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Abstract: Previous metabolomic studies have identified putative blood biomarkers of dietary intake.
These biomarkers need to be replicated in other populations and tested for reproducibility over time
for the potential use in future epidemiological studies. We conducted a metabolomics analysis among
671 racially/ethnically diverse men and women included in a diet validation study to examine the
correlation between >100 food groups/items (101 by a food frequency questionnaire (FFQ), 105 by
24-h diet recalls (24HRs)) with 1141 metabolites measured in fasting plasma sample replicates, six
months apart. Diet–metabolite associations were examined by Pearson’s partial correlation analysis.
Biomarker reproducibility was assessed using intraclass correlation coefficients (ICCs). A total of 677
diet–metabolite associations were identified after Bonferroni adjustment for multiple comparisons
and restricting absolute correlation coefficients to greater than 0.2 (601 associations using the FFQ
and 395 using 24HRs). The median ICCs of the 238 putative biomarkers was 0.56 (interquartile range
0.46–0.68). In this study, with repeated FFQs, 24HRs and plasma metabolic profiles, we identified
several potentially novel food biomarkers and replicated others found in our previous study. Our
findings contribute to the growing literature on food-based biomarkers and provide important
information on biomarker reproducibility which could facilitate their utilization in future nutritional
epidemiological studies.

Keywords: untargeted metabolomics; food biomarker; FFQ; 24-h diet recalls; plasma

1. Introduction

Self-reported diet assessment tools such as food frequency questionnaires (FFQs) have long been
used to assess habitual diet in population studies. Such methods are subject to random and systematic
measurement errors that could lead to underestimated diet–disease risk estimates and inconsistent
findings in nutritional epidemiological studies [1]. Biomarkers are considered objective measures
of diet and are not subject to the same measurement errors as self-reported diet, although other
measurement errors may exist, and thus can complement or replace self-reported methods. Recovery
dietary biomarkers can be used to estimate absolute intake (e.g., 24-h urinary nitrogen for protein
intake) [2–4], and concentration biomarkers and predictive biomarkers can be used as stand-alone risk
factors for disease outcomes, and to correct for measurement errors of a FFQ [5,6]. Although promising
tools for diet assessment, the few established dietary biomarkers are primarily nutrient-based, and
there is great potential and need for robust food-based biomarkers.
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In recent years, metabolomics has been increasingly used to identify food-based biomarkers
in human blood and urine samples [7]. It holds a great promise in nutritional epidemiology as
an increasing number of food biomarkers have been identified and could be used to facilitate diet
assessment in future research [1]. Several large metabolomics analyses conducted in cohort studies
with biospecimens have identified biomarkers of habitual food intakes [8–14] or dietary patterns [15,16].
In our previous metabolomics analysis of 91 food groups and 1186 serum metabolites among 1369
nonsmoking postmenopausal women in the Cancer Prevention Study II (CPS-II) Nutrition Cohort,
we identified 379 diet–metabolite associations with 199 metabolites as putative food biomarkers of 42
food groups/items (one metabolite could be biomarker of multiple food groups/items) [8]. Many of
the biomarkers were previously identified in population and/or intervention studies, and thus were
validated in our study (e.g., stachydrine for citrus fruit intake). Novel biomarkers with high sensitivity
and specificity for the correlated food intake included alliin for garlic intake and dopamine 3-O-sulfate
for banana intake. These newer biomarkers need to be replicated across diverse populations.

One concern of using these biomarkers in population studies is that one-time measurement may
poorly reflect long-term status [17]. Large day-to-day variation in certain metabolite levels due to
measurement and random errors could lead to underestimation of diet–disease associations if only
measured once. Therefore, it is important to assess biomarker reproducibility over time to determine if
one-time measurement is sufficient to capture usual exposure.

In the Diet Assessment Sub-study (DAS) from the Cancer Prevention Study-3 (CPS-3) cohort,
where diet and fasting blood samples were measured twice six months apart, we aimed to (1) replicate
and identify metabolites associated with individual food groups/items using untargeted metabolomic
profiling, and (2) to assess the reproducibility of identified metabolites over six months.

2. Results

2.1. Participant Characteristics

Characteristics of the study population are shown in Table 1. Among the 671 participants in the
DAS, 60.1% were white, 24.7% were black, 15.2% were Hispanic. The majority (65.1%) were female.
The mean age was 52.3 ± 9.5 years.

Table 1. Characteristics of participants in the Cancer Prevention Study-3 Diet Assessment Sub-study 1.

Characteristics Men (n = 234) Women (n = 437)

Age (year) 52.4 ± 10.0 52.2 ± 9.2
Race/ethnicity

White 147 (62.8) 256 (58.6)
Black 42 (17.9) 124 (28.4)

Hispanic 45 (19.2) 57 (13.0)
BMI at pre-FFQ (kg/m2) 27.5 ± 5.4 27.7 ± 6.6

Education
<College 40 (17.1) 108 (24.7)
College 82 (35.0) 144 (33.0)

≥Graduate school 103 (44.0) 170 (38.9)
Unknown 9 (3.8) 15 (3.4)

Smoking status
Never 181 (77.4) 347 (79.4)

Former 53 (22.6) 90 (20.6)
Recreational physical activity (MET-h/wk)

0–<5 44 (18.8) 124 (28.4)
5–<10 2 74 (31.6) 147 (33.6)
10–<15 50 (21.4) 78 (17.8)
≥15 66 (28.2) 88 (20.1)

Ethanol intake (g/d) 10.3 ± 13.9 7.0 ± 11.5
Energy from post-FFQ (kcal/d) 2136 ± 690 2007 ± 609

Average energy intake from 24HRs (kcal/d) 2214 ± 583 1730 ± 414

Abbreviations: BMI, body mass index; 24HR, 24-h diet recall; FFQ, food frequency questionnaire; MET-h, metabolic
equivalent hour. 1 Values are mean ± standard deviation for continuous variables, and frequency (%) for categorical
variables. 2 Includes missing.
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2.2. Fasting Plasma Metabolites Correlated with Habitual Food Intake Assessed by FFQ and 24-h Diet Recalls
(24HRs)

We identified a total of 677 food–metabolite associations (Table S1). A total of 601 associations
were found using the post-FFQ (p < 4.33 × 10–7 and |r| > 0.2, Table S2), and 395 associations were
found using the average 24HRs (p < 4.17 × 10–7 and |r| > 0.2, Table S3); 238 plasma metabolites were
associated with 74 food groups or items assessed using either the FFQ or 24HRs. The majority of the
diet-related metabolites (n = 238) were xenobiotics (n = 67; 28%), unknowns (n = 63; 26%) and lipids
(n = 62; 26%); the rest were amino acids (n = 28; 12%), cofactors and vitamins (n = 10; 4%), peptides
(n = 2; 1%), carbohydrates (n = 2; 1%), nucleotides (n = 1; 0.4%) and partially characterized molecules
(n = 3; 1%).

The AUCs were calculated to inform the predictive accuracy of the diet-related metabolites.
The top three most predictive metabolites (according to FFQ, if less than three then according to 24HRs)
for each of the 74 food groups or items are shown in Table 2. For most food groups, the most predictive
metabolite also had the highest |r|.

2.2.1. Fruits

We identified 51 food–metabolite associations for 13 fruit groups or items estimated either from
FFQ or 24HRs, including10 for avocado, 1 for apples or pears, 2 for apples (24HRs only), 12 for total
citrus fruits and juices, 7 for oranges, 5 for orange juice, 2 for grapefruit, 1 for watermelon, 1 for
cantaloupe, 3 for berries, 4 for blue berries, 1 for raspberry, 2 for peaches and plums; 42 associations
were observed for 10 groups/items from the FFQ and 33 associations for 8 groups/items from the
24HRs. The strongest associations were found for 3-hydroxystachydrine (r = 0.50, AUC = 94%) and
stachydrine (r = 0.50, AUC = 93%) with total citrus fruit and juice intake assessed by the FFQ. Notably,
4-allylphenol sulfate is correlated with intakes of apples or pears (r = 0.2, AUC = 79%) and blueberries
(r = 0.22, AUC = 82%) assessed by the FFQ.

