Next Issue
Volume 90, March
Previous Issue
Volume 89, September
 
 

Sci. Pharm., Volume 89, Issue 4 (December 2021) – 10 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 2513 KiB  
Article
Synthesis and Biological Activity Evaluation of Novel 5-Methyl-7-phenyl-3H-thiazolo[4,5-b]pyridin-2-ones
by Andrii Lozynskyi, Yulian Konechnyi, Julia Senkiv, Ihor Yushyn, Dmytro Khyluk, Olexandr Karpenko, Yulia Shepeta and Roman Lesyk
Sci. Pharm. 2021, 89(4), 52; https://0-doi-org.brum.beds.ac.uk/10.3390/scipharm89040052 - 25 Nov 2021
Cited by 1 | Viewed by 3817
Abstract
A series of 5-methyl-7-phenyl-3H-thiazolo[4,5-b]pyridin-2-ones has been designed, synthesized, and characterized by spectral data. Target compounds were screened for their antimicrobial activity against some pathogenic bacteria and fungi, and most of them showed moderate activity, especially compound 3g, which [...] Read more.
A series of 5-methyl-7-phenyl-3H-thiazolo[4,5-b]pyridin-2-ones has been designed, synthesized, and characterized by spectral data. Target compounds were screened for their antimicrobial activity against some pathogenic bacteria and fungi, and most of them showed moderate activity, especially compound 3g, which displayed the potent inhibitory effect against Pseudomonas aeruginosa and Escherichia coli with MIC value of 0.21 μM. The active thiazolopyridine derivatives 3c, 3f, and 3g were screened for their cytotoxicity effects on HaCat, Balb/c 3T3 cells using MTT assay, which revealed promising results. In silico assessment for compounds 3c, 3f, and 3g also revealed suitable drug-like parameters and ADME properties. The binding interactions of the most active compound 3g were performed through molecular docking against MurD and DNA gyrase, with binding energies and an inhibitory constant compared to the reference drug ciprofloxacin. The tested thiazolo[4,5-b]pyridines constitute an exciting background for the further development of new synthetic antimicrobial agents. Full article
(This article belongs to the Special Issue Heterocyclic Chemistry in Drug Design 2.0)
Show Figures

Figure 1

8 pages, 806 KiB  
Communication
Compatibility of Different Formulations in Pentravan® and Pentravan® Plus for Transdermal Drug Delivery
by Hudson Polonini, Sarah Taylor and Clark Zander
Sci. Pharm. 2021, 89(4), 51; https://0-doi-org.brum.beds.ac.uk/10.3390/scipharm89040051 - 23 Nov 2021
Cited by 1 | Viewed by 3077
Abstract
The potential therapeutic benefit of transdermal delivery systems for some active pharmaceutical ingredients (APIs) has been well-established for decades within the scientific community. However, together with the clinical efficacy, there is the need for an evaluation of the stability of such APIs in [...] Read more.
The potential therapeutic benefit of transdermal delivery systems for some active pharmaceutical ingredients (APIs) has been well-established for decades within the scientific community. However, together with the clinical efficacy, there is the need for an evaluation of the stability of such APIs in bases with known transdermal capabilities, which is necessary to provide the compounding pharmacist with confidence when providing transdermal products. In this study, the stability of danazol, metformin HCl, and resveratrol as individual ingredients, as well as metformin HCl, resveratrol, and Vitamin D3 in combinations at bracketed high and low concentrations, were evaluated over a period of 6 months, using a ready-to-use transdermal vehicle for compounding pharmacies (Pentravan® or Pentravan® Plus). The five formulations tested (F1: Danazol 50 mg/g + MiodesinTM 85 mg/g in Pentravan®, F2: Metformin HCl 200 mg/g in Pentravan®, F3: Resveratrol 200 mg/g in Pentravan®, F4: Metformin HCl 100 mg/g + Resveratrol 100 mg/g + Vitamin D3 5000 IU in Pentravan®, and F5: Metformin HCl 200 mg/g + Resveratrol 200 mg/g + Vitamin D3 5000 IU in Pentravan® Plus) presented a beyond-use date of at least 6 months, presenting high convenience for the compounding pharmacies. Full article
(This article belongs to the Special Issue Feature Papers in Scientia Pharmaceutica)
Show Figures

