₃), 2.45 (s, 3H, CH ₃), 4.31 (q, 2H, CH ₂), 7.10-9.15 (m, 7H ^a), 11.15 (s, 1H, NH ^b), 12.71 (s, 1H, NH-hetero ^b)	424 (M ⁺ , C ₂₁ H ₁₇ ClN ₄ O ₄ , 92%)
6m	3350 (NH), 1790 (C=O), 1610 (C=C)	2.45 (s, 3H, CH ₃), 6.65-9.21 (m, 8H [*]), 11.33 (s, 1H, NH ^b), 12.62 (s, 1H, NH-hetero ^b)	386 (M ⁺ , C ₁₉ H ₁₃ F ₃ N ₄ O ₂ , 100%)

Table 5: Spectroscopic data of compounds 6a-v.

Table 5: (cont.).

Compd. No.	IR (Cm ⁻¹)	1H NMR δ (ppm) (DMSO-d ₆)	MS (m/z)
6n	3340 (NH), 1790 (C=O), 1615 (C=C)	2.45 (s, 3H, CH ₃), 6.65-9.22 (m, 8H ^a), 11.26 (s, 1H, NH ^b), 12.63 (s, 1H, NH-hetero ^b)	386 (M ⁺ , C ₁₉ H ₁₃ F ₃ N ₄ O ₂ , 100%)
60	3350 (NH), 1790	3.80 (s, 3H, OCH ₃), 3.85 (s, 3H, OCH ₃), 6.60-	398 (M ⁺ , C ₁₉ H ₁₅ ClN ₄ O ₄ ,
	(C=O), 1620 (C=C)	8.85 (m, 7H ^a), 11.25 (s, 1H, NH ^b), 12.26 (s, 1H, NH-hetero ^b)	100%)
бр	3340 (NH), 1790 (C=O), 1735 (C=O, ester), 1618 (C=C)	1.30 (t, 3H, CH ₃), 3.80 (s, 3H, OCH ₃), 3.85 (s, 3H, OCH ₃), 4.31 (q, 2H, CH ₂), 6.60-8.85 (m, 6H ^a), 11.32 (s, 1H, NH ^b), 12.25 (s, 1H, NH-hetero ^b)	424 (M ⁺ , C ₂₂ H ₁₉ CIN ₄ O ₆ , 100%)
6q	3355 (NH), 1790	3.80 (s, 3H, OCH ₃), 3.85 (s, 3H, OCH ₃), 6.60-	432 (M ⁺ , C ₂₀ H ₁₅ F ₃ N ₄ O ₄ ,
	(C=O), 1610 (C=C)	8.85 (m, 7H ^a), 11.30 (s, 1H, NH ^b), 12.25 (s, 1H, NH-hetero ^b)	25%)
6r	3350 (NH), 1790	3.80 (s, 3H, OCH ₃), 3.85 (s, 3H, OCH ₃), 6.65-	432 (M ⁺ , C ₂₀ H ₁₅ F ₃ N ₄ O ₄ ,
	(C=O), 1615 (C=C)	8.80 (m, 7H ^a), 11.26 (s, 1H, NH ^b), 12.35 (s, 1H, NH-hetero ^b)	17%)
65	3345 (NH), 1610	6.60-8.85 (m, 9H ^a) 11.32 (s, 1H, NH ^b), 14.13	354 (M ⁺ , C ₁₇ H ₁₁ ClN ₄ OS,
	(C=C), 1140 (C=S)	(br s, 1H, NH-hetero ^b)	100%)
6t	3380 (NH), 1735 (C=O ester), 1620 (C=C), 1140 (C=S)	1.30 (t, 3H, CH ₃), 4.31 (q,2H, CH ₂), 6.60- 8.85 (m, 8H ^a), 11.40 (s, 1H, NH ^b), 14.32 (br s, 1H, NH-hetero ^b)	426 (M ⁺ ,C ₂₀ H ₁₅ ClN ₄ O ₃ S, 24%)
6u	3355 (NH), 1615	6.60-8.85 (m, 9H ^a) 11.32 (s, 1H, NH ^b), 14.13	388 (M ⁺ , C ₁₈ H ₁₁ F ₃ N ₄ OS,
	(C=C), 1140 (C=S)	(br s, 1H, NH-hetero ^b)	36%)
6v	3350 (NH), 1610	6.61-8.85 (m, 9H ^a) 11.22 (s, 1H, NH ^b),	388 (M ⁺ , C ₁₈ H ₁₁ F ₃ N ₄ OS,
	(C=C), 1140 (C=S)	14.25(br s, 1H, NH-hetero ^b)	33%)