2.2.2. Vegetables

We identified 75 associations for 16 vegetable groups or individual vegetables, with 53 associations
for 14 groups/items from the FFQ, and 38 associations for 8 groups/items from the 24HRs. Specifically,
we identified 1 metabolite for tomatoes, 3 for asparagus, 3 for beans, 19 for all soy products, 7 for
fermented soy products, 5 for soy milk, 1 for soy protein powder, 8 for cruciferous vegetables, 4 for
leafy greens, 1 for iceberg or head lettuce, 1 for peppers, 5 for mushrooms (24HRs only), 3 for allium
vegetables, 3 for onions, 10 for garlic and 1 for garlic powder. Of these, the strongest association was
seen for an unknown metabolite X-16649 with soy products assessed by the 24HRs (r = 0.37, AUC =

75%).

2.2.3. Grains

We identified 18 food–metabolite associations for 5 grain groups/items (4 for total whole grains, 1
for whole grain bread, 5 for whole grain cereals, 5 for corn products and 3 for refined grains), with 15
associations using FFQ, and 8 using 24HRs. An unknown metabolite X-21752 was the most predictive
metabolite for total whole grains (r = 0.31, AUC = 89%) and whole grain cereals (r = 0.42, AUC = 87%)
assessed using the FFQ.

2.2.4. Proteins

We identified 181 diet–metabolite associations for 11 protein foods (2 for egg, 31 for red meat,
30 for processed meat, 46 for poultry, 17 for total fish, 16 for dark fish, 6 for shellfish, 7 for total nuts,
12 for peanuts, 7 for other nuts and 7 for seeds); 164 associations for 11 groups/items were identified
using the FFQ and 99 associations for 10 groups/items using the 24HRs. The strongest association was
between X-13835 and FFQ-assessed poultry intake (r = 0.54, AUC = 85%).
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Table 2. Top three predictive metabolites for 74 food group/item assessed using the CPS-3 FFQ and average of 24-h diet recalls in the Cancer Prevention Study-3 Diet
Assessment Sub-study 1.

Food Group/Items Biochemical Name 2 Super Pathway Post-FFQ Average Dietary Recalls ICC 3

R p Value AUC R p Value AUC

FRUITS
X-11315 0.22 2.43 × 10−8 0.82 0.18 6.24 × 10−6 0.74 0.64 (0.59, 0.68)
X-24475 0.21 9.21 × 10−8 0.82 0.13 1.07 × 10−3 0.73 0.56 (0.51, 0.61)Avocado
X-11858 0.24 2.51 × 10−10 0.82 0.15 1.64 × 10−4 0.73 0.52 (0.47, 0.58)

Apples or pears 4-allylphenol sulfate Xenobiotics 0.20 1.63 × 10−7 0.79 0.44 (0.38, 0.50)
4-allylphenol sulfate Xenobiotics 0.21 3.04 × 10−8 0.70 0.44 (0.38, 0.50)

Apples 4
β-cryptoxanthin Cofactors and Vitamins 0.20 1.58 × 10−7 0.70 0.77 (0.74, 0.80)

Total citrus fruits and
juices

3-hydroxystachydrine * Xenobiotics 0.50 1.37 × 10−43 0.94 0.47 4.27 × 10−38 0.84 0.33 (0.27, 0.40)
stachydrine Xenobiotics 0.50 1.31 × 10−43 0.93 0.46 3.27 × 10−36 0.85 0.50 (0.44, 0.55)

N-methylproline Amino Acid 0.38 7.98 × 10−24 0.88 0.39 3.38 × 10−25 0.82 0.44 (0.38, 0.51)
β-cryptoxanthin Cofactors and Vitamins 0.30 3.05 × 10−15 0.81 0.33 1.07 × 10−17 0.76 0.77 (0.74, 0.80)

3-hydroxystachydrine * Xenobiotics 0.31 1.13 × 10−15 0.81 0.27 1.38 × 10−12 0.75 0.33 (0.27, 0.40)Oranges
stachydrine Xenobiotics 0.30 7.26 × 10−15 0.80 0.25 3.91 × 10−11 0.75 0.50 (0.44, 0.55)

Orange juice
stachydrine Xenobiotics 0.35 6.46 × 10−21 0.88 0.34 1.28 × 10−19 0.80 0.50 (0.44, 0.55)

3-hydroxystachydrine * Xenobiotics 0.35 7.40 × 10−21 0.87 0.33 1.19 × 10−18 0.79 0.33 (0.27, 0.40)
N-methylproline Amino Acid 0.30 3.41 × 10−15 0.86 0.31 3.86 × 10−16 0.78 0.44 (0.38, 0.51)

stachydrine Xenobiotics 0.26 2.86 × 10−11 0.73 0.19 1.63 × 10−6 0.62 0.50 (0.44, 0.55)
Grapefruit

3-hydroxystachydrine * Xenobiotics 0.22 1.34 × 10−8 0.70 0.18 3.73 × 10−6 0.62 0.33 (0.27, 0.40)
Watermelon X-25271 0.37 2.65 × 10−22 0.83 0.26 1.47 × 10−11 0.66 0.33 (0.27, 0.40)
Cantaloupe X-25271 0.30 6.08 × 10−15 0.76 0.19 1.39 × 10−6 0.65 0.33 (0.27, 0.40)

Berries
methyl glucopyranoside (α + β) Xenobiotics 0.17 2.00 × 10−5 0.83 0.23 4.29 × 10−9 0.76 0.62 (0.57, 0.67)

X-24475 0.21 7.82 × 10−8 0.83 0.21 7.16 × 10−8 0.75 0.56 (0.51, 0.61)
X-17354 0.16 2.32 × 10−5 0.83 0.20 2.18 × 10−7 0.73 0.62 (0.57, 0.67)

4-allylphenol sulfate Xenobiotics 0.22 1.24 × 10−8 0.82 0.15 1.75 × 10−4 0.75 0.44 (0.38, 0.50)
γ-tocopherol/β-tocopherol Cofactors and Vitamins −0.15 1.72 × 10−4 0.80 −0.22 1.62 × 10−8 0.75 0.69 (0.65, 0.73)Blueberries

methyl glucopyranoside (α + β) Xenobiotics 0.12 1.47 × 10−3 0.80 0.23 2.21 × 10−9 0.75 0.62 (0.57, 0.67)
Raspberries methyl glucopyranoside (α + β) Xenobiotics 0.16 4.89 × 10−5 0.77 0.20 1.58 × 10−7 0.65 0.62 (0.57, 0.67)

β-cryptoxanthin Cofactors and Vitamins 0.18 3.25 × 10−6 0.78 0.23 4.64 × 10−9 0.73 0.77 (0.74, 0.80)
Peaches or plums

X-12306 0.09 2.73 × 10−2 0.75 0.21 8.44 × 10−8 0.71 0.47 (0.41, 0.53)
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Table 2. Cont.

Food Group/Items Biochemical Name 2 Super Pathway Post-FFQ Average Dietary Recalls ICC 3

R p Value AUC R p Value AUC

VEGETABLES
Tomatoes 4-hydroxychlorothalonil Xenobiotics 0.21 6.64 × 10−8 0.82 0.15 8.00 × 10−5 0.72 0.85 (0.83, 0.87)

Asparagus
ergothioneine Xenobiotics 0.23 1.31 × 10−9 0.77 0.12 1.67 × 10−3 0.62 0.86 (0.84, 0.88)

X-11849 0.20 1.63 × 10−7 0.75 0.06 1.20 × 10−1 0.61 0.66 (0.62, 0.70)
X-11847 0.22 1.33 × 10−8 0.75 0.07 9.24 × 10−2 0.60 0.58 (0.52, 0.63)

S-methylcysteine Amino Acid 0.21 3.85 × 10−8 0.90 0.18 2.53 × 10−6 0.71 0.36 (0.30, 0.43)
pipecolate Amino Acid 0.21 5.06 × 10−8 0.89 0.19 1.68 × 10−6 0.72 0.32 (0.26, 0.39)Beans

X-11849 0.08 3.98 × 10−2 0.89 0.21 5.75 × 10−8 0.72 0.66 (0.62, 0.70)

Soy products
X-16649 0.33 1.41 × 10−18 0.77 0.37 6.46 × 10−23 0.75 0.46 (0.40, 0.52)
X-24637 0.33 3.68 × 10−18 0.77 0.36 8.49 × 10−22 0.74 0.39 (0.33, 0.46)

