H

o metabolites

Article

Identifying Personalized Metabolic Signatures in Breast Cancer

Priyanka Baloni 1, Wikum Dinalankara 23, John C. Earls !, Theo A. Knijnenburg !, Donald Geman ,
Luigi Marchionni 2*>* and Nathan D. Price 1*

check for

updates
Citation: Baloni, P; Dinalankara, W.;
Earls, ].C.; Knijnenburg, T.A.; Geman,
D.; Marchionni, L.; Price, N.D.
Identifying Personalized Metabolic
Signatures in Breast Cancer.
Metabolites 2021, 11, 20. https:/ /doi.
org/10.3390/metabo11010020

Received: 16 November 2020
Accepted: 28 December 2020
Published: 30 December 2020

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional clai-
ms in published maps and institutio-

nal affiliations.

Copyright: ©2020 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Institute for Systems Biology, Seattle, WA 98109, USA; pbaloni@isbscience.org (P.B.);

john.earls@isbscience.org (J.C.E.); theo.knijnenburg@isbscience.org (T.A.K.)

Department of Oncology, Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School

of Medicine, Baltimore, MD 21205, USA; wdinalal@jhmi.edu

3 Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10021, USA

4 Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21205, USA;
geman@jhu.edu

*  Correspondence: lum4003@med.cornell.edu (L.M.); nprice@isbscience.org (N.D.P.)

Abstract: Cancer cells are adept at reprogramming energy metabolism, and the precise manifestation
of this metabolic reprogramming exhibits heterogeneity across individuals (and from cell to cell).
In this study, we analyzed the metabolic differences between interpersonal heterogeneous cancer
phenotypes. We used divergence analysis on gene expression data of 1156 breast normal and tumor
samples from The Cancer Genome Atlas (TCGA) and integrated this information with a genome-
scale reconstruction of human metabolism to generate personalized, context-specific metabolic
networks. Using this approach, we classified the samples into four distinct groups based on their
metabolic profiles. Enrichment analysis of the subsystems indicated that amino acid metabolism,
fatty acid oxidation, citric acid cycle, androgen and estrogen metabolism, and reactive oxygen species
(ROS) detoxification distinguished these four groups. Additionally, we developed a workflow to
identify potential drugs that can selectively target genes associated with the reactions of interest.
MG-132 (a proteasome inhibitor) and OSU-03012 (a celecoxib derivative) were the top-ranking drugs
identified from our analysis and known to have anti-tumor activity. Our approach has the potential
to provide mechanistic insights into cancer-specific metabolic dependencies, ultimately enabling
the identification of potential drug targets for each patient independently, contributing to a rational
personalized medicine approach.

Keywords: breast cancer; genome-scale metabolic models; constraint-based analysis; divergence
analysis; gene expression; metabolism; drug targets; personalized metabolic networks

1. Introduction

The physiological state of a cell is influenced by underlying metabolic processes which
exhibit high degrees of heterogeneity across patients and across cells. Cancer cells repro-
gram their energy metabolism as is needed to meet the energy demands of proliferation
and migration. The mechanisms of invasion and metastasis are complex, and mortality
is mainly caused by the progression of cancer to a metastatic state [1]. Alteration of in-
teractions between cancer cells and their microenvironment leads to diverse outcomes
in the programmed behavior of the cells. Tumor cells exhibit heterogeneous metabolic
profiles, with differential utilization of metabolites such as glucose, lactate, glutamine, and
glycine [2]. Some of the metabolic and genetic changes that are reported in tumor cells are
enhanced glycolysis, differential expression of lactate dehydrogenase A (LDH), which is
linked with cancer growth and metastasis, mutations in metabolic enzymes such as isoci-
trate dehydrogenase 1 (IDH1), succinate dehydrogenase (SDH) and fumarate hydratase
(FH) involved in initiating tumors [3]. These findings suggest that metabolism is funda-
mental in determining cell fate in cancer and should be explored further. Various omics
measurements from diverse cancer cell lines have made it easier to study the physiological
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changes. Integration of these omics measurements with computational models increases
the accuracy of predictions.