a : Aromatic protons b : D_2O exchangeable

Compd ^b	pd ^b Time of administration in minutes ^d			d		
No.	0	10	20	30	45	60
Control	7.39 ± 0.73	7.67 ± 0.71 *	7.78 ± 0.63 *	7.76 ± 0.91*	$7.75 \pm 0.75^{*}$	7.79 ± 0.84^{1}
Mefenamic acide	7.50 ± 0.96	9.58 ± 0.71**	10.83± 0.62**	12.80± 0.76**	14.40 ± 1.00**	11.80± 0.73**
	7.85 ± 1.06	10.71± 1.04**	14.50±1.19***	16.00±1.17***	10.17 ± 1.08***	10.00 ± 1.15***
5a	8.89 ± 1.18	11.85± 1.12**	14.67±1.07***	18.68± 1.13***	15.00 ± 1.14**	13.25 ± 1.17***
000710101	8.17 ± 0.59	14.67± 1.38***	18.76±1.38***	22.00± 1.07***	16.00 ± 1.15**	14.17 ± 1.19***
	7.00 ± 0.56	8.80 ± 0.46	9.80 ± 0.79**	11.80± 1.08**	10.74 ± 1.09***	$8.47 \pm 0.79^*$
5b	7.17 ± 0.62	9.20 ± 0.87*	12.14± 1.05**	14.40± 1.15***	13.50 ± 1.13**	10.65 ± 1.09**
	7.88 ± 0.71	10.98± 0.98***	14.00±1.17***	16.35± 1.13***	$15.08 \pm 1.28 * *$	13.18 ± 1.11**
	7.40 ± 0.52	$7.30 \pm 0.48^{*}$	7.60 ± 0.68^{4}	7.00 ± 0.67	$7.60 \pm 0.59^{*}$	$7.40 \pm 0.66^{\circ}$
5c	8.50 ± 0.85	8.20 ± 0.68	8.40 ± 1.00 *	8.20 ± 0.71	$8.50 \pm 0.75^{+}$	8.40 ± 0.63
	7.80 ± 0.74	$7.60 \pm 0.81^{*}$	7.40 ± 0.81^{10}	$7.43 \pm 0.67^{*}$	$7.60 \pm 0.89^{\circ}$	7.60 ± 0.82
	8.00 ± 0.87	10.00 ± 0.71 **	11.17±0.99**	$12.50 \pm 0.92 **$	$12.42 \pm 0.97 * **$	$11.60 \pm 0.93^{**}$
5d	7.98 ± 0.76	$11.00 \pm 0.98 * *$	12.00±1.03**	$13.68 \pm 1.17 * *$	$13.00 \pm 1.14 **$	$12.42 \pm 0.97 **$
	8.95 ± 0.71	$12.67 \pm 1.05^{***}$	14.00±1.26***	$14.67 \pm 1.27 **$	$14.35 \pm 1.20 **$	13.00 ± 1.14***
	7.52 ± 0.68	7.88 ± 0.85^{4}	8.20± 0.79*	$9.00 \pm 0.71^{*}$	$8.11 \pm 0.60^*$	7.74 ± 0.63
5e	7.71 ± 0.75	8.30 ± 1.12	9.60± 1.04**	$10.59 \pm 1.16^{***}$	$9.31 \pm 1.07**$	8.33 ± 1.03*
	8.20 ± 0.78	9.98 ± 0.78**	11.00± 0.90**	12.98 ± 1.06**	10.51 ± 1.03***	$9.00 \pm 0.88^*$
	7.31 ± 0.93	$10.00 \pm 0.85^{**}$	11.83 ± 1.22**	13.82 ± 1.33**	13.10 ± 1.19**	11.67 ± 1.18**
5f	8.57 ± 0.79	11.27 ± 1.33***	13.85 ± 1.12***	16.89 ± 1.18***	14.29 ± 1.03**	11.83 ± 0.96**
	8.85 ± 0.83	$13.80 \pm 1.26^{***}$	15.27 ± 1.37***	20.17 ± 1.34***	17.00 ± 1.27***	15.50 ± 1.04***
_	7.93 ± 0.81	9.83 ± 0.87**	10.83 ± 0.70**	$10.88 \pm 0.84 **$	11.50 ± 0.64***	11.00 ± 0.56**
5g	8.63 ± 0.69	10.83± 0.79***	11.67 ± 1.02**	$12.60 \pm 1.04 **$	$12.17 \pm 1.04 * * *$	11.33 ± 0.81**
	8.81 ± 0.75	12.67± 0.96***	13.64 ± 0.48***	$14.83 \pm 0.79 **$	14.00 ± 1.06**	13.10 ± 1.03**
	7.89 ± 0.78	8.83 ± 1.08	9.51 ± 0.89*	$10.00 \pm 0.89^{***}$	11.90 ± 0.77***	9.33 ± 0.63*