4-ethylphenyl sulfate Xenobiotics 0.30 4.86 × 10−15 0.75 0.35 1.37 × 10−20 0.74 0.52 (0.47, 0.58)
X-11381 −0.21 6.92 × 10−8 0.66 −0.18 3.67 × 10−6 0.58 0.92 (0.91, 0.93)
X-14939 −0.01 8.53 × 10−1 0.64 −0.21 6.91 × 10−8 0.59 0.68 (0.63, 0.72)Fermented soy

products
X-11261 −0.07 7.02 × 10−2 0.64 −0.22 6.49 × 10−9 0.59 0.65 (0.60, 0.69)

Soymilk
4-ethylphenyl sulfate Xenobiotics 0.28 2.10 × 10−13 0.65 0.34 6.36 × 10−19 0.64 0.52 (0.47, 0.58)

X-24637 0.26 5.13 × 10−12 0.63 0.33 1.23 × 10−18 0.62 0.39 (0.33, 0.46)
X-16649 0.29 1.67 × 10−14 0.62 0.29 5.38 × 10−14 0.62 0.46 (0.40, 0.52)

Soy protein powder X-16649 0.21 8.91 × 10−8 0.63 0.13 1.06 × 10−3 0.60 0.46 (0.40, 0.52)

Cruciferous
vegetables

S-methylcysteine Amino Acid 0.26 1.95 × 10−11 0.85 0.14 3.61 × 10−4 0.74 0.36 (0.30, 0.43)
carotene diol (2) Cofactors and Vitamins 0.23 1.78 × 10−9 0.83 0.20 1.35 × 10−7 0.74 0.79 (0.75, 0.81)

X-13866 0.26 2.71 × 10−11 0.83 0.12 2.27 × 10−3 0.71 0.52 (0.47, 0.58)
carotene diol (1) Cofactors and Vitamins 0.23 1.56 × 10−9 0.84 0.23 1.28 × 10−9 0.76 0.83 (0.80, 0.85)
carotene diol (2) Cofactors and Vitamins 0.22 2.02 × 10−8 0.83 0.21 3.22 × 10−8 0.75 0.79 (0.75, 0.81)Leafy greens

docosahexaenoate (DHA; 22:6 n3) Lipid 0.20 2.24 × 10−7 0.81 0.12 2.02 × 10−3 0.69 0.55 (0.50, 0.60)
Iceberg or head

lettuce pentose acid * Partially Characterized
Molecules −0.23 1.09 × 10−9 0.71 −0.03 4.61 × 10−1 0.57 0.56 (0.50, 0.61)

Peppers X-23780 0.29 3.19 × 10−14 0.81 0.18 4.96 × 10−6 0.75 0.39 (0.33, 0.46)

Mushrooms 4
ergothioneine Xenobiotics 0.26 2.57 × 10−11 0.70 0.86 (0.84, 0.88)

X-11847 0.24 6.54 × 10−10 0.69 0.58 (0.52, 0.63)
X-11858 0.22 1.34 × 10−8 0.69 0.52 (0.47, 0.58)

N-methyltaurine Amino Acid 0.27 3.08 × 10−12 0.81 0.20 4.41 × 10−7 0.73 0.32 (0.25, 0.39)
ergothioneine Xenobiotics 0.22 1.18 × 10−8 0.80 0.10 7.38 × 10−3 0.71 0.86 (0.84, 0.88)Allium vegetables
N-acetylalliin Xenobiotics 0.22 1.19 × 10−8 0.79 0.06 1.08 × 10−1 0.70 0.29 (0.22, 0.36)
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Table 2. Cont.

Food Group/Items Biochemical Name 2 Super Pathway Post-FFQ Average Dietary Recalls ICC 3

R p Value AUC R p Value AUC

Onion
N-methyltaurine Amino Acid 0.26 5.25 × 10−12 0.82 0.19 1.04 × 10−6 0.72 0.32 (0.25, 0.39)

ergothioneine Xenobiotics 0.21 4.36 × 10−8 0.79 0.10 1.08 × 10−2 0.70 0.86 (0.84, 0.88)
N-acetylalliin Xenobiotics 0.21 1.07 × 10−7 0.79 0.06 1.57 × 10−1 0.69 0.29 (0.22, 0.36)

N-methyltaurine Amino Acid 0.25 8.60 × 10−11 0.81 0.24 8.70 × 10−10 0.74 0.32 (0.25, 0.39)
δ-CEHC Cofactors and Vitamins −0.23 3.48 × 10−9 0.81 −0.14 4.34 × 10−4 0.69 0.48 (0.42, 0.54)Garlic

N-acetylalliin Xenobiotics 0.29 3.06 × 10−14 0.81 0.12 2.72 × 10−3 0.67 0.29 (0.22, 0.36)
Garlic powder S-allylcysteine Xenobiotics 0.22 1.25 × 10−8 0.74 0.08 5.13 × 10−2 0.68 0.31 (0.24, 0.38)

GRAINS
X-21752 0.31 8.54 × 10−16 0.89 0.19 1.10 × 10−6 0.80 0.71 (0.67, 0.75)

2,6-dihydroxybenzoic acid Xenobiotics 0.23 1.22 × 10−9 0.88 0.18 3.38 × 10−6 0.79 0.62 (0.57, 0.67)Whole grains
4-methoxyphenol sulfate Amino Acid 0.21 9.90 × 10−8 0.87 0.17 8.86 × 10−6 0.77 0.34 (0.28, 0.41)

Whole grain bread 2-aminophenol sulfate Xenobiotics 0.22 7.79 × 10−9 0.80 0.20 4.50 × 10−7 0.71 0.45 (0.39, 0.51)
X-21752 0.42 7.24 × 10−29 0.87 0.38 2.86 × 10−24 0.84 0.71 (0.67, 0.75)

2,6-dihydroxybenzoic acid Xenobiotics 0.27 1.50 × 10−12 0.80 0.22 1.69 × 10−8 0.79 0.62 (0.57, 0.67)Whole grain cereals
2-aminophenol sulfate Xenobiotics 0.30 6.86 × 10−15 0.79 0.25 5.65 × 10−11 0.80 0.45 (0.39, 0.51)

Corn products
X-24545 0.23 2.55 × 10−9 0.83 0.08 4.03 × 10−2 0.71 0.72 (0.68, 0.75)
X-16935 0.21 5.49 × 10−8 0.83 0.15 7.12 × 10−5 0.71 0.89 (0.87, 0.90)

γ-tocopherol/β-tocopherol Cofactors and Vitamins 0.20 1.84 × 10−7 0.83 0.02 5.57 × 10−1 0.71 0.69 (0.65, 0.73)
γ-tocopherol/β-tocopherol Cofactors and Vitamins 0.24 4.12 × 10−10 0.84 0.12 1.86 × 10−3 0.85 0.69 (0.65, 0.73)

X-24475 −0.20 1.29 × 10−7 0.84 −0.17 1.19 × 10−5 0.84 0.56 (0.51, 0.61)Refined grains
X-23680 0.13 9.26 × 10−4 0.83 0.21 4.76 × 10−8 0.85 0.57 (0.52, 0.62)

PROTEINS
PE (p-18:0/20:4) * Lipid 0.25 5.58 × 10−11 0.79 0.20 3.60 × 10−7 0.75 0.68 (0.63, 0.72)Eggs
PE (p-16:0/20:4) * Lipid 0.21 8.46 × 10−8 0.78 0.18 2.67 × 10−6 0.73 0.60 (0.55, 0.65)

Red meat
X-11381 0.40 2.62 × 10−26 0.88 0.37 1.28 × 10−22 0.83 0.92 (0.91, 0.93)

PE (p-18:0/20:4) * Lipid 0.40 4.29 × 10−26 0.88 0.37 1.73 × 10−22 0.82 0.68 (0.63, 0.72)
PE (p-18:0/18:1) Lipid 0.30 1.61 × 10−15 0.87 0.26 3.22 × 10−11 0.79 0.54 (0.49, 0.59)

PE (p-18:0/20:4) * Lipid 0.38 2.27 × 10−23 0.85 0.31 6.65 × 10−16 0.80 0.68 (0.63, 0.72)
PE (p-16:0/20:4) * Lipid 0.31 1.03 × 10−15 0.83 0.30 5.97 × 10−15 0.80 0.60 (0.55, 0.65)Processed meat
PC (p-16:0/20:4) * Lipid 0.31 8.70 × 10−16 0.83 0.24 8.37 × 10−10 0.78 0.73 (0.70, 0.77)

Poultry
PE (p-16:0/20:4) * Lipid 0.47 3.24 × 10−37 0.87 0.42 6.64 × 10−30 0.83 0.60 (0.55, 0.65)
PE (p-18:0/20:4) * Lipid 0.45 2.97 × 10−34 0.85 0.40 4.40 × 10−27 0.81 0.68 (0.63, 0.72)
3-methylhistidine Amino Acid 0.54 5.73 × 10−51 0.85 0.40 8.50 × 10−27 0.81 0.45 (0.39, 0.51)



Metabolites 2020, 10, 382 7 of 20

Table 2. Cont.