Figure 1

36 pages, 4121 KiB  
Review
Phytochemistry and Evidence-Based Traditional Uses of the Genus Achillea L.: An Update (2011–2021)
by Christina Barda, Maria-Eleni Grafakou, Ekaterina-Michaela Tomou and Helen Skaltsa
Sci. Pharm. 2021, 89(4), 50; https://0-doi-org.brum.beds.ac.uk/10.3390/scipharm89040050 - 22 Nov 2021
Cited by 16 | Viewed by 4101
Abstract
Knowledge within the field of phytochemistry research has accelerated at a tremendous speed. The excess of literature reports featuring plants of high ethnopharmacological importance, in combination with our interest in the Asteraceae family and traditional medicine, led us to acknowledge the value of [...] Read more.
Knowledge within the field of phytochemistry research has accelerated at a tremendous speed. The excess of literature reports featuring plants of high ethnopharmacological importance, in combination with our interest in the Asteraceae family and traditional medicine, led us to acknowledge the value of the Achillea L. genus. In a broad context, the various Achillea species are used around the globe for the prevention and treatment of different diseases, including gastrointestinal problems, haemorrhages, pneumonia, rheumatic pains, diuresis, inflammation, infections, and wounds, as well as menstrual and gynaecologic abnormalities. The present review aims to provide and summarize the recent literature (2011–2021) on the phytochemistry of the Achillea genus. In parallel, this study attempts to bridge the reports on the traditional uses with modern pharmacological data. Research articles that focused on secondary metabolites, traditional uses and pharmacological activities were collected from various scientific databases such as Pubmed, ScienceDirect, Reaxys and Google Scholar. This study revealed the presence of 141 phytochemicals, while 24 traditionally used Achillea spp. were discussed in comparison to current data with an experimental basis. Full article
(This article belongs to the Special Issue Feature Papers in Scientia Pharmaceutica)
Show Figures

Graphical abstract

15 pages, 1183 KiB  
Article
Design, Synthesis and In Vitro Antimicrobial Activity of 6-(1H-Benzimidazol-2-yl)-3,5-dimethyl-4-oxo-2-thio-3,4-dihydrothieno[2,3-d]pyrimidines
by Sergiy V. Vlasov, Olena D. Vlasova, Hanna I. Severina, Konstantin Yu. Krolenko, Oleksandr V. Borysov, Amjad Ibrahim M. Abu Sharkh, Vitaliy S. Vlasov and Victoriya A. Georgiyants
Sci. Pharm. 2021, 89(4), 49; https://0-doi-org.brum.beds.ac.uk/10.3390/scipharm89040049 - 18 Nov 2021
Cited by 8 | Viewed by 3551
Abstract
The rapid development in bacterial resistance to many groups of known antibiotics forces the researchers to discover antibacterial drug candidates with previously unknown mechanisms of action, one of the most relevant being the inhibition of tRNA (Guanine37-N1)-methyltransferase (TrmD). The discovery of selective TrmD [...] Read more.
The rapid development in bacterial resistance to many groups of known antibiotics forces the researchers to discover antibacterial drug candidates with previously unknown mechanisms of action, one of the most relevant being the inhibition of tRNA (Guanine37-N1)-methyltransferase (TrmD). The discovery of selective TrmD inhibitors in the series of carboxamide derivatives of thienopyrimidines became a background for further modification of the similar structures aimed at the development of promising antibacterial agents. As part of this research, we carried out the construction of heterocyclic hybrids bearing the moieties of thieno[2,3-d]pyrimidine and benzimidazole starting from 3,5-dimethyl-4-oxo-2-thioxo-1H-thieno[2,3-d]pyrimidine-6-carboxylic acid, which was used as the pivotal intermediate. The hybrid molecule of 6-(1H-benzimidazol-2-yl)-3,5-dimethyl-2-thioxo-1H-thieno[2,3-d]pyrimidin-4-one prepared via condensation of the carboxylic acid with ortho-phenylenediamine was further alkylated with aryl/hetaryl chloroacetamides and benzyl chloride to produce the series of S-alkyl derivatives. The results of molecular docking studies for the obtained series of S-alkyl benzimidazole-thienopyrimidines showed their high affinity to the TrmD isolated from the P. aeruginosa. The results of antimicrobial activity screening revealed the antimicrobial properties for all of the studied molecules against both Gram-positive and Gram-negative bacteria and the Candida albicans fungal strain. The highest antimicrobial activity was determined for 2-{[6-(1H-benzimidazol-2-yl)-3,5-dimethyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl]thio}-N-(4-isopropylphenyl)acetamide, which also had the highest affinity to the TrmD inhibitor’s binding site according to the docking studies results. Full article
(This article belongs to the Special Issue Heterocyclic Chemistry in Drug Design 2.0)
Show Figures