6a	8.13 ± 0.70	9.96 ± 1.01*	10.90 ± 1.05**	$11.00 \pm 0.93^{**}$	12.50 ± 1.09**	10.00 ± 1.03*
	8.41 ± 1.01	10.66± 1.13**	11.85 ± 1.08**	$12.00 \pm 0.77 **$	14.33 ± 1.18**	11.66 ± 1.16**
0	7.20 ± 0.63	6.99± 0.63ª	7.50 ± 0.61	8.60 ± 0.60*	8.91 ± 0.11^{4}	8.00 ± 0.69*
6b	8.19 ± 1.06	8.00± 0.64	8.80 ± 1.07*	$9.42 \pm 0.66^{*}$	$10.00 \pm 0.76**$	$8.90 \pm 0.77^{+}$
	6.89 ± 0.45	7.01± 0.90*	9.98 ± 0.86**	$11.00 \pm 1.04 **$	$11.80 \pm 1.01^{***}$	9.71 ± 0.86* 1
6	8.31 ± 0.78	9.33± 0.84*	9.83 ± 0.89**	$11.17 \pm 0.91**$	$12.00 \pm 1.03***$	$11.33 \pm 0.96^{**}$
6c	7.98 ± 0.59	9.38± 0.82* 12.33± 0.78** ⁱ	$11.00 \pm 0.73*$ 14.00 ±1.15**	$12.07 \pm 0.89**$ $15.17 \pm 0.91***$	$13.95 \pm 1.09^{**}$ $16.50 \pm 1.06^{***}$	12.00 ± 0.82** 14.83 ± 1.08**
	8.33 ± 0.69	9.67± 0.89*	$9.99 \pm 0.78^{**}$	$10.00 \pm 0.52^{***}$	$10.50 \pm 0.72 ***$	14.83 ± 1.08 10.33 ± 0.76***
6d	8.17 ± 0.79	9.6/± 0.89* 10.00± 0.82**	$9.99 \pm 0.78^{++}$ 11.17 ± 0.63**	$10.00 \pm 0.52^{++}$ $11.50 \pm 1.11^{++}$	10.50 ± 0.72^{-1} $13.00 \pm 1.04^{**}$	
vu	8.67 ± 0.80 7.91 ± 0.64	10.00± 0.82** 11.17± 0.94**	$12.17 \pm 1.01 **$	$13.50 \pm 1.07**$	15.00 ± 1.04^{-1} $15.00 \pm 1.02^{**}$	11.95 ± 1.05** 13.67 ± 0.98**
	7.91 ± 0.04 7.88 ± 0.71	9.67± 1.05	12.17 ± 1.01	$13.30 \pm 1.07^{**}$ 11.18 ± 1.03**	$13.60 \pm 0.89^{**}$	13.07 ± 0.98^{-1} 12.33 ± 1.03*
6e	7.88 ± 0.71 8.31 ± 0.76	9.0/± 1.05	10.32 ± 0.92 11.83 ± 0.93**	$12.97 \pm 1.14^{***}$	15.83 ± 1.06**	$12.33 \pm 1.03^{"}$ 14.50 ± 0.85* ¹
UC	8.41 ± 0.64	10.30 ± 1.03 11.00 ± 1.03**	$13.00 \pm 0.95^{**}$	12.37 ± 1.14 14.33 ± 1.08**	16.67 ± 1.13***	$14.50 \pm 0.85^{\circ}$ 15.00 ± 1.13* ¹
	8.12 ± 0.76	$9.21 \pm 1.04^*$	9.80 ± 1.04**	14.33 ± 1.08 10.17 ± 1.08***	10.07 ± 1.13 11.83 ± 0.99***	$9.58 \pm 0.80^{**}$
6f	8.51 ± 0.69	9.67 ± 0.87*	10.87 ± 0.66**	10.17 ± 1.08 ** 12.08 ± 0.99**	$13.80 \pm 1.03^{**}$	9.58 ± 0.80"
	7.92 ± 0.72	11.33 ± 1.05**	$12.33 \pm 0.64 **$	12.08 ± 0.99 13.08 ± 0.40**	13.08 ± 1.03 $13.08 \pm 1.07**$	$13.00 \pm 1.08^{**}$
	7.32 ± 0.72 7.33 ± 0.72	7.67 ± 0.96	8.50 ± 0.43 *	$9.00 \pm 0.78^{\circ}$	$9.83 \pm 0.83**$	8.33 ± 0.62
6 h	7.33 ± 0.72 8.50 ± 0.54	7.67 ± 0.96 8.98 ± 0.87	9.00 ± 0.61**	9.25 ± 0.96 *	$9.85 \pm 0.85^{\circ}$ $10.50 \pm 0.81^{***}$	8.33 ± 0.02 $8.83 \pm 0.78^{\circ}$
VII.	8.30 ± 0.34 8.25 ± 0.99	9.38 ± 0.68*	9.58 ± 0.82**	9.25 ± 0.96	10.50 ± 0.81	$10.83 \pm 1.02*$
	0.4.5 - 0.35	7.30 - 0.00	7.50 - 0.04	10.0/ ± 1.01	14.50 ± 1.05	10.05 ± 1.04"