Transcriptome analysis provides a genome-wide snapshot of differential gene activity,
providing important information about key genes that modulate metabolism at the system
level. Transcriptomes are complex data types with a high degree of person-to-person
heterogeneity that can obfuscate the underlying biological signal, hindering their use in
practice. To partially address this issue, we have recently introduced “divergence anal-
ysis” [4], a simplified and personalized data representation that captures the departure
of omics profiles from a normal reference baseline. Divergence analysis of breast cancer
samples in The Cancer Genome Atlas (TCGA) [4] has been useful in measuring the degree
of divergence for genes and other genomic features in cancer versus the normal baseline
phenotype, as well as one cancer phenotype versus another. Divergence is a single sam-
ple property (unlike, e.g., a differentially expressed gene), and our previous work has
shown that divergence encoding largely preserves biological signals and helps to remove
unwanted noise from the data [4]. It is therefore helpful for data preprocessing before
complex system-level analyses, including metabolic network modeling.

Combining biological data and modeling enables us to study complex interactions in a
biological system. Integrating transcriptomics data onto a genome-scale metabolic network
to perform network-level simulations is a useful step to regularize the data and attempt to
infer metabolic states from the combined evidence of the enzymes that are expressed in
the transcriptome as a whole. Many computational methods for metabolic modeling have
been developed [5,6]. Genome-scale metabolic models (GSMs) provide comprehensive
information about known genes, metabolites, and reactions in organisms and are useful
to infer metabolic differences between conditions [7-9]. These models have been used to
predict changing metabolic landscapes in cancers and also predict candidate drug targets
and biomarkers of cancer [10-13].

The main contributions of the present work are three-fold: (1) we generate context-
specific metabolic networks for 1156 cancer and normal samples by integrating their
divergence profiles with a global human metabolic network reconstruction; (2) we develop
a framework for identifying key metabolic and regulatory signatures and used it to classify
the samples in breast cancer based on their metabolic state; (3) we perform in silico gene
knockout in these 1156 context-specific metabolic networks and identify genes that can
perturb the system, many of which correspond to known drug targets. Thus, our study
provides a novel assessment of metabolic network analysis based on divergence encoding.
Herein, we have employed this strategy for breast cancer, but our method can be extended
to other cancers and metabolically perturbed diseases to identify key metabolic signatures
and potential drug targets.

2. Results
2.1. Understanding Metabolic Differences in Cancer Samples Using Personalized Metabolic Networks

In this study, we used gene expression estimates, encoded as binarized divergence
indicators or as transcripts per million (TPM) values, from 1156 cancer and normal samples
from TCGA (https:/ /www.cancer.gov/tcga), and integrated them with a human metabolic
model (Recon 3D) [14] to obtain personalized metabolic networks for each sample. This
approach allowed us to predict distinct metabolic signatures for each individual sample
and classify them according to their metabolic phenotype. In this study, we have referred
to personalized metabolic networks generated from divergence and transcriptome analysis
as ‘divergent networks’ and ‘normalized networks’, respectively. An overview of the work
done in this study is represented in Figure 1.
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Figure 1. Overview of the study design. The breast cancer expression dataset from The Cancer Genome Atlas (TCGA)

was converted to ternary format using divergence analysis (shown in the middle panel) [4]. The divergence values were

integrated with human reconstruction and pruned to obtain personalized metabolic networks. The right side of the figure

panel shows the identification of metabolic subgroups in the samples using unsupervised clustering. From our analysis, we

identified important reactions and genes in cancer versus normal and used this information to associate drugs that can

target them (bottom panel on the right).

2.2. Classifying Cancer Samples Based on Their Metabolic Profile

We used genes present in human reconstruction (Recon 3D) and mapped the diver-
gence values for solid tissue normal, primary tumor, and metastatic samples. Principal
component analysis of metabolic gene expression in these samples showed two clusters,
but the normal samples could not be differentiated from cancerous ones (Figure 2a). This
suggested that expression profiling is not sufficient to distinguish the samples and classify
them. We performed a similar analysis with TPMs and failed to identify a clear clustering of
the samples (Supplementary Figure S4). To obtain a better understanding of perturbations
in the system, we integrated divergence and TPM values with the human metabolic model
using the integrative metabolic analysis tool (iMAT) method and generated context-specific
metabolic networks for 1156 primary tumor, metastatic and normal tissue samples. We
observed distinct clusters for cancer (primary and metastatic) and normal samples, using
fluxes measured for reactions in the context-specific networks (Figure 2b). The primary
and metastatic samples were mixed in the cancer cluster. This suggested that metabolic
networks were able to distinguish various phenotypes and can be used to understand
mechanistic changes in the system.