Food Group/Items Biochemical Name 2 Super Pathway Post-FFQ Average Dietary Recalls ICC 3

R p Value AUC R p Value AUC
hydroxy-CMPF * Lipid 0.43 1.37 × 10−31 0.84 0.27 8.43 × 10−13 0.72 0.96 (0.95, 0.96)

CMPF Lipid 0.43 1.94 × 10−30 0.83 0.30 1.31 × 10−15 0.73 0.86 (0.84, 0.88)Total fish
PC (16:0/22:6) Lipid 0.30 1.52 × 10−15 0.81 0.27 3.03 × 10−12 0.71 0.77 (0.74, 0.80)

Dark meat fish
hydroxy-CMPF * Lipid 0.44 3.03 × 10−32 0.85 0.27 2.07 × 10−12 0.74 0.96 (0.95, 0.96)

CMPF Lipid 0.43 2.93 × 10−31 0.84 0.28 1.58 × 10−13 0.75 0.86 (0.84, 0.88)
PC (16:0/22:6) Lipid 0.35 4.59 × 10−20 0.83 0.24 7.08 × 10−10 0.72 0.77 (0.74, 0.80)

X-25810 0.35 2.61 × 10−20 0.77 0.24 3.13 × 10−10 0.70 0.55 (0.50, 0.60)
CMPF Lipid 0.27 1.28 × 10−12 0.74 0.17 7.56 × 10−6 0.70 0.86 (0.84, 0.88)Shellfish

X-25419 0.36 9.16 × 10−22 0.73 0.20 2.06 × 10−7 0.69 0.64 (0.60, 0.69)

Total nuts
tryptophan betaine Amino Acid 0.43 8.29 × 10−31 0.91 0.30 4.82 × 10−15 0.83 0.82 (0.80, 0.85)

X-11315 0.27 1.22 × 10−12 0.91 0.26 1.62 × 10−11 0.82 0.64 (0.59, 0.68)
X-23644 0.31 5.97 × 10−16 0.89 0.26 1.11 × 10−11 0.80 0.32 (0.26, 0.39)

4-vinylphenol sulfate Xenobiotics 0.39 1.27 × 10−25 0.87 0.23 4.54 × 10−9 0.70 0.39 (0.32, 0.46)
tryptophan betaine Amino Acid 0.39 7.63 × 10−26 0.86 0.33 1.14 × 10−17 0.77 0.82 (0.80, 0.85)Peanuts

behenoylcarnitine (C22) * Lipid 0.33 2.54 × 10−18 0.85 0.20 1.76 × 10−7 0.69 0.45 (0.39, 0.51)

Other nuts
X-11315 0.29 1.26 × 10−14 0.89 0.32 3.85 × 10−17 0.84 0.64 (0.59, 0.68)
X-24475 0.30 2.21 × 10−15 0.87 0.30 7.54 × 10−15 0.82 0.56 (0.51, 0.61)

tryptophan betaine Amino Acid 0.25 9.08 × 10−11 0.85 0.19 7.64 × 10−7 0.78 0.82 (0.80, 0.85)
X-11858 0.17 1.89 × 10−5 0.75 0.27 4.08 × 10−12 0.76 0.52 (0.47, 0.58)

ergothioneine Xenobiotics 0.23 3.15 × 10−9 0.75 0.21 5.22 × 10−8 0.72 0.86 (0.84, 0.88)Seeds
X-17354 0.21 6.02 × 10−8 0.74 0.26 1.57 × 10−11 0.75 0.62 (0.57, 0.67)

DAIRY/DAIRY ALTERNATIVES
X-11381 0.33 3.73 × 10−18 0.84 0.27 3.03 × 10−12 0.77 0.92 (0.91, 0.93)

N,N,N-trimethyl-5-aminovalerate Amino Acid 0.27 2.10 × 10−12 0.83 0.23 4.07 × 10−9 0.73 0.87 (0.85, 0.89)
Milk 3-bromo-5-chloro-2,6-dihydroxybenzoic

acid * Xenobiotics 0.28 3.04 × 10−13 0.82 0.23 1.36 × 10−9 0.75 0.75 (0.72, 0.79)

Almond or rice milk
X-24475 0.24 4.75 × 10−10 0.72 0.19 1.59 × 10−6 0.65 0.56 (0.51, 0.61)

3-bromo-5-chloro-2,6-dihydroxybenzoic
acid * Xenobiotics −0.18 3.89 × 10−6 0.71 −0.21 3.93 × 10−8 0.64 0.75 (0.72, 0.79)

3,5-dichloro-2,6-dihydroxybenzoic
acid Xenobiotics −0.19 1.39 × 10−6 0.70 −0.21 1.05 × 10−7 0.64 0.89 (0.88, 0.91)

heptenedioate (C7:1-DC) * Lipid 0.30 1.58 × 10−15 0.88 0.23 1.28 × 10−9 0.78 0.44 (0.38, 0.50)
SM (d17:2/16:0, d18:2/15:0) * Lipid 0.24 2.57 × 10−10 0.88 0.19 1.80 × 10−6 0.78 0.65 (0.60, 0.69)Total cheese
margaroylcarnitine (C17) * Lipid 0.25 1.24 × 10−10 0.88 0.20 1.21 × 10−7 0.78 0.37 (0.31, 0.44)

Cream
X-21442 0.36 2.77 × 10−21 0.80 0.12 3.11 × 10−3 0.71 0.87 (0.85, 0.88)
quinate Xenobiotics 0.34 1.82 × 10−19 0.80 0.12 2.97 × 10−3 0.70 0.81 (0.79, 0.84)
X-12816 0.26 2.67 × 10−11 0.75 0.11 4.69 × 10−3 0.70 0.87 (0.85, 0.89)
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Table 2. Cont.

Food Group/Items Biochemical Name 2 Super Pathway Post-FFQ Average Dietary Recalls ICC 3

R p Value AUC R p Value AUC

FATS AND OILS
X-16944 0.27 1.69 × 10−12 0.78 0.25 7.40 × 10−11 0.70 0.59 (0.54, 0.64)
X-11261 0.28 2.55 × 10−13 0.78 0.22 1.92 × 10−8 0.69 0.65 (0.60, 0.69)Creamy salad

dressing
X-15486 0.27 1.40 × 10−12 0.78 0.20 1.22 × 10−7 0.68 0.55 (0.49, 0.60)

Oil and vinegar salad
dressing

carotene diol (1) Cofactors and Vitamins 0.18 4.41 × 10−6 0.76 0.22 1.25 × 10−8 0.81 0.83 (0.80, 0.85)
X-24475 0.22 1.50 × 10−8 0.76 0.09 2.84 × 10−2 0.78 0.56 (0.51, 0.61)
X-25419 0.22 1.57 × 10−8 0.78 0.15 8.26 × 10−5 0.74 0.64 (0.60, 0.69)

Olive oil
δ-CEHC Cofactors and Vitamins −0.24 2.84 × 10−10 0.78 −0.15 1.87 × 10−4 0.74 0.48 (0.42, 0.54)

MISCELLANEOUS
γ-tocopherol/β-tocopherol Cofactors and Vitamins 0.21 4.60 × 10−8 0.85 0.10 1.48 × 10−2 0.72 0.69 (0.65, 0.73)

pentose acid * Partially Characterized
Molecules −0.24 4.27 × 10−10 0.85 −0.07 6.36 × 10−2 0.71 0.56 (0.50, 0.61)French fries

X-07765 0.23 4.00 × 10−9 0.84 0.07 7.28 × 10−2 0.71 0.47 (0.41, 0.53)

Ice cream
X-07765 0.20 1.43 × 10−7 0.82 0.09 1.95 × 10−2 0.68 0.47 (0.41, 0.53)

tridecenedioate (C13:1-DC) * Lipid 0.21 7.05 × 10−8 0.80 0.07 6.05 × 10−2 0.68 0.58 (0.53, 0.63)
margaroylcarnitine (C17) * Lipid 0.21 8.68 × 10−8 0.80 0.10 1.19 × 10−2 0.68 0.37 (0.31, 0.44)