Table 6: Analgesic activity of compounds 5a-g and 6a-v in adult male albino mice after the respective time from compound administration.

Table 6 (cont.):

Compd ^b		Time of administration in minutes ^d				
No.	0	10	20	30	45	60
	8.31 ± 0.80	8.85 ± 0.47	$9.11 \pm 0.74^{**}$	10.00 ± 0.56**	13.87 ± 1.12**	11.00 ± 1.05**
6i	7.86 ± 0.63	8.96 ± 0.71	10.67 ± 0.86**	12.00 ± 1.05**	14.88 ± 1.09**	$12.15 \pm 1.07 **$
	8.00 ± 0.73	9.75 ± 0.71*	11.95 ± 0.99**	13.33 ±1.02**	18.17 ± 1.05***	$15.00 \pm 0.86^{***}$
	7.63 ± 0.87	$7.37 \pm 0.58^{\circ}$	8.17 ± 0.58*	8.53 ± 0.73^{a}	9.50 ± 0.72**	8.17 ± 0.55*
6j	7.58 ± 0.65	7.92 ± 0.49*	8.54 ± 0.61^{a}	$8.88 \pm 0.63^{*}$	9.83 ± 0.63* *	8.43 ± 0.53^{4}
	7.49 ± 0.59	8.83 ± 0.53	8.89 ± 0.53^{a}	9.53 ± 0.78	$10.08 \pm 0.69^{***}$	9.07 ± 0.63
	7.78 ± 0.49	$7.29 \pm 0.58^{*}$	7.63 ± 0.48*	7.81 ± 0.68 *	7.45 ± 0.71	$7.81 \pm 0.44^{\circ}$
6k	7.28 ± 0.65	7.80 ± 0.66*	$7.42 \pm 0.51^{*}$	8.43 ± 0.55	8.80 ± 0.62	7.92 ± 0.66*
	8.00 ± 0.68	8.60 ± 0.52	8.50 ± 0.63^{a}	9.00 ± 0.81 *	9.20 ± 1.01^{10}	$8.40 \pm 0.59^{\circ}$
	8.00 ± 0.70	8.51 ± 0.59	9.68 ± 0.64*	10.33 ± 0.54**	10.33 ± 0.53***	8.59 ± 0.68
61	8.51 ± 0.62	9.17 ± 0.59*	$10.10 \pm 0.68 **$	$11.00 \pm 0.71*$	$12.51 \pm 0.75 * *$	$10.00 \pm 0.58*$
	8.24 ± 0.56	10.00 ± 0.85**	10.83 ± 0.75**	12.83 ± 0.98**	14.33 ± 1.03**	11.75 ± 1.12**
	7.85 ± 0.49	8.17 ± 0.73	8.45 ± 0.63*	8.60 ± 0.69^{h}	9.17±0.63**	8.67 ± 0.62 *
6m	8.36 ± 0.64	9.51 ± 0.82*	10.53 ± 0.52**	$11.25 \pm 0.82 **$	11.67 ± 0.76***	10.50 ± 0.62**
	8.51 ± 0.71	10.13 ±0.90*	11.50 ± 1.06**	12.00 ± 1.04**	$13.33 \pm 0.82 **$	11.08 ± 1.01**
222	8.13 ± 0.83	8.70 ± 0.67	$9.00 \pm 0.68^{\circ}$	9.58±0.78**	10.18±0.98***	9.14 ± 0.83*
6n	8.08 ± 0.68	$9.66 \pm 0.71*$	$9.59 \pm 0.89*$	10.33±1.03***	12.50 ± 1.08**	$10.00 \pm 0.91*$
	8.66 ± 0.54	9.98 ± 0.86*	11.51 ± 1.03**	12.00±1.08**	14.16 ± 1.06**	11.69 ± 1.06**
	8.14 ± 0.71	7.93 ± 0.57	$8.33 \pm 0.67^{*}$	8.67 ± 0.54 *	8.83 ± 0.68 *	7.96±0.61*
60	7.68 ± 0.69	7.67 ± 0.56*	7.71 ± 0.54	7.91 ± 0.68 *	8.17 ± 0.62^{i}	7.65 ± 0.57
	8.54 ± 0.78	8.17 ± 0.79	$8.67 \pm 0.62^{*}$	8.81 ± 0.63 ^{<i>i</i>}	9.00 ± 0.63^{4}	8.33 ± 0.72
	8.13 ± 0.71	9.00 ± 0.72	$10.10 \pm 0.93 **$	11.33 ± 1.02**	12.33 ± 1.03***	11.83 ± 1.01**