Figure 1

19 pages, 3089 KiB  
Article
Purification and Biochemical Characterization of Taxadiene Synthase from Bacillus koreensis and Stenotrophomonas maltophilia
by Ashraf S. A. El-Sayed, Maher Fathalla, Ahmed A. Shindia, Amgad M. Rady, Ashraf F. El-Baz, Yara Morsy, Basel Sitohy and Mahmoud Sitohy
Sci. Pharm. 2021, 89(4), 48; https://0-doi-org.brum.beds.ac.uk/10.3390/scipharm89040048 - 09 Nov 2021
Cited by 2 | Viewed by 3380
Abstract
Taxadiene synthase (TDS) is the rate-limiting enzyme of Taxol biosynthesis that cyclizes the geranylgeranyl pyrophosphate into taxadiene. Attenuating Taxol productivity by fungi is the main challenge impeding its industrial application; it is possible that silencing the expression of TDS is the most noticeable [...] Read more.
Taxadiene synthase (TDS) is the rate-limiting enzyme of Taxol biosynthesis that cyclizes the geranylgeranyl pyrophosphate into taxadiene. Attenuating Taxol productivity by fungi is the main challenge impeding its industrial application; it is possible that silencing the expression of TDS is the most noticeable genomic feature associated with Taxol-biosynthetic abolishing in fungi. As such, the characterization of TDS with unique biochemical properties and autonomous expression that is independent of transcriptional factors from the host is the main challenge. Thus, the objective of this study was to kinetically characterize TDS from endophytic bacteria isolated from different plants harboring Taxol-producing endophytic fungi. Among the recovered 23 isolates, Bacillus koreensis and Stenotrophomonas maltophilia achieved the highest TDS activity. Upon using the Plackett–Burman design, the TDS productivity achieved by B. koreensis (18.1 µmol/mg/min) and S. maltophilia (14.6 µmol/mg/min) increased by ~2.2-fold over the control. The enzyme was purified by gel-filtration and ion-exchange chromatography with ~15 overall folds and with molecular subunit structure 65 and 80 kDa from B. koreensis and S. maltophilia, respectively. The chemical identity of taxadiene was authenticated from the GC-MS analyses, which provided the same mass fragmentation pattern of authentic taxadiene. The tds gene was screened by PCR with nested primers of the conservative active site domains, and the amplicons were sequenced, displaying a higher similarity with tds from T. baccata and T. brevifolia. The highest TDS activity by both bacterial isolates was recorded at 37–40 °C. The Apo-TDSs retained ~50% of its initial holoenzyme activities, ensuring their metalloproteinic identity. The activity of purified TDS was completely restored upon the addition of Mg2+, confirming the identity of Mg2+ as a cofactor. The TDS activity was dramatically reduced upon the addition of DTNB and MBTH, ensuring the implementation of cysteine-reactive thiols and ammonia groups on their active site domains. This is the first report exploring the autonomous robust expression TDS from B. koreensis and S. maltophilia with a higher affinity to cyclize GGPP into taxadiene, which could be a novel platform for taxadiene production as intermediary metabolites of Taxol biosynthesis. Full article
Show Figures

Figure 1

12 pages, 4377 KiB  
Article
UV-Vis Spectrophotometry and UPLC–PDA Combined with Multivariate Calibration for Kappaphycus alvarezii (Doty) Doty ex Silva Standardization Based on Phenolic Compounds
by Selma Mutiarahma, Venansius G. P. Putra, Weni Chaniago, Ceferino Carrera, Sri Anggrahini, Miguel Palma and Widiastuti Setyaningsih
Sci. Pharm. 2021, 89(4), 47; https://0-doi-org.brum.beds.ac.uk/10.3390/scipharm89040047 - 27 Oct 2021
Cited by 3 | Viewed by 3540
Abstract
The algae Kappaphycus alvarezii is considered an important raw material for industrial practices, producing high economic value of various derived products. However, the quality of this commodity, which can be indicated by the level of phenolic compounds, may vary due to growth factors, [...] Read more.
The algae Kappaphycus alvarezii is considered an important raw material for industrial practices, producing high economic value of various derived products. However, the quality of this commodity, which can be indicated by the level of phenolic compounds, may vary due to growth factors, including cultivation sites. An analytical UV-Vis spectrophotometry method coupled with chemometrics was proposed to standardize the red alga based on the content of phenolic compounds. The correlation between the UV-Vis spectra and UPLC–PDA results, combined with a multivariate calibration of the K. alvarezii extracts, was analyzed. The extracts were prepared using an ultrasound-based technique and subsequently subjected to UV-Vis spectral measurements at 200–800 nm and UPLC–PDA at 260 and 330 nm. Chemometric techniques and partial least squares (PLS) were applied to the acquired data to build a reliable analysis of the phenolics in the K. alvarezii extracts. The result showed that the wavelength combination of 200–450 and 600–690 nm provided a valid method for quantitative analysis of the studied phenolics that belong to hydroxybenzoic acid, hydroxycinnamic acid, and flavonoid with a coefficient of regression (R2) > 0.96 in the calibration and validation models, along with an RMSEC and RMSEP value < 8%. The method was then employed to characterize the K. alvarezii samples from 13 different cultivation areas. Principal component analysis (PCA) generated principal components that produced a clear distribution among the samples of K. alvarezii based on phenolic compounds corresponding to the geographical origin. Full article
Show Figures