(a) Class comparison: We compared the reaction fluxes for cancer and normal samples
in the dataset and classified reactions in each context-specific network as active or
inactive based on their flux measurement (described in the methods section). In
order to identify active reactions in the context-specific networks, we used the in-
formation of reaction fluxes from all 1156 context-specific metabolic networks. If
a reaction was present in the network, it was assigned a state of 1, while the re-
maining reactions were assigned a state of 0, indicating that they were absent in the
context-specific metabolic network. Statistical analysis of active reactions in divergent
networks identified 471 reactions (p-value < 0.05) that were significantly different in
cancer versus normal. These reactions belonged to the following pathways: andro-
gen and estrogen metabolism, bile acid synthesis, cholesterol metabolism, citric acid
cycle, drug metabolism, eicosanoid metabolism, exchange reactions, fatty acid oxida-
tion, glutathione metabolism, glycerophospholipid metabolism, glycolysis, steroid
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metabolism, transport, tyrosine metabolism, urea cycle, and vitamin metabolism.
Supplementary Table S1 represents the list of subsystems that were enriched in cancer
versus normal.

(b) Class discovery: We used an unsupervised machine learning method to classify the
cancer samples based on their metabolic state. Using K-means clustering on the simu-
lated reaction fluxes, we obtained four distinct clusters of cancer samples (Figure 2c).
The number of clusters was determined by the elbow method; see Supplementary
Figure S2. The cancer clusters were then labeled from one to four, and normal tissue
samples were assigned as cluster 0. We performed a detailed analysis of the four
clusters to identify, if any, associations with standard clinical and pathological tumor
characteristics. This analysis showed that the metabolic clusters were significantly
associated with PAM50 molecular subtypes and estrogen receptor (ER) status (chi-
squared p-value < 0.001), distinguishing the luminal A and B samples from basal-like
samples, and also ER-positive and negative samples to a greater extent. Specifically,
cluster two was enriched for luminal subtypes (luminal A and B) and predominantly
accounted for ER-positive samples, while cluster three was enriched in basal-like and
ER-negative tumors. (Figure 3 and Supplementary file 1). The metabolic clusters
of tumor and normal samples were used for identifying important reactions and
subsystems in these clusters.

In addition to identifying differences between cancer and normal phenotypes, we ex-
tended our analysis to subsystems that are enriched for each identified cluster. The heatmap
of enriched subsystems in cancer versus the normal samples, as shown in Figure 2d, indi-
cated that glycine, serine, alanine, and threonine metabolism and C5-branched dibasic acid
metabolism were enriched in all the clusters. Fatty acid oxidation, propanoate metabolism,
citric acid cycle, and glycosphingolipid metabolism were enriched for clusters one, three,
and four, whereas cluster two showed selective enrichment for peptide metabolism and
exchange reactions. Androgen and estrogen metabolism, chondroitin sulfate degradation,
and reactive oxygen species (ROS) detoxification were selectively enriched for cluster three
samples, indicating that each cluster had a distinct metabolic profile, and we can probe
their metabolic differences. We compared the reactions in each cluster with respect to those
in normal samples and identified 254, 1388, 581, and 324 reactions that were significant in
clusters one to four, respectively (Supplementary Figure S3).

We extended our analysis to identify which types of samples were enriched in each
of the clusters. We mapped information of PAM (Prediction Analysis of Microarray)
50 classifier for breast tumor intrinsic subtyping, known ER status, the triple-negative
status of samples, American Joint Committee on Cancer (AJCC) stage, and vital status for
samples in the cluster and obtained interesting results and performed chi-squared statistics
for these clusters. We found that cluster two had a higher proportion of HER2-enriched,
luminal A, and luminal B samples, whereas cluster four had a higher proportion of basal-
like samples (Figure 3a). When we looked at the ER status of the samples, we observed
that Cluster two had a higher proportion of ER-positive samples, and cluster four had a
higher number of samples that were ER-negative (Figure 3b). Cluster two and four had a
higher proportion of samples with known cases of triple-negative status (Figure 3c). For
samples with known AJCC stages, we observed that cluster two had a higher proportion
of samples that belonged to stage 1I (Figure 3d). This suggests that samples belonging to
cluster two have a distinct metabolic profile and are able to distinguish tissue type and
known markers of breast cancer.
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Figure 2. Cluster analysis of genes and reactions. (a) Principal component analysis (PCA) of metabolic genes (divergent
values) of 1156 breast cancer samples from TCGA. Samples are colored as brown, green, and pink based on normal, primary
or metastasis phenotype, respectively. (b) PCA of 1156 samples clustered based on metabolic reaction fluxes and colored
with respect to sample type. Samples are colored as brown, green, and pink based on normal, primary, or metastasis
phenotype, respectively. (c)Four clusters of cancer samples indicating distinct metabolic profiles. The clusters have been
labeled as 1, 2, 3, and 4. (d)Heatmap representing enriched subsystems for each cluster when compared to normal samples.
Orange fields indicate significant subsystems with a p-value < 0.05, and the gray fields indicate non-significant subsystems
with a p-value > 0.05.