6p	7.99 ± 0.61	9.08 ± 0.81	11.13 ± 1.05**	12.17 ± 1.03**	$14.33 \pm 0.87 **$	12.00 ± 1.03**
- F	8.36 ± 0.90	10.67 ± 1.08**	11.83 ± 1.09**	14.67 ± 1.16**	17.00±1.07***	14.50 ± 1.13***
	8.50 ± 0.76	9.58 ± 0.80*	$9.98 \pm 0.92*$	11.80 ± 1.03**	12.00 ± 0.89***	10.50 ± 0.68**
6q	8.13 ± 0.65	10.50 ± 1.03**	11.85 ± 0.84**	12.66 ± 1.14**	14.33 ± 1.15**	12.33 ± 0.94**
	8.34 ± 0.78	11.66 ± 0.80***	12.76 ± 1.21**	15.75 ±1.09***	17.50 ± 1.14***	13.50 ± 1.18**
	7.67 ± 0.65	9.26 ± 0.77*	$10.01 \pm 1.01^{**}$	12.00 ± 1.01**	12.33 ± 1.03***	11.00 ± 0.90**
6r	8.33 ± 0.69	10.00 ± 0.90**	11.33 ± 0.61**	13.33 ± 0.88**	13.66 ± 1.06**	12.33 ± 1.00**
	7.83 ± 0.78	10.98 ± 1.02***	12.66 ± 0.85**	15.16 ± 1.17***	15.16 ± 1.17**	13.50 ± 1.07**
	8.67 ± 1.15	9.00 ± 1.08	9.50 ± 1.18*	10.67 ± 0.77***	9.50 ± 1.16**	8.83 ± 0.70^4
6s	7.89 ± 1.14	11.33 ± 0.99***	12.33 ± 1.09**	13.50 ± 1.16***	12.33 ± 1.10**	11.58 ± 1.18**
	8.78 ± 0.79	12.50 ± 1.13***	15.83 ±1.11***	16.17 ±0.91***	$13.17 \pm 0.87 **$	12.47 ± 1.08**
	6.80 ± 0.58	7.20 ± 0.85*	8.80 ± 0.50^{4}	9.00 ± 1.03 *	8.00 ± 0.58*	7.50 ± 0.55 *
6t	7.40 ± 1.16	8.30 ± 0.78	9.20 ± 0.83*	9.60 ± 1.14* *	9.20±1.13**	7.40 ± 0.25
	8.60 ± 1.20	$10.10 \pm 0.75 **$	$10.40 \pm 1.03 **$	10.60± 1.06**	$10.00 \pm 0.95^{***}$	9.60±0.51*
	7.10 ± 0.61	7.80 ± 0.62**	8.10±0.70*	9.50 ± 0.72**	$9.00 \pm 0.80^{*}$	8.90 ± 0.69*
6u	7.80 ± 1.02	8.00 ± 0.67	$9.80 \pm 0.81*$	10.80 ± 0.86**	10.60 ± 0.75***	9.40 ± 1.01
	8.20 ± 0.73	$9.20 \pm 0.80*$	$11.10 \pm 1.11 **$	13.61±1.03**	12.30 ± 1.04**	10.41 ± 1.21**
	8.30 ± 0.65	9.17 ± 1.05	10.51 ± 1.18**	12.83 ± 1.19**	11.17 ± 1.12 *	11.60 ± 1.21**
6v	7.81 ± 0.59	11.33 ± 1.16***	12.67 ± 1.02***	14.33 ± 1.15**	13.00 ± 1.07**	12.67 ± 1.01**
	8.60 ± 0.73	12.00 ± 1.18***	14.17 ±1.16***	17.00± 1.14***	15.33 ± 1.13**	14.75 ± 1.22***

* p < 0.05 ** p < 0.01 compared with control value. **a** p < 0.05 **b** p < 0.01 compared with mefenamic acid (0.4 mmol/kg b.wt.) value **b** At a dose level of 0.5, 0.6 and 0.7 mmol/ kg b.wt. **c** Mefenamic acid at a dose level of 0.4 mmol/ kg b.wt.

d Each value represents the mean reaction time in seconds ±s.e.of the number of animals in each group (n=6).