Figure 1

16 pages, 1005 KiB  
Review
New Frontiers on Adjuvants Drug Strategies and Treatments in Periodontitis
by Gaetano Isola, Alessandro Polizzi, Simona Santonocito, Domenico Dalessandri, Marco Migliorati and Francesco Indelicato
Sci. Pharm. 2021, 89(4), 46; https://0-doi-org.brum.beds.ac.uk/10.3390/scipharm89040046 - 22 Oct 2021
Cited by 11 | Viewed by 6004
Abstract
Causes of the progression of periodontitis such as an imbalance between the immune response by the host by the release of inflammatory mediators in the response of the oral pathogenic dysbiotic biofilm have been identified. New insights on specific cell signaling pathways that [...] Read more.
Causes of the progression of periodontitis such as an imbalance between the immune response by the host by the release of inflammatory mediators in the response of the oral pathogenic dysbiotic biofilm have been identified. New insights on specific cell signaling pathways that appear during periodontitis have attracted the attention of researchers in the study of new personalised approaches for the treatment of periodontitis. The gold standard of non-surgical therapy of periodontitis involves the removal of supra and subgingival biofilm through professional scaling and root planing (SRP) and oral hygiene instructions. In order to improve periodontal clinical outcomes and overcome the limitations of traditional SRP, additional adjuvants have been developed in recent decades, including local or systemic antibiotics, antiseptics, probiotics, anti-inflammatory and anti-resorptive drugs and host modulation therapies. This review is aimed to update the current and recent evolution of therapies of management of periodontitis based on the adjunctive and target therapies. Moreover, we discuss the advances in host modulation of periodontitis and the impact of targeting epigenetic mechanisms approaches for a personalised therapeutic success in the management of periodontitis. In conclusion, the future goal in periodontology will be to combine and personalise the periodontal treatments to the colonising microbial profile and to the specific response of the individual patient. Full article
(This article belongs to the Special Issue Feature Papers in Scientia Pharmaceutica)
Show Figures

Figure 1

13 pages, 4843 KiB  
Article
Antiaging Properties of the Ethanol Fractions of Clove (Syzygium aromaticum L.) Bud and Leaf at the Cellular Levels: Study in Yeast Schizosaccharomyces pombe
by Dedy Lesmana, Dimas Andrianto and Rika Indri Astuti
Sci. Pharm. 2021, 89(4), 45; https://0-doi-org.brum.beds.ac.uk/10.3390/scipharm89040045 - 07 Oct 2021
Cited by 6 | Viewed by 4061
Abstract
The exposure of reactive oxygen species is one of the aging triggers at cellular level. The antioxidants have been used as strategic efforts in overcoming the accumulation of ROS. Previous research using crude extracts of clove bud and leaves showed its potential as [...] Read more.
The exposure of reactive oxygen species is one of the aging triggers at cellular level. The antioxidants have been used as strategic efforts in overcoming the accumulation of ROS. Previous research using crude extracts of clove bud and leaves showed its potential as an antioxidant agent. However, no data were available regarding the antioxidant and antiaging activities of subsequent fractions of clove extracts. Therefore, this study aimed to analyze the antioxidant and antiaging activities of the n-hexane and ethanol fractions from clove bud and leaves. Antioxidant and antiaging activities were tested at the cellular level using the yeast model Schizosaccharomyces pombe. The highest flavonoid content was shown by clove leaf n-hexane fraction (25.6 mgQE·g−1). However, ethanol fraction of clove bud (FEB) showed the highest antioxidant activity based on TBA and antiglycation assays. FEB (8 μg·mL−1) and leaf ethanol fraction (FEL) (10 μg·mL−1) were able to induce yeast tolerance against oxidative stress. In addition, FEB could induce mitochondrial activity and delay the G1 phase of the cell cycle. FEB was found to be rich in gallic acid and (15Z)-9,12,13-trihydroxy-15-octadecenoic. Based on the data, FEB shows the potential antiaging activity, which is promising for further development as biopharmaceutical product formulations. Full article
Show Figures