X-21339 0.31 1.57 × 10−16 0.81 0.26 1.38 × 10−11 0.78 0.90 (0.89, 0.92)
X-11880 0.30 1.04 × 10−14 0.80 0.28 1.35 × 10−13 0.80 0.90 (0.89, 0.91)Chips
X-11308 0.25 1.29 × 10−10 0.79 0.19 1.65 × 10−6 0.76 0.95 (0.95, 0.96)

Chocolate candies
X-13728 0.32 1.62 × 10−17 0.83 0.32 1.11 × 10−16 0.84 0.54 (0.48, 0.59)

theobromine Xenobiotics 0.29 1.39 × 10−14 0.82 0.29 5.24 × 10−14 0.83 0.56 (0.51, 0.62)
3,7-dimethylurate Xenobiotics 0.29 1.46 × 10−14 0.82 0.29 1.82 × 10−14 0.83 0.46 (0.40, 0.52)

theobromine Xenobiotics 0.26 7.78 × 10−12 0.80 0.22 1.64 × 10−8 0.72 0.56 (0.51, 0.62)
X-13728 0.30 1.70 × 10−15 0.80 0.22 5.69 × 10−9 0.71 0.54 (0.48, 0.59)Dark chocolate

7-methylxanthine Xenobiotics 0.29 3.17 × 10−14 0.79 0.23 3.73 × 10−9 0.72 0.48 (0.42, 0.54)
Energy/protein Bars X-16649 0.20 1.40 × 10−7 0.80 0.19 1.79 × 10−6 0.71 0.46 (0.40, 0.52)

X-11858 0.20 2.42 × 10−7 0.74 0.21 1.09 × 10−7 0.66 0.52 (0.47, 0.58)
X-11849 0.20 2.33 × 10−7 0.74 0.20 1.53 × 10−7 0.66 0.66 (0.62, 0.70)Soy sauce
X-11847 0.20 1.59 × 10−7 0.74 0.20 1.47 × 10−7 0.66 0.58 (0.52, 0.63)

Artificial sweeteners
acesulfame Xenobiotics 0.24 3.28 × 10−10 0.75 0.23 2.16 × 10−9 0.74 0.49 (0.43, 0.55)
saccharin Xenobiotics 0.21 9.48 × 10−8 0.68 0.21 3.09 × 10−8 0.66 0.59 (0.54, 0.64)
erythritol Xenobiotics 0.19 1.07 × 10−6 0.66 0.20 1.28 × 10−7 0.63 0.48 (0.42, 0.54)
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Table 2. Cont.

Food Group/Items Biochemical Name 2 Super Pathway Post-FFQ Average Dietary Recalls ICC 3

R p Value AUC R p Value AUC

ALCOHOL
ethyl α-glucopyranoside Xenobiotics 0.52 9.89 × 10−47 0.94 0.46 2.91 × 10−36 0.88 0.52 (0.47, 0.58)

ethyl glucuronide Xenobiotics 0.43 1.11 × 10−31 0.92 0.40 3.66 × 10−27 0.87 0.57 (0.52, 0.62)Total alcohol
2,3-dihydroxyisovalerate Xenobiotics 0.37 2.51 × 10−23 0.91 0.40 1.57 × 10−26 0.85 0.46 (0.40, 0.52)

Beer
ethyl α-glucopyranoside Xenobiotics 0.38 1.23 × 10−23 0.84 0.33 7.63 × 10−18 0.82 0.52 (0.47, 0.58)

theophylline Xenobiotics 0.29 1.18 × 10−14 0.82 0.23 2.04 × 10−9 0.81 0.78 (0.74, 0.81)
X-11795 0.25 3.27 × 10−11 0.82 0.23 1.13 × 10−9 0.81 0.56 (0.51, 0.62)

ethyl α-glucopyranoside Xenobiotics 0.49 6.42 × 10−41 0.91 0.41 8.57 × 10−28 0.80 0.52 (0.47, 0.58)
2,3-dihydroxyisovalerate Xenobiotics 0.44 1.69 × 10−32 0.86 0.42 7.57 × 10−30 0.80 0.46 (0.40, 0.52)Total wine

ethyl glucuronide Xenobiotics 0.45 6.20 × 10−34 0.85 0.40 1.30 × 10−26 0.82 0.57 (0.52, 0.62)

Red wine
ethyl α-glucopyranoside Xenobiotics 0.45 1.76 × 10−33 0.83 0.35 1.05 × 10−20 0.78 0.52 (0.47, 0.58)
2,3-dihydroxyisovalerate Xenobiotics 0.40 2.37 × 10−27 0.79 0.36 2.34 × 10−21 0.77 0.46 (0.40, 0.52)

pentose acid * Partially Characterized
Molecules 0.32 3.25 × 10−17 0.79 0.31 1.17 × 10−15 0.76 0.56 (0.50, 0.61)

ethyl α-glucopyranoside Xenobiotics 0.33 1.17 × 10−18 0.73 0.32 2.76 × 10−17 0.72 0.52 (0.47, 0.58)

pentose acid * Partially Characterized
Molecules 0.24 5.40 × 10−10 0.71 0.29 2.21 × 10−14 0.74 0.56 (0.50, 0.61)

White wine
X-11795 0.25 1.17 × 10−10 0.70 0.25 1.27 × 10−10 0.69 0.56 (0.51, 0.62)

Liquor
ethyl α-glucopyranoside Xenobiotics 0.34 6.55 × 10−19 0.75 0.16 2.35 × 10−5 0.68 0.52 (0.47, 0.58)

2-hydroxyphytanate * Lipid 0.20 1.25 × 10−7 0.72 0.14 4.17 × 10−4 0.67 0.60 (0.55, 0.65)
ethyl glucuronide Xenobiotics 0.30 3.51 × 10−15 0.72 0.15 1.80 × 10−4 0.66 0.57 (0.52, 0.62)
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Table 2. Cont.

Food Group/Items Biochemical Name 2 Super Pathway Post-FFQ Average Dietary Recalls ICC 3

R p Value AUC R p Value AUC

BEVERAGES
X-21442 0.81 0.35 × 10−153 0.99 0.80 0.81 × 10−148 0.99 0.87 (0.85, 0.88)
quinate Xenobiotics 0.77 0.38 × 10−129 0.99 0.74 0.13 × 10−113 0.97 0.81 (0.79, 0.84)Total coffee
X-23655 0.56 4.11 × 10−56 0.98 0.52 3.17 × 10−47 0.95 0.64 (0.59, 0.68)

Decaffeinated
X-21442 0.27 1.09 × 10−12 0.70 0.23 1.20 × 10−9 0.65 0.87 (0.85, 0.88)
quinate Xenobiotics 0.21 1.08 × 10−7 0.69 0.15 1.43 × 10−4 0.65 0.81 (0.79,0.84)
X-21442 0.75 0.21 × 10−120 0.98 0.75 0.57 × 10−118 0.97 0.87 (0.85, 0.88)
quinate Xenobiotics 0.71 0.96 × 10−101 0.98 0.71 0.81 × 10−100 0.97 0.81 (0.79, 0.84)Caffeinated

3-hydroxypyridine sulfate Xenobiotics 0.59 3.37 × 10−63 0.96 0.57 5.09 × 10−57 0.94 0.72 (0.69, 0.76)

Total tea
theanine Xenobiotics 0.40 8.58 × 10−27 0.86 0.39 1.53 × 10−25 0.83 0.60 (0.55, 0.65)
X-17685 0.20 2.32 × 10−7 0.73 0.24 5.72 × 10−10 0.74 0.50 (0.44, 0.55)

3-methoxycatechol sulfate (1) Xenobiotics 0.20 2.49 × 10−7 0.73 0.22 1.46 × 10−8 0.72 0.42 (0.36, 0.49)
Green tea theanine Xenobiotics 0.25 5.18 × 10−11 0.72 0.28 1.44 × 10−13 0.69 0.60 (0.55, 0.65)

Black tea
theanine Xenobiotics 0.34 1.03 × 10−19 0.76 0.35 8.60 × 10−21 0.77 0.60 (0.55, 0.65)
X-17685 0.23 2.89 × 10−9 0.69 0.20 1.66 × 10−7 0.68 0.50 (0.44, 0.55)

3-methoxycatechol sulfate (1) Xenobiotics 0.20 1.68 × 10−7 0.68 0.19 1.74 × 10−6 0.66 0.42 (0.36, 0.49)
X-18901 0.22 9.41 × 10−9 0.74 0.20 2.60 × 10−7 0.65 0.68 (0.63, 0.72)

Herbal tea X-12306 0.20 1.50 × 10−7 0.71 0.18 4.49 × 10−6 0.63 0.47 (0.41, 0.53)
Diet beverages acesulfame Xenobiotics 0.42 1.15 × 10−29 0.82 0.29 4.97 × 10−14 0.76 0.49 (0.43, 0.55)

1. Diet–metabolite correlations in bold had p < 4.33 × 10−7 for FFQ and p < 4.17 × 10−7 for 24-h diet recalls and |r| > 0.2 from Pearson’s partial correlation analysis. Adjusted for age, gender,
race/ethnicity, education, smoking status, physical activity, body mass index, ethanol consumption (except for alcohol-containing items), and energy intake. CPS-3, Cancer Prevention
Study-3; DAS, Diet Assessment Sub-study. 2. Biochemical name of metabolite correlated with respective food or food group. Metabolites starting with X are unnamed and the super
pathway of these is unknown. Asterisk (*) represents putative identity that has not been officially confirmed based on a standard. (1) and (2) indicate that the metabolite differs from
another with the same mass in the position of the R group. CMPF, 3-carboxy-4-methyl-5-propyl-2-furanpropanoate; PC, phosphatidylcholine; PE, phosphatidylethanolamine. 3. ICC,
intraclass correlation coefficient, to assess the reproducibility of the identified food-related metabolites over six months. 4. Items are only available on 24 h-diet recalls.
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2.2.5. Dairy/Dairy Alternatives

There were 41 diet–metabolite associations for 4 dairy/dairy alternative groups (6 for milk, 3 for
almond milk or rice milk, 14 for total cheese, 18 for cream); 39 associations were found using the
FFQ, and 13 using the 24HRs. The strongest association was between X-11381 and milk (r = 0.33,
AUC = 84%). Almond milk or rice milk was a new line item on the CPS-3 FFQ. The only metabolite
that had a positive association with almond milk (X-24475) was also associated with intake of other
nuts. All the cheese-related metabolites were fatty acids and sphingomyelins. All of the 18 metabolites
associated with cream intake, a majority being xenobiotics, also were associated with coffee intake,
indicating that the two were commonly consumed together and these biomarkers should not be
considered as specific biomarkers for cream intake.

2.2.6. Fats and Oils

We identified 16 associations for creamy salad dressing (n = 12), oil and vinegar salad dressing
(n = 2) and olive oil (n = 2), and 15 were found using the FFQ and 9 found by the 24HRs.

2.2.7. Alcohol

Using either instrument, we identified 172 associations for alcohol, including 58 for total alcohol, 19
for beer, 44 for wine, 39 for red wine, 8 for white wine and 4 for liquor. Using the FFQ, 160 associations
were found, and using the 24HRs, 102 associations were found. Ethyl alpha-glucopyranoside was the
most predictive metabolite for total alcohol (r = 0.52, AUC = 95%) and individual types of alcohol (AUC
ranging from 74% for white wine to 91% for total wine) assessed using the FFQ. Ethyl glucuronide was
the second most predictive metabolite for total alcohol.

2.2.8. Beverages

There were 80 associations for beverages, including 33 for total coffee, 34 for caffeinated coffee,
2 for decaffeinated coffee, 4 for total tea, 1 for green tea, 3 for black tea, 2 for herbal tea and 1 for
diet beverages, with 77 found from the FFQ and 71 from 24HRs. Quinate and the unknown X-21442
were the most predictive metabolites for total coffee consumption (r = 0.77, AUC = 99% and r = 0.81,
AUC = 99%, respectively). The majority of metabolites correlated with total coffee and caffeinated
coffee were involved in xanthine and benzoate metabolism. For tea consumption, theanine was the most
predictive biomarker, slightly stronger for black tea than for green tea, and strongest for total tea (r = 0.40,
AUC = 86%). Acesulfame was associated with diet beverage consumption (r = 0.42, AUC = 82%).

2.2.9. Miscellaneous

The remaining 43 associations were found for miscellaneous foods, 10 for French fries, 3 for
ice cream, 10 for chips, 6 for chocolate candies, 7 for dark chocolate, 1 for energy/protein bars, 3
for soy sauce and 3 for artificial sweeteners. Several xanthine metabolites that were correlated with
coffee intake were also correlated with chocolate intake, including theobromine, 3-methylxanthine
and 7-methylxanthine. In addition to acesulfame that was correlated with diet beverages, two more
metabolites—saccharin and erythritol—were associated with overall artificial sweetener intake.

2.3. Reproducibility of the Identified Food Metabolites

Of the 238 metabolites that were significantly associated with food groups/items identified via FFQ
or 24HRs, the median ICC calculated using duplicate samples over six months was 0.56 (interquartile
range: 0.46–0.68). By super pathway, the median ICC ranged from 0.39 for carbohydrates to 0.69 for
cofactors and vitamins.

Combining information on both accuracy (AUC) and reproducibility (ICC) over time can indicate
if a biomarker is reliable to be used in future epidemiological studies. The combined information
on AUC and ICC for the top three metabolites of the 74 food groups/items are shown in Figure 1.
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Biomarkers in the upper right corner with both high AUC and ICC are considered reliable, while those
in the lower left corner with the low AUC and ICC are less reliable. AUCs obtained from 24HRs were
generally lower than those from the FFQ. In the present study, such reliable biomarkers were seen for
several food groups/items including fish, milk, meat, nuts, coffee, leafy greens, oranges and whole grain
cereals. Biomarkers with high AUCs but low ICCs might be useful in short-term studies to monitor
dietary intake compliance but may require more than one measurement to capture long-term levels.Metabolites 2020, 10, x FOR PEER REVIEW 13 of 21 

 

 

(a) 

 

(b) 

Figure 1. Metabolite prediction accuracy for food intake by metabolite reproducibility for the top three 
predictive metabolites of 74 food groups/items in the Cancer Prevention Study-3 Diet Assessment 
Sub-study. (a) Top three predictive metabolites for food intake assessed using the food frequency 
questionnaire; (b) top three predictive metabolites for food intake assessed using the average of 24-h 
diet recalls. Prediction accuracy was assessed by area under the curve (AUC) from the receiver 
operating characteristic curve, which indicates how well a metabolite could discriminate top quartile 
from bottom quartile intake of a food group/item. Reproducibility was assessed by intraclass 
correlation coefficients (ICCs), calculated as the ratio of between-person variance to the total variance 
among participants with repeated blood metabolic profiles measured six months apart. 

Figure 1. Metabolite prediction accuracy for food intake by metabolite reproducibility for the top three
predictive metabolites of 74 food groups/items in the Cancer Prevention Study-3 Diet Assessment
Sub-study. (a) Top three predictive metabolites for food intake assessed using the food frequency
questionnaire; (b) top three predictive metabolites for food intake assessed using the average of 24-h diet
recalls. Prediction accuracy was assessed by area under the curve (AUC) from the receiver operating
characteristic curve, which indicates how well a metabolite could discriminate top quartile from bottom
quartile intake of a food group/item. Reproducibility was assessed by intraclass correlation coefficients
(ICCs), calculated as the ratio of between-person variance to the total variance among participants with
repeated blood metabolic profiles measured six months apart.
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3. Discussion

In this yearlong diet validation study with repeated measures of diet using both FFQ and 24HRs
and two measures of fasting plasma metabolic profiles approximately 6 months apart, we replicated
many food–metabolite associations that were found in other studies, and identified several potentially
novel food biomarkers. More associations were found via FFQ than via 24HRs. Reproducibility of
the 238 identified metabolites was acceptable for a large proportion, with 38% of metabolites with an
ICC > 0.6. Our findings contribute to the literature on food-based biomarkers and provide important
information on the reproducibility of the biomarkers which could facilitate their utilization in future
nutritional epidemiological studies.

Generally, we identified more food–metabolite associations using the FFQ than using the 24HRs.
Additionally, the biomarker AUCs were higher in general using the FFQ than using the 24HRs. In
other words, the identified biomarkers predict dietary intake assessed via the FFQ better than that via
the 24HRs. Even though the repeated measurements using 24HRs are considered a superior method
of assessing the true intake in the validation study, the FFQ is designed to capture usual food intake
in the past 12 months. That metabolites correlated better with the FFQ than the average 24HRs may
indicate that the biomarkers reflect a long-term status of dietary intake. We observed a greater number
of associations in the current study than in our previous study in the CPS-II Nutrition Cohort [8],
probably because in the CPS-3, the FFQ was collected in closer proximity to blood draw (as part of the
validation study), and using an average of two blood samples likely better captured usual metabolite
levels during the year.

We replicated five metabolites that had been correlated with total citrus fruits and juices or orange
juice in the CPS-II Nutrition Cohort [8]. Stachydrine—the strongest biomarker of total citrus fruits
and juices—was first identified in an acute feeding study [18] and then validated as a biomarker
of habitual citrus fruit intake in several cross-sectional datasets [9–13,19–21] including our previous
metabolomics study in the CPS-II Nutrition Cohort [8]. Among the food biomarkers we identified
in the CPS-3 DAS but not in CPS-II Nutrition Cohort, 4-allylphenol sulfate that is associated with
apple/pear and blueberry intake is a nonspecific microbial metabolite of polyphenols [22], and has
been reported as a biomarker of pears in a randomized trial [23]. Among the 75 vegetable–metabolite
associations, 14 were found in the CPS-II Nutrition Cohort [8]. Notably, we replicated ergothioneine
as a putative biomarker of mushroom intake, and several metabolites such as alliin, N-acetylalliin
and S-allylcysteine as biomarkers of garlic intake. We previously found S-methylcysteine sulfoxide
as a biomarker of cruciferous vegetable intake [8] which was also reported in the Prostate, Lung,
Colorectal and Ovarian (PLCO) cohort [24]. In the present study, we found S-methylcysteine, the
biological precursor of S-methylcysteine sulfoxide to be associated with cruciferous vegetable intake.
Among the food–metabolite associations not found in the CPS-II Nutrition Cohort, S-methylcysteine
and pipecolate were reported as useful dry bean biomarkers in both human and mouse studies [25];
genistein sulfate and 4-ethylphenyl sulfate are biomarkers for soy product intake. 4-ethylphenyl sulfate
is a uremic toxin produced by gut bacteria, and its association with soymilk has been reported in a
cohort of female twins [9].

We identified several new biomarkers for whole grain products such as 2,6-dihydroxybenzoic
acid, 2-aminophenol sulfate and 2-acetamidophenol sulfate compared with our previous study in the
CPS-II Nutrition Cohort [8]. 2,6-dihydroxybenzoic acid is a phenolic acid, also known as γ-resorcylic
acid, which was identified as a marker for a high dietary fiber intake in an intervention study [26].
It is possible that 2,6-dihydroxybenzoic acid was derived from alkylresorcinols or lignans through a
speculated microbial enzyme not yet identified in humans [26]. 2-acetamidophenol sulfate (HPAA
sulfate) and 2-aminophenol sulfate are benzoxazinoid metabolites that were previously found as
biomarkers of whole grain intake in urine [27]. 2-aminophenol sulfate was also found to be elevated in
plasma after high dietary fiber intake [26].

Most of the metabolites associated with egg, meat and poultry intake are amino acids and
lipids, especially plasmalogens. Two novel biomarkers of red meat are xenobiotics 3-bromo-5-
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chloro-2,6-dihydroxybenzoic acid and 3,5-dichloro-2,6-dihydroxybenzoic acid, which were also
correlated with milk intake in the present study. We replicated three metabolites that have been
associated with habitual consumption of fish and shellfish in our previous study [8], including
3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), hydroxy-CMPF (previously known as
X-02269) and docosahexaenoate (DHA; 22:6 n3). The most predictive metabolite hydroxy-CMPF
(X-02269) for total fish was also reported in the TwinsUK cohort [9] and a US cohort [13]. Among the
five metabolites that correlated with nut intake, tryptophan betaine and 4-vinylphenol sulfate were
also reported in similar cross-sectional studies [8,10,12,13].

In our previous study [8], ethyl glucuronide was the most predictive metabolite of all types of
alcohol and is metabolized directly from ethanol in the liver by UDP-glucuronosyltransferases [28].
In the present study, the most predictive metabolite of alcohol was ethyl alpha-glucopyranoside
(previously known as X-24293), which is a glycoside found in Japanese rice wine and might be used
as a functional food or cosmetic material [29]. For wine consumption (total and red but not white
wine), we replicated the potential biomarker 2,3-dihydroxyisovalerate, an intermediate metabolite
produced by yeast during wine fermentation [30]. We replicated 26 metabolites as biomarkers of total
coffee intake [8], including quinate, the highly predictive unknown metabolite X-21442, several caffeine
metabolites (e.g., 1-methylxanthine, 1,3-dimethylurate, 1,7-dimethylurate, 1,3,7-trimethylurate) and
other metabolites. Chlorogenic acid, an abundant natural polyphenol, is found in high concentration
in coffee. During the roasting process, chlorogenic acid is broken down to quinate and caffeic acid.
In both the CPS-II Nutrition Cohort and CPS-3 DAS, quinate was among the top predictive biomarkers
of caffeinated and decaffeinated coffee. Previous animal studies showed chlorogenic acid and related
compounds exert antiviral [31] and anticarcinogenic effects [32,33]. Future human studies need to
investigate these biomarkers with disease outcomes directly or through mediation analyses. For tea
consumption, we replicated that theanine was the most predictive biomarker for total tea, green tea
and black tea consumption.

As discussed above, our studies (both in CPS-3 DAS and our prior research in the CPS-II Nutrition
Cohort [8]) and others have identified many biologically plausible, putative food biomarkers using
metabolomics, which highlights the importance of this technology in identifying dietary biomarkers.
Moving forward, more research is needed to determine the use of these putative biomarkers in diet
assessment. One important step is to develop calibration equations in controlled feeding studies,
so that the biomarkers may be used to correct self-reported dietary intake [1]. Urinary recovery
biomarkers have been used to calibrate energy and protein intakes and showed improved diet–disease
associations compared with uncalibrated data [34]. Lampe et al. also evaluated blood concentration
biomarkers in a feeding study of postmenopausal women and suggested that they perform as well as
recovery biomarkers and, therefore, can be used to correct self-reported dietary intake data in future
studies [35]. Cross-sectional studies such as the present study provide important information as one
could examine multiple foods simultaneously and determine if a metabolite is correlated with multiple
foods. Among the identified metabolites, many may not be optimal food biomarkers if they are not
specific to certain foods or if they are synthesized endogenously, because their levels will be influenced
by other characteristics.

One concern of using the metabolomic biomarkers in epidemiological studies is that one-time
measurement is subject to short-term variation and may not represent long-term status. Large
within-person variation compared to between person variation in metabolite levels can contribute to
measurement errors that would result in underestimated disease risk estimates. An ICC, the ratio
of between-person variance to total variance, is a good indicator of metabolite reproducibility. High
ICCs indicate large between-person variation relative to the total variation, such as biomarkers for
fish, milk, meat and coffee. Low ICCs indicate large within-person variation relative to the total
variation. However, a low ICC does not necessarily exclude the metabolite from being used as a
dietary biomarker in all circumstances. The low ICCs observed in the present study could be due
to the infrequency of consumption of certain foods e.g., soy products, and could also be due to the
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seasonal variation in consumptions of certain fruits and vegetables, as one of the purposes of the CPS-3
DAS was to capture seasonal variation in blood biomarkers by collecting the samples six months apart.
If collected a year apart, we would expect to see higher ICCs for many biomarkers of the foods that
are consumed seasonally. A few previous studies examined the reproducibility of metabolites over a
period, although did not focus on diet related biomarkers [36,37]. Floegel et al. [36] investigated the
ICCs of 163 fasting serum metabolites over a 4-month period and found that the median ICC was 0.57
(vs. median ICC of 0.56 over six months in the present study). Carayol et al. [37] found a median
ICC of 0.70 among 158 metabolites measured in fasting plasma samples over a 2-year period. They
also found that the ICCs were higher for metabolites measured in fasting samples than in nonfasting
samples, although Sampson et al. [17] found that fasting is not a major source of variation in metabolite
levels in population studies. Therefore, one-time measurement is likely sufficient for many of the
metabolites with high reproducibility.

The present study has several strengths. Its large sample size and comprehensive dietary and
metabolomic data allowed us to explore a large number of diet–metabolite associations simultaneously
which is more efficient than feeding studies and can provide information on the specificity of the
biomarkers. Furthermore, the repeated measurements of blood samples enabled us to test biomarker
reproducibility over 6 months. Our findings confirmed many previously identified food biomarkers
and identified new metabolites for further testing. Reproducibility of food-based biomarkers is largely
unknown in the field but very important to inform the application of such biomarkers in etiologic
analyses. Large within-person variation in the biomarker over time is a major source of measurement
error that could lead to underestimated diet–disease associations and inconsistent findings. Additional
feeding studies are needed to test the dose–response relationships between food intake and the
identified biomarkers to further confirm their validity for future use.

4. Materials and Methods

4.1. Study Population

The Diet Assessment Sub-study (DAS) was a one-year study among 745 men and women enrolled
in the CPS-3 cohort, designed to evaluate the validity of the CPS-3 FFQ. Briefly, CPS-3 is a large
prospective cohort study of 303,682 adults aged 30–65 residing in 35 states in the United States, plus the
District of Columbia and Puerto Rico, who were enrolled between 2006 and 2013 [38]. At enrollment,
participants provided a blood sample, had their waist circumference measured and completed an
enrollment survey. They were also asked to complete a comprehensive baseline survey that assessed
demographic, lifestyle and medical information. Follow-up questionnaires were sent in 2015 to those
who completed the baseline survey after enrollment (N = 254,650) to update lifestyle and medical
information and to assess diet using the CPS-3 FFQ for the first time.

The CPS-3 DAS was designed to evaluate the validity and reproducibility of the newly modified
CPS-3 FFQ over a year. CPS-3 participants living in 5 regions defined by Quest Diagnostics business
units (Atlanta, GA, USA; Dallas, TX, USA; Auburn Hills, MI, USA; West Hills, CA, USA; San Jose,
CA, USA) were invited to participate in DAS. Participants were asked to complete the 2015 follow-up
survey (to serve as the first FFQ), six telephone-administered 24HRs throughout the year, provide two
fasting blood and two 24-h urine samples and complete the post-FFQ at the end of the study. The six
24HRs aimed to include four weekdays and two weekend days, with a goal of obtaining two 24HRs
per “trimester”; we aimed to collect one 24HR within a week prior to the fasting blood draw. Blood
and urine samples were collected six months apart to capture seasonal variation.

A total of 745 men and women completed both FFQs and the first 24HR, meeting the minimum
criteria to remain in the DAS. For the metabolomics analysis, we excluded participants who completed
less than three 24HRs (n = 2), had poor post-FFQs (n = 20; defined as missing 2 or more sections, an
entire page, >100 line items or with daily energy intake <800 or >4500 kcal for men, and <600 or >3800
kcal for women) or had no blood sample (n = 1). We further excluded current smokers (n = 21), those
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whose body weight was missing at both blood draw appointments (n = 3) or weight change was >20
lbs between blood draws (n = 14) and pregnant women (n = 13). A total of 671 men and women were
included in this plasma metabolomics analysis. Those with two blood draws (n = 644) were included
in the metabolomic reproducibility analysis (Figure S1). The CPS-3 DAS protocol was approved by the
Emory University (Atlanta, GA, USA) Institutional Review Board.

4.2. Diet Assessment

Diet was assessed using the newly modified CPS-3 FFQ as described elsewhere [39]. Briefly, the
Willett FFQ [40,41] was modified for the CPS-3 study population, to capture racial/ethnic and geographic
diversity of the cohort. Modifications to the FFQ were informed through telephone-administered
24HRs, analyses of NHANES 2009–2010 and focus groups [39]. The final modified FFQ included
191-line items. Only the post-FFQ was used to assess dietary intake in the present study. We defined
101 food groups/items from the FFQ as shown in Supplemental Table S1, similar to what we defined in
the CPS-II Nutrition Cohort [8]. Comparable food groups were derived from the 24HRs to match those
from the FFQ. We also created a few food groups using the 24HRs that are not asked (e.g., mushroom)
or asked in combination with other foods (e.g., apples) on the FFQ. A total of 105 food groups/items
were derived from the 24HRs.

4.3. Blood Collection and Processing

Participants were instructed to make an appointment with a Quest Patient Service Center to have
fasting blood drawn on the morning of the visit. Participants were asked to follow their usual diet
except during the 8-h fasting period before the appointment. A total of 40 mL of fasting blood was
collected using 5 EDTA tubes for plasma collection, and 4 serum separator tubes for serum collection.
Blood samples were refrigerated and transferred to a Quest Diagnostics regional processing laboratory
where they were fractionated by centrifugation and aliquoted into 9 vials. All aliquots of blood were
frozen and shipped on dry ice to an off-site biorepository (Fisher Biorepositories, Inc., Frederick, MD,
USA) for long term storage in the vapor phase of liquid nitrogen.

4.4. Metabolomics Analysis

Metabolomic profiling was conducted by Metabolon, Inc. (Durham, NC, USA) using
ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) described
elsewhere [42]. Briefly, plasma samples were treated with methanol to precipitate proteins. Four sample
fractions were dried and reconstituted in different solvents for measurement under four different
platforms. These platforms consisted of two separate reverse phase UPLC-MS/MS methods with
positive ion mode electrospray ionization (ESI), one reverse phase UPLC-MS/MS method with negative
ion mode ESI and one hydrophobic interaction chromatography UPLC-MS/MS with negative ion mode
ESI. Individual metabolites were identified by comparison with a chemical library maintained by
Metabolon that comprises more than 3300 commercially available purified standard compounds and
recurrent unknown entities, based on retention index, mass to charge ratio and chromatographic data.

A total of 1368 metabolites were detected in the fasting plasma samples. Metabolites that were
below the detection limit in >90% of the samples were excluded (n = 131). For the remaining metabolites,
missing values were assigned the minimum detection value. To correct the day-to-day variation from
the platform, each metabolite was divided by its daily median. Duplicates of 60 participant samples
were used as quality controls to assess inter- and intrabatch variation. Interclass correlation coefficients
(ICCs) were calculated among the quality control samples to test the reproducibility of the platform.
Metabolites with ICC < 0.5 were further excluded from the analysis, leaving 1141 for food–metabolite
analysis. Of the 1141 included metabolites, the median technical ICC was 0.87, with an interquartile
range of 0.77 to 0.93, suggesting a very high reproducibility of the platforms.
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4.5. Statistical Analysis

Metabolite and food variables were generalized log transformed [43] and autoscaled before
all analyses. Pearson’s partial correlation was used to determine the food–metabolite associations,
controlling for age (continuous), gender, race/ethnicity (white, black, Hispanic), education (no college,
college graduate, graduate school, unknown), smoking status (never, former), physical activity
(metabolic equivalent hours per week (MET-h/wk): <5, 5–<10 or missing, 10–<15, ≥15), body mass
index (kg/m2, continuous), ethanol intake (g/d, continuous; except for alcohol containing items) and
energy intake (kcal/d, continuous). Associations were considered statistically significant if p values
were less than the Bonferroni-corrected threshold (0.05/1141/101 = 4.33 × 10–7 for FFQ, 0.05/1141/105 =

4.17 × 10– 7 for 24HRs). To select more meaningful associations, we further required that the absolute
values of the correlation coefficient (|r|) were greater than 0.2.

Putative dietary biomarkers were further evaluated for predictive accuracy of discriminating
high consumers (top quartile) from low consumers (bottom quartile), assessed using the area under
the curve (AUC) calculated from the receiver operating characteristic (ROC) curve using R package
pROC [44]. We considered AUC < 0.7 to be low, 0.7–<0.8 to be moderate and ≥0.8 to be high.

The reproducibility of the identified food-related metabolites over six months was assessed using
ICCs. ICCs were calculated as the ratio of between-person variance to the total variance among
participants with repeated measures of blood metabolic profiles. Between-person variance was
estimated from a random effects model where participants were modeled as a random variable. ICCs
>0.6 were considered good and >0.75 considered excellent.

5. Conclusions

In conclusion, in this large and comprehensive analysis of habitual diet and fasting plasma
metabolic profiles in a free-living population of racially/ethnically diverse men and women, we
identified several potentially novel food biomarkers and replicated others found in previous studies.
Our findings contribute to the growing literature on food-based biomarkers and provide important
information on the reproducibility of the biomarkers which could facilitate their utilization in future
nutritional epidemiological studies.
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24-h diet recalls in the CPS-3 Diet Assessment Sub-study; Table S4: food group definitions in the CPS-3 Diet
Assessment Sub-study.
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