	Antiinflammatory	Activity	Ulcerogenic effect	
Compd ^b	%Increase in weight ^d	%		
No.	of paw edema (g)	Inhibition	Ulcer number °	
110.	x ±s.e.m.	Innontion		
Control	60.59 ± 3.75		0 ± 0^{4}	
Mefenamic				
acide	25.17 ± 2.58**	58.46	$1.80 \pm 0.18 **$	
acia				
5a	20.10 ± 2.90**	66.82	$0.83 \pm 0.48^{*a}$	
5b	$35.14 \pm 3.05^{***}$	42.01	$0.33 \pm 0.21^{\text{A}}$	
5c	31.19 ± 3.29**	48.53	$0.83 \pm 0.22^{*a}$	
5d	$14.58 \pm 2.17^{***}$	75.93	$1.40 \pm 0.39^*$	
5e	29.70 ± 3.63**	50.98	0.50 ± 0.22^{4}	
5f	28.63 ± 3.58**	52.75	$1.50 \pm 0.66 **$	
5g	9.44 ± 1.85***	84.41	1.80 ± 0.58**	
6a	28.58 ± 2.59**	52.83	$1.00 \pm 0.26^{**a}$	
6b	$16.49 \pm 2.48^{**a}$	72.78	0.33 ± 0.21^{4}	
6c	$35.19 \pm 2.74 ** *$	41.91	0.17 ± 0.16^{4}	
6d	10.97±1.89***	81.89	$1.33 \pm 0.42 **$	
6e	24.63 ± 2.39**	59.24	0.50 ± 0.34^{a}	
6f	22.29 ± 2.24**	63.21	0.50 ± 0.31^{4}	
6g	$34.98 \pm 3.11 ** *$	42.27	0.50 ± 0.28^{4}	
6h	4.17 ± 2.26****	93.12	0.67 ± 0.33* ^a	
6i	27.93 ± 2.46**	53.91	0 ± 0^{a}	
6j	37.25 ± 2.41***	38.53	0.33 ± 0.21 ^a	
6k	$29.35 \pm 2.29^{**a}$	51.56	0 ± 0^{4}	
61	$7.24 \pm 2.28^{***}$	88.05	0.83 ± 0.31 **	
6m	34.62 ± 3.72***	42.87	0.33 ± 0.21^{a}	
6n	32.37 ± 2.56***	46.58	$0.83 \pm 0.30^{*a}$	
60	12.65 ± 1.79***	79.13	0.50 ± 0.34 *	
6р	28.91 ± 3.55**	52.28	0 ± 0^{4}	
6q	37.86 ± 3.50***	37.51	0.33 ± 0.21^{4}	
6r	30.85 ± 3.64**	49.08	0 ± 0^{4}	
6s	20.68 ± 2.62**	65.87	0.67 ±0.21**	
6t	$20.09 \pm 2.54 **$	66.85	0 ± 0^{4}	
6u	$23.12 \pm 3.64 **$	61.84	0.17 ± 0.16^{4}	
6v	29.39±2.53***	51.49	0 ± 0^{a}	

Table7: Antiinflammatory activity and ulcerogenic effect of compounds 5a-g and 6a-v.

* p<0.05 ** p<0.01 compared with control value.
a p<0.05 å p<0.01 compared with mefenamic acid value.
b- At a dose level of 0.1 mmol/ kg b.wt.
c Mefenamic acid at a dose level of 0.2 mmol/ kg b.wt.
d Each value represents the mean ± s.e.m. of the number of animals in each group (n=6).
e Each value represents the mean (ulcer number) ± s.e.m.of the number of animals in each group (n=6). in each group (n=6).

Compd ^c No.	PGE ₂ (pg/ml) ^d	%Inhibition
Control	7.43 ± 1.03 ^a	
Indomethacin	2.94 ± 0.46**	60.43
5a	2.84±0.37**	61.78
5b	$3.78 \pm 0.42^{**a}$	49.13
5c	3.60±0.59**	51.55
5d	2.67±0.45**	64.07
5e	3.53 ± 0.66**	52.49
5f	$3.42 \pm 0.58 **$	53.97
5g	2.34 ± 0.37**	68.51
6a	3.47 ± 0.50**	53.29
6b	2.79 ± 0.32**	62.45
6с	$3.76 \pm 0.41^{**a}$	49.39
6 d	2.39 ± 0.39**	67.83
6e	3.21 ± 0.47**	56.79
6 f	3.09 ± 0.55**	58.41
6g	$3.76 \pm 0.48^{**a}$	49.39
6h	$2.13 \pm 0.25 **$	71.06
6i	$3.36 \pm 0.42 **$	54.78
6j	4.13 ± 0.51 ***	44.41
6k	$3.52 \pm 0.44 **$	52.62
61	2.23 ± 0.39**	69.99
6 m	3.68±0.41**	50.47
6 n	3.64 ± 0.45**	51.01
60	2.46 ± 0.36**	66.89
6р	3.50 ± 0.47**	52.89
6q	$4.37 \pm 0.64^{**a}$	41.18
6r	3.58±0.58**	51.82
6s	2.91 ± 0.40**	60.83
6t	2.84 ± 0.32**	61.78
6u	3.15±0.58**	57.60
6v	3.52±0.43**	52.62

Table 8: Effect of compounds 5a-g and 6a-v on plasma prostaglandin E₂ (PGE₂) level in adult male albino rats.

** p< 0.01 compared with control value. a p<0.05 å p<0.01 compared with indomethacin (0.01 mmol/kg. b.wt.) value

d Each value represents the mean plasma PGE₂ (pg/ml) \pm s.e.m.of the number of animals in each group (n=6)

Fig.(1) : Analgesic activity of the most potent compound 5 a (0.5, 0.6, 0.7 mmol /kg b.wt.) after the respective time from compound administration.

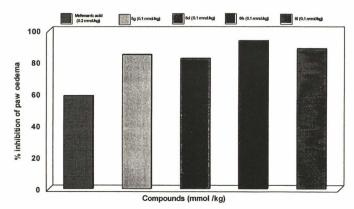
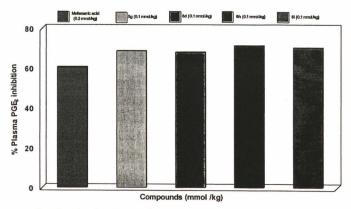
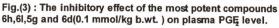




Fig.(2) :Antiinflammatory effect of the most potent compounds 6h,6l,5g and 6d(0.1 mmol/kg b.wt.).

References

[1] Paris G Y, Garmaise D L, Cimon D G, Swett L, Carter G W, Young P

Glycerides as prodrugs.1.Synthesis and antiinflammatory activity of 1,3-bis(alkanoyl)-2-(O-acetylsalicyloyl)glycerides (Aspirin triglycerides).

J. Med. Chem. 1979; 22:683-7.

Inagaki M, Tsuri T, Jyoyama H, Ono T, Yamada K, Kobayashi M, Hori Y, Arimura A, Yasui K, Ohno K, Kakudo S, Koizumi K, Suzuki R, Kato M, Kawai S, Matsumoto S. Novel antiarthritic agents with 1,2-isothiazolidine-1,1-dioxide (γ-sultam) skeleton: cytokine suppressive dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase. J. Med. Chem. 2000; 43: 2040-8.

[2] Kaltenbronn J S, Scherrer R A, Short F W, Jones E M, Beatty H R, Saka M M, Winder C V, Wax J, Williamson W R N.

Structure-activity relationships in a series of antiinflammatory N- arylanthranilic acid. Arzneim. Forsch./Drug Res. 1983; 33: 621-7.

[3] Mclean JR, Gluckman MI.

On the Mechanism of the pharmacologic activity of meclofenamate sodium.

Arzeim. Forsch./ Drug Res. 1983; 33: 627-31.

[4] Juby P F, Hudyma T W, Brown M.

Preparation and antiinflammatory properties of some 5-(2-anilinophenyl)tetrazoles.

J. Med. Chem. 1968; 11: 111-6.

[5] Scherrer R A.

French Patent. 1,315,030; Chem. Abstr. Anthranilic acid derivatives. 1963; 59: 1538.

[6] Wilkinson J H, Finar I L.

A study of the fluorine-substituted 5-aminoacridine.

- J. Chem. Soc.1948; 32-6.
- [7] Watnick A S, Taber R I, Tabachnick I I A.

Antiinflammatory and analgesic properties of clonixin [2-(2-methyl-3-chloroanilino) nicotinic acid]

Arch. Int. Pharmacodyn. Ther. 1971; 190: 78-81; Chem. Abstr., 1971; 74: 139223w.

[8] Hoffmann C, Faure M A.

Réactions de l'acide chloro-2 nicotinique (1^{er} mémoire). Condensations avec les amines aromatiques.

Bulletin De La Société Chimique des France. 1966 ; 7 : 2316-9.

[9] Scherrer R A, Whitehouse M W.

Antiinflammatory Agents Chemistry and Pharmacology. Volume 1. In Medicinal chemistry: A Series of Monographs, edited by G. De Stevens. Academic press, New York, London. 1974; 71.

[10] Reynolds J E F, editor.

Analgesic and antiinflammatory agents.

Martindale, twenty-ninth edn., London, the pharmaceutical press 1989; 26.

[11] Allais A, Rousseau G, Meier J, Nomine G.

Recherche de composés analgésiques non narcotiques. Etude de nouvelles (alcoxycarbonyl-2` phénylamino)-4 quinoléines et de molécules apparentées. Chimie Thérapeutique. 1973 ; 2 : 154-68.

- [12] Boschelli D H, Connor D T, Bornemeier D A, Dyer R D, Kennedy J A, Kuipers P J, Okonkwo G C, Schrier D J, Wright C D.
 1,3,4-Oxadiazole, 1,3,4-thiadiazole, and 1,2,4-triazole analogs of the fenamates: *in vitro* inhibition of cyclooxygenase and 5-lipoxygenase activities.
 J. Med. Chem. 1993; 36: 1802-10.
- [13] Furniss B S, Hannaford A J, Smith P W G, Tatchell A R.
 Vogel's Textbook of Practical Organic Chemistry, fifth edn., Longman Singapore Publishers Pte Ltd, 1994; 705.
- [14] Davidson J S.

The preparation of 5- (2-aminophenyl) - 1,3,4- oxadiazole-2 (3H) - one and its rearrangement to 3-amino-2,4(1H,3H)-quinazolinedione. Monatshefte für Chemie. 1984; 115: 565-71.

[15] Charistos D A, Vagenas G V, Tzavellas L C, Tsoleridis C A, Rodios N A. Synthesis and a UV and IR spectral study of some 2-Aryl-Δ²-1,3,4-oxadiazoline-5thiones. J. Heterocyclic Chem. 1994; 31: 1593-8.

- [16] Allais A, Rousseau G, Girault P, Mathieu J, Peterfalvi M, Branceni D, Azadian-Boulanger G, Chifflot L, Jequier R.
 Sur l'activité analgésique et antiinflammatoire des 4-(2'-alcoxycarbonyl phénylamino) quinoléines.
 J. Chimie Thérapeutique. 1966 ; 2 : 65-70.
- [17] Janssen P A, Jageneau A.
 Potent analgesic d-1-(2,2-diphenyl-3-methyl-4-morpholinobutyryl)pyrrolidine and related amides
 J. Pharm. Pharmacol. 1957; 9: 381-6.
- [18] Winter C A, Risley E A, Nuss G W.

Carrageenan-induced edema in hind paw of the rat as an assay for antiinflammatory drugs.

J. Pharmacol. Exp. Therap. 1963; 141: 369-72.

- [19] El-Azzouny A A, El-Shabrawy O A, El-Azzouny M M, Ebeid M Y, Lehmann J. Synthesis and pharmacological evaluation of fenamates analogues : 2-[(7-substituted-4-quinolinyl)-amino] benzoic acid esters. Sci. Pharm. 1995; 63: 81-92.
- [20] Margarita H P, Rabanal R M, Carmen T M, Rodriguez B.

Analgesic, antiinflammatory, antipyretic and haematological effects of Aethiopinone an o-naphthoquinone diterpenoid from *Salvia aethiopis* roots and two hemisynthetic derivatives.

Planta Medica. 1995; 61: 505-9.

[21] Winder C W, Wax J, Scotti L, Scherrer R A, Jones E M, Short F W. Antiinflammatory, antipyretic and antinociceptive properties of N- (2,3-xylyl) anthranilic acid (mefenamic acid).

J. Pharmacol. Exper. Ther. 1962; 138: 405-13.

[22] Chard T, editor. In vitro radioimmunoassay and related technique, fourth edn., Elsevier, Amsterdam, 1990.

- [23] Corell T, Jenssen K M, Splawinski J.
 New antiinflammatory derivative of imidazole which is less ulcerogenic than indomethacin in rats.
 Acta Pharmacol. Toxicol. 1979; 45: 232-9.
- [24] Nantel F, Denis D, Gordon R, Northey A, Cirino M, Metters K M, Chi Chung Chan. Distribution and regulation of cyclooxygenase-2 in carrageenan – induced inflammation.

Br. J. Pharmacol. 1999; 128: 853-9.

[25] Portanova J P, Zhang Y, Anderson G D, Hauser S D, Masferrer J L, Seibert K, Gregory S A, Isakson P C.
 Selective neutralization of prostaglandin E₂ blocks inflammation, hyperalgesia and interleukin 6 production *in vivo*.

J. Exp. Med. 1996; 184: 883-91.

Received March 10th, 2003 Accepted June 2nd, 2003