To further analyze these clusters, we measured the recurrence-free survival and overall
survival (deceased versus living) and observed differences between the four clusters.
Based on the analysis, samples in cluster one and four had better survival than cluster
two and three. So, we combined clusters one and four and clusters two and three to
identify differences in survival rate. The plot of Kaplan-Meier estimates in Figure 4 shows
differences between the group of clusters. This indicates that clusters with metabolic
differences also had different survival and recurrence rates.

Our analyses of personalized metabolic networks showed differences in the metabolic
profile of the individuals such that they could be broadly categorized into four clusters
and also indicated variations at reactions level, subsystems level, and also the survival and
recurrence rate. We further identified how metabolic genes contributed to these variations
and probed genes that caused perturbations in the system.
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Figure 3. Principal component analysis (PCA) plots of metabolic clusters considering (a) Prediction Analysis of Microarray
50 (PAM50); (b) estrogen receptor (ER) status; (c) triple-negative status; and (d) American Joint Committee on Cancer
(AJCC) stage of the samples.
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Figure 4. Plots of Kaplan-Meier estimates for (a) overall survival and (b) recurrence of cancer in the individuals. Clusters 1
and 4 are denoted by the red line and clusters 2 and 3 by the blue line.

2.3. Identifying Candidate Druggable Genes

Deletion of a set of metabolic genes from the models can either have profound effects
on the system or no effect at all. In order to predict the genes that cause perturbations in
the system, we carried out in silico gene deletion in our personalized metabolic networks.
About 53 out of 1884 metabolic genes upon single-gene deletion had a significant effect in
the system (p < 0.05) upon single gene deletion analysis. Table 1 represents a concise list of
genes, the subsystems these genes belong to, and drug target information of these genes
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as reported in the Human Protein Atlas (HPA). The last column contains information on
whether there are known Food and Drug Administration (FDA)-approved drugs targeting
the gene.

Table 1. List of genes identified as important from in silico gene knockout analysis and mapped to
their subsystems and known drug target information from Human Protein Atlas (HPA). Drug target
information for the genes is provided in the last column (FDA-approved drugs or potential drug

target) using the information from HPA [15].

Subsystem Gene Drug Target
Cholesterol metabolism SOAT1 FDA approved
Valine, leucine, and
isoleucine metabolism MUT FDA approved
. . SDHA, SDHB, FDA approved (SDHD),
Citric acid cycle SDHC, SDHD Potential drug target
C5-branched dibasic acid metabolism SUCLA2, SUCLG1, SUCLG2 Potential drug target
Lysine metabolism DLD, DLST Potential drug target

Oxidative phosphorylation

ATPS5 family, COX family,
UQCR family, CYC1, CYTB

Potential drug target

Pyrimidine synthesis UPRT
Sphingolipid metabolism SGMS1
Transport, mitochondrial SLC25A10

Glycerophospholipid metabolism

CEPT1, PCYT2, PDHX

Metabolic genes like Sterol O-Acyltransferase 1 (SOAT1), methylmalonyl-CoA mutase
(MUT), and isozymes of succinate dehydrogenase (SDHA, SDHB, SDHC, and SDHD) have
known FDA approved drugs that can target them. Some of the other genes identified
from our analysis, like uracil phosphoribosyltransferase (UPRT), sphingomyelin synthase
1 (SGMS1), solute carrier protein (SLC25A10), choline/ethanolamine phosphotransferase
(CEPT), phosphate cytidylyltransferase 2 (PCYT2), and pyruvate dehydrogenase complex
component X (PDHX) did not have drug target information. These genes are involved
in diverse metabolic processes, as indicated by the subsystems in Table 1. This analysis
compared the genes in cancer versus normal samples that alter the system upon deletion
and also provided information on the drugs that can target them.

Studies have shown connections between metabolism and epigenetic modifications
in cancers [16,17]. For the genes identified from in silico knockout analysis (Table 1), we
obtained their CpG mapping (Supplementary file 3). Using the information of expression
and methylation levels, we computed divergence for tumor samples for SOAT1, SDHA,
SDHC, PCYT2, ACOX2, COX4I1, and UQCRB. CpGs for SDHB did not show divergence
for tumor samples (Figure 5).

In addition to performing systems-level analysis, we developed a method that can be
used for predicting drug(s) that can be effective for each personalized metabolic network
or can be used for known phenotypes in the system. In this analysis, we queried a list of
genes causing an effect in the system against drug databases, and that gave us information
on drugs that have a higher influence in the system. Using the drug response data from
the Genomics of Drug Sensitivity in Cancer (GDSC) [18], we also identified drugs that
have an influence on the cells when the genes are mutated. Table 2 lists the drugs and
their targets based on the number of samples (out of 1156 total samples) that identified the
genes reported from our in silico gene deletion analysis. These drugs have been tested on
1001 cancer cell lines, including 51 BRCA cell lines. The top-ranking drug, MG-132, is a
proteasome inhibitor and blocks the proteolytic activity of the 26S proteasome complex.
This drug has been found to be effective in inhibiting the proliferation of BRCA cells.
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OSU-03012 is a celecoxib and has been shown to have anti-cancer and antimicrobial activity.
The drug, in combination with PDES5 inhibitors, has shown enhanced anti-tumor activity.
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Figure 5. Divergence analysis for methylation pattern of metabolic genes in cancer and solid tissue
normal samples. For plots (a-h), the CpGs on the x-axis are ordered by their location. The y-axis is
the proportion of tumor samples that are divergent both in the expression space and methylation
space simultaneously. CpGs mapped to promoter regions are indicated by the shape of the points.

From our analysis, it is possible to identify drug combinations that are predicted to
have more effect in cancer versus normal samples. Also, we have generated personalized
drug profiles for each individual in the study, thus enabling us to predict which drug or
drug combination will have a higher drug score in the individual.
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Table 2. Information about drugs ranked based on their influence on genes identified from our in silico analysis. The target information
and the number of samples in which these genes are observed are also indicated in the table.

Drug Brand Name Target #Sig::)ilflitc Zlgtligzr)lples Cohort

MG-132 Proteasome 599 BRCA
OSU-03012 PDPK1 (PDK1) 474 All cell lines
PAC-1 CASP3 agonist 94 All cell lines
GSK-1904529A IGF1R 89 All cell lines
PF-562271 FAK 31 All cell lines
Qs11 ARFGAP 28 All cell lines
Trametinib Mekinist MAP2K1 (MEK1), MAP2K2 (MEK2) 28 All cell lines
XMD11-85h O e arriy D 2 All cell lines
Ox(OSZZe)z;Z;lol MAP3KY7 (TAK1) 14 All cell lines
GSK-650394 SGK3 12 All cell lines
Tipifarnib Zarneslial,;7l\;l7358359, Farnesyl-transferase (FNTA) 12 All cell lines
Vinorelbine Navelbine Microtubules 8 All cell lines
5-Fluorouracil DNA antimetabolite 5 All cell lines

3. Discussion

We have generated a personalized metabolic network for each sample in the study us-
ing divergence values, classified the samples into different clusters based on their metabolic
profile, and identified drug/chemical moieties that can target metabolic genes identified
from our analysis. We have applied these steps to breast cancer samples and identified four
distinct clusters based on their metabolic profile. From the in silico gene deletion analysis,
we identified metabolic genes that are altered in cancer versus normal conditions. Genes
belonging to cholesterol metabolism, valine, leucine, isoleucine metabolism, as well as citric
acid cycle had known FDA-approved drugs targeting them. We also carried out an n-of-1
analysis and identified drug responses in each sample in our study. We identified protea-
some inhibitors (MG-132), COX-2 inhibitor (OSU-03012), CASP3 agonists, and an inhibitor
of IGF-1R (GSK-1904529A) that targeted genes identified from gene deletion analysis of
personalized metabolic networks of cancer samples. We have provided evidence that a
metabolic analysis is able to provide a deeper understanding of the metabolic alterations in
cancer. There are three primary findings from this study that are described below.

First, we used individual RNAseq profiles to build personalized metabolic networks
to estimate candidate metabolic network states in breast cancer and control samples from
TCGA (https:/ /www.cancer.gov/tcga). We first used the divergence approach [4] to iden-
tify genes that diverged high or low based on RNAseq data normalized as transcripts per
million (TPM). We then integrated this information with a genome-scale human metabolic
network [14] to estimate candidate metabolic network states that would be supported
by the observed high and low expression of the corresponding enzyme-encoding genes.
We used the divergence method for computing values because it has the advantage of
removing noise while keeping important signals in the dataset. Similar results could be
obtained using continuous data, but the level of noise in the count is considerable, making
it difficult to find anything useful. Whereas transcriptomic data is useful in giving us a
snapshot of the extent to which genes are expressed, we need to integrate this information
with computational models in order to gain mechanistic insights into the processes that are
affected in the system. In this study, we leveraged our knowledge of metabolic networks
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and integrated divergence data to understand the metabolic landscape of breast cancer.
Our workflow also allows us to carry out an n-of-1 analysis and generate personalized
metabolic networks for each sample in the study.

Second, we identified four distinct metabolic clusters of breast cancer samples from
TCGA. Cluster two had a higher proportion of samples that were HER2-enriched, luminal
A and B samples, ER-positive samples, and triple-negative samples compared to clusters
one, three, and four. Cluster four had a high proportion of samples that were basal-like in
origin, ER-negative, and also triple-negative status. Thus, the metabolic clustering analysis
gave us information on the metabolic profile of the samples that was not evident from the
transcriptome data alone.

Third, from our in silico gene deletion analysis, we identified Sterol O-Acyltransferase
1 (SOAT1), methylmalonyl-CoA mutase (MUT), and isozymes of succinate dehydrogenase
(SDHA, SDHB, SDHC, and SDHD) as having a significant effect (p-value < 0.05) in cancer
as compared to normal samples. These genes had known FDA-approved drug targets that
inhibited them. We also identified CpGs for metabolic genes that were most divergent in
tumor samples. From our drug response analysis, we identified MG-132, a cell-permeable
proteasome inhibitor, that has been known to inhibit the proliferation of BRCA cells [19,20].
This drug has been known to induce down-regulation of anti-apoptotic proteins Bcl-2 and
XIAP and up-regulates the expression of pro-apoptotic protein Bax and caspase-3 in glioma
cells [21]. Studies have shown that the dose of MG-132 varies based on cell type [22,23]. The
drug has been shown to be effective on breast cancer cell lines and not affect the viability of
normal cell lines [23]. We also identified OSU-03012 from our drug response analysis. This
drug has been reported to have anti-cancer activity [24] and mediates anti-tumor effects via
the inhibition of PDK1 [25]. The effect of this drug on breast cancer can be tested. PAC-1,
identified from our analysis, is an activator of procaspase-3 and induces apoptosis in tumor
cells [26]. Our framework provides a list of drugs that can be tested for their effectiveness
in breast cancer.

Tumor cells are known to reprogram energy metabolism [27], and metabolic aber-
rations such as the Warburg effect are considered a hallmark of cancer [28]. Tumor cells
exhibit heterogeneous metabolic profiles, with differential utilization of metabolites such as
glucose, lactate, glutamine, and glycine [2]. Some of the metabolic dysregulations that have
been reported in tumor cells are enhanced glycolysis, amino acid metabolism, fatty acid
metabolism [3,29], which are profoundly dysregulated in cancer and have been linked with
mutated genes. The bioavailability of certain metabolites, such as asparagine, has been
shown to have an influence on the metastatic potential of breast cancer. These studies have
shown that metabolism is altered in cancer, and it is a fundamental process that needs to
be studied in-depth. Tumor cells exhibit variable metabolic profiles making it challenging
to decode the heterogeneous metabolic landscape in cancer.

Our framework is generalizable and can be used for generating personalized metabolic
networks that will help in categorizing the samples based on their metabolic profile and
identifying drug targets that will have an effect on the system.

4. Materials and Methods
4.1. Expression Data and Divergence Analysis

We downloaded RNA-Seq data from TCGA breast cancer samples (https://www.
cancer.gov/tcga), which consists of 1100 tumor (primary and metastatic) and 56 normal
tissue samples. Expression counts summarized at the gene-level were retrieved from the
“firehose” data portal. For metabolic model integration with gene expression and to obtain
context-specific models for each sample, we used transcript per million (TPM) values that
we then simplified into a ternary encoding (up, no change, down) using the divergence
method [4].

Divergence analysis is a method for digitizing high-dimensional omics data into a
binary or ternary representation for simplified analysis. This representation aims to remove
inherent population variation in an omics sample to reveal features that are divergent
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from normal behavior as estimated from a baseline population. In the univariate version
of divergence which was utilized here, after transforming the data to the rank space (by
replacing the original RNA-Seq counts in each sample profile by their ranks within the
profile) and estimating baseline regions, a gene that was differentially expressed above the
baseline region was represented by 1, and one that was differentially expressed below the
baseline region was represented by —1, with the remaining genes at 0. In this analysis, half
of the normal breast samples were used as the reference population to estimate baseline
behavior, and the divergence coding was computed for each gene for the remaining normal
as well as the tumor samples. This step enabled converting the continuous gene expression
value to ternary values for genes in the dataset.

4.2. Integration of Expression Data to Generate Personalized Metabolic Networks

For our analysis, we used the latest genome-scale reconstruction of known human
metabolism, Recon3D, which is a multi-compartment model consisting of 10,600 reactions,
5835 metabolites, 2248 metabolic genes as well as 102 subsystems [14]. Gene-protein-
reaction (GPR) associations in the genome-scale metabolic models (GEMs) were used for
integrating omics information with the models. TPM and divergence values were calculated
for RNA-Seq data from TCGA. These values were integrated with the Recon3D model [14]
using iMAT [30] (Supplementary Figure S1). In this way, we generated 1156 context-
specific metabolic networks and predicted a reaction rate (‘flux’) for each reaction in the
network. Reactions related to biomass synthesis and ATP synthase were considered as
core reactions and retained for the generation of context-specific metabolic networks. We
performed flux balance analysis (FBA) using COBRA toolbox v 3.0 [31] and evaluated flux
distribution using linear programming (LP) solvers [32], using an objective function that
was previously reported for cancer cells [33]. We used Ham’s media composition [14] for
constraining exchange reactions in the context-specific networks. Using fastFVA [34], the
flux values for reactions supporting 90% of biomass production were calculated and used
to classify reactions as active or inactive in the context-specific networks. The workflow
represented in Figure 1 provides an overview of analyses performed. COBRA toolbox v3.0
was implemented in MATLAB R2018a, and academic licenses of Gurobi optimizer v7.5 and
IBM CPLEX v12.7.1 were used to solve LP and MILP problems in this study.

4.3. Classification of Context-Specific Metabolic Networks into Metabolic Subgroups

We carried out flux variability analysis for all context-specific metabolic networks
using fastFVA [34]. Maximum flux values for reactions were used for unsupervised
machine learning methods to identify metabolic clusters of cancer samples (Supplementary
Figure 52). K-means clustering was performed in R using the package cluster and factoextra
for cluster and visualization. We computed the distance matrix using Pearson correlation.
In order to ascertain the optimal number of clusters, we used the “elbow method” that
takes into account the total within-cluster sum of squares (wss). Supplementary Figure S2
represents the curve obtained for wss according to the number of clusters k. We distinctly
observed four clusters for cancer metabolic networks using K-means clustering [35]. The
cancer clusters were then labeled from one to four, and normal tissue samples were assigned
as cluster zero for our analysis.

Using Fisher’s exact test, we identified reactions that were statistically significant in
cancer versus normal and also in clusters one to four (cancer clusters). The list of active
reactions in each cancer cluster was compared with normal tissue samples to determine
subsystems that were enriched in each cluster. We also examined the clusters with impor-
tant phenotypes such as PAM50, ER status of the individual, triple-negative status, tissue
source site, year of initial pathological diagnosis, and pathological state (Supplementary
file 1).
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4.4. Identifying Target Genes in the Context-Specific Networks

We performed in silico gene deletion analysis using the singleGeneDeletion function
in COBRA toolbox [31]. The total number of genes in the Recon3D model was 2248, of
which 1883 were unique genes. We deleted genes in the context-specific metabolic networks
one at a time and measured the ratio of the growth rate of the knockout model versus the
wild type model. Genes with a growth rate ratio (grRatio) < 0.9 were considered to have
an impact on the system and were used as input for drug target prediction. A grRatio of
0.9 suggested that the knockout model was able to attain 90% of its growth compared to
the original model. A Wilcoxon rank-sum test was carried out to identify genes that had a
significant effect on the system upon knockout in cancer versus normal context-specific
networks. Information from the Human Protein Atlas [15] and the Pathology Atlas [36]
was used for biological annotation of these genes and identification of these genes as FDA
approved drug targets or potential drug targets based on HPA.

4.5. Metabolic Genes Divergent in the Expression and Methylation Space

The data was retrieved from TCGA data portal (https://www.cancer.gov/tcga). The
gene to CpG mapping was obtained from the Illumina 450k annotation database. The
mapping indicates some CpGs as being mapped in proximity to the promoter region of the
corresponding gene. The methylation levels are the beta values in the (0,1) range—i.e., the
proportion of methylation at each CpG. Using the gene expression and CpG methylation
data, we computed Spearman rank correlations for breast TCGA normal, and tumor data
for CpGs mapped to each gene. The data for correlation analysis is shown in Supplementary
file 3. Tumor samples in common between the expression data and the methylation data
were selected. Divergence for tumor samples was calculated separately for both RNA-seq
gene expression data (using normal gene expression as a baseline) and for methylation
(using normal methylation as a baseline).

4.6. Drug Target Identification for Genes Shortlisted from Metabolic Networks

We calculated statistical associations between in vitro drug sensitivity data and the
personalized target gene sets, as shown in Supplementary file 2. Specifically, we used
the drug response data from Genomics of Drug Sensitivity in Cancer (GDSC) [18], which
contains IC50s for 265 anti-cancer drugs across 1001 cancer cell lines, including 51 BRCA
cell lines. GDSC also included a genomic and molecular characterization of these 1001 cell
lines. We used the binarized mutation data of more than 19,000 genes, including only
protein-changing mutations [18,37]. For each of the 1156 samples, we created a binary
vector across the 1001 GDSC cell lines indicating whether a cell line has at least one
mutated gene in the essential gene set of the sample under investigation. A Spearman rank
correlation coefficient was computed between the binary vector and the continuous IC50
drug response values for each of the drugs (n = 265). We selected drugs for which at least
one of the samples the p-value is smaller than 1 x 10® (uncorrected). Negative correlation
coefficients indicate that mutated cell lines (i.e., those that have mutations in metabolic
genes) are more sensitive (low IC50) to a drug.

4.7. Statistical Analysis

Fisher’s exact test was the statistical method for identifying significant active reac-
tions from the models. For identifying differentially expressed genes in cancer versus
normal, we used a Wilcoxon rank-sum test. To account for the multiple testing in these
analyses, we calculated the Benjamini-Hochberg (BH) False Discovery Rate correction and
a BH-FDR < 0.05 was considered as significant.

4.8. Software

The R/Bioconductor package ‘divergence’ was used for the divergence computation.
We used the COBRA toolbox v3.0 [31] in MATLAB 2018a for analyzing the metabolic
networks. Academic licenses of the Gurobi optimizer v7.5 and IBM CPLEX v12.7 were


https://www.cancer.gov/tcga

Metabolites 2021, 11, 20 13 of 14

used to solve LP and MILP problems. PCA and K-means clustering were done using R
3.5.0 (codename “Joy in Playing”). For K-means clustering, we used the package ‘cluster’
and ‘factoextra’ for clustering and visualization.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2218-198
9/11/1/20/s1, Supplementary Figure S1: Schematic representation of the iMAT algorithm, operating
on reactions (arrows), metabolites (squares), and genes (diamonds). The representative model has
reactions labeled with R, metabolites with M, and genes with G. The gene expression data is mapped
to genes in the model, and the user defines a cutoff of gene expression that decides which reactions
are retained or eliminated from the model. The genes are colored from green to red, denoting higher
and lower expression values, respectively. Supplementary Figure S2: Elbow plot to identify optimum
number of clusters of cancer samples. Number of clusters k and total within the sum of squares are
represented in x- and y-axis, respectively. Supplementary Figure S3: Volcano plots for the number of
significant reactions identified for each cluster after Bonferroni correction and BH-FDR correction.
Supplementary Figure S4: PCA of normalized TPM values for metabolic genes. Supplementary file 1:
Results of cluster-based analysis. Supplementary file 2: Drug sensitivity results for 1156 samples.
Supplementary file 3: Methylation information and correlation analysis for genes identified from in
silico knockout analysis.
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