Figure 1

21 pages, 23182 KiB  
Article
Computer-Aided Design of Peptidomimetic Inhibitors of Falcipain-3: QSAR and Pharmacophore Models
by Boris D. Bekono, Akori E. Esmel, Brice Dali, Fidele Ntie-Kang, Melalie Keita, Luc C. O. Owono and Eugene Megnassan
Sci. Pharm. 2021, 89(4), 44; https://0-doi-org.brum.beds.ac.uk/10.3390/scipharm89040044 - 29 Sep 2021
Cited by 1 | Viewed by 3131
Abstract
In this work, antiparasitic peptidomimetics inhibitors (PEP) of falcipain-3 (FP3) of Plasmodium falciparum (Pf) are proposed using structure-based and computer-aided molecular design. Beginning with the crystal structure of PfFP3-K11017 complex (PDB ID: 3BWK), three-dimensional (3D) models of FP3-PEPx complexes with [...] Read more.
In this work, antiparasitic peptidomimetics inhibitors (PEP) of falcipain-3 (FP3) of Plasmodium falciparum (Pf) are proposed using structure-based and computer-aided molecular design. Beginning with the crystal structure of PfFP3-K11017 complex (PDB ID: 3BWK), three-dimensional (3D) models of FP3-PEPx complexes with known activities ( IC50exp) were prepared by in situ modification, based on molecular mechanics and implicit solvation to compute Gibbs free energies (GFE) of inhibitor-FP3 complex formation. This resulted in a quantitative structure–activity relationships (QSAR) model based on a linear correlation between computed GFE (ΔΔGcom) and the experimentally measured  IC50exp. Apart from the structure-based relationship, a ligand-based quantitative pharmacophore model (PH4) of novel PEP analogues where substitutions were directed by comparative analysis of the active site interactions was derived using the proposed bound conformations of the PEPx. This provided structural information useful for the design of virtual combinatorial libraries (VL), which was virtually screened based on the 3D-QSAR PH4. The end results were predictive inhibitory activities falling within the low nanomolar concentration range. Full article
(This article belongs to the Special Issue Feature Papers in Scientia Pharmaceutica)
Show Figures

Figure 1

15 pages, 2985 KiB  
Article
Stability Enhancement and Skin Permeation Application of Nicotine by Forming Inclusion Complex with β-Cyclodextrin and Methyl-β-Cyclodextrin
by Sorrawee Chulurks, Kulpavee Jitapunkul, Sasimas Katanyutanon, Pisanu Toochinda and Luckhana Lawtrakul
Sci. Pharm. 2021, 89(4), 43; https://0-doi-org.brum.beds.ac.uk/10.3390/scipharm89040043 - 28 Sep 2021
Cited by 3 | Viewed by 4250
Abstract
Nicotine is widely used in pharmaceutical industries, especially for smoking cessation in the form of transdermal patches. Nicotine gel in the patches has limitations from nicotine instability and high volatility. Thus, a nicotine preservation technique is needed. In this study, a nicotine encapsulation [...] Read more.
Nicotine is widely used in pharmaceutical industries, especially for smoking cessation in the form of transdermal patches. Nicotine gel in the patches has limitations from nicotine instability and high volatility. Thus, a nicotine preservation technique is needed. In this study, a nicotine encapsulation process using methyl-β-cyclodextrin (MβCD) is investigated and compared with β-cyclodextrin (βCD) to evaluate the preservation and skin permeation of nicotine. The M06-2X/6-31G(d,p) density functional theory calculations indicate a 1:1 host–guest molar ratio for the inclusion complex of nicotine with βCD and MβCD, which have been validated by experimental studies. The encapsulation efficiencies of βCD and MβCD to encapsulate nicotine are 59.96% and 63.76%, respectively. The preservation study of the inclusion complexes compared to pure nicotine shows a stability improvement of nicotine after being encapsulated. After 21 days, the percentages of the nicotine/βCD and nicotine/MβCD inclusion complexes that remain are 89.32% and 76.22%, while only 65.56% of pure nicotine remains. Besides the one-hour skin permeation tests, the amounts of nicotine permeated through pig skin from the nicotine/βCD and nicotine/MβCD inclusion complex gels are 14 and 10 times as much as the pure nicotine gel, respectively. Therefore, the encapsulation of nicotine with βCD and MβCD can be used to enhance the stability and skin permeation application of nicotine-containing products. Full article
(This article belongs to the Special Issue Heterocyclic Chemistry in Drug Design 2.0)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop