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Abstract: The bottleneck for taking full advantage of metabolomics data is often the availability,
awareness, and usability of analysis tools. Software tools specifically designed for metabolomics data
are being developed at an increasing rate, with hundreds of available tools already in the literature.
Many of these tools are open-source and freely available but are very diverse with respect to language,
data formats, and stages in the metabolomics pipeline. To help mitigate the challenges of meeting
the increasing demand for guidance in choosing analytical tools and coordinating the adoption of
best practices for reproducibility, we have designed and built the MSCAT (Metabolomics Software
CATalog) database of metabolomics software tools that can be sustainably and continuously updated.
This database provides a survey of the landscape of available tools and can assist researchers in their
selection of data analysis workflows for metabolomics studies according to their specific needs. We
used machine learning (ML) methodology for the purpose of semi-automating the identification
of metabolomics software tool names within abstracts. MSCAT searches the literature to find new
software tools by implementing a Named Entity Recognition (NER) model based on a neural network
model at the sentence level composed of a character-level convolutional neural network (CNN)
combined with a bidirectional long-short-term memory (LSTM) layer and a conditional random
fields (CRF) layer. The list of potential new tools (and their associated publication) is then forwarded
to the database maintainer for the curation of the database entry corresponding to the tool. The end-
user interface allows for filtering of tools by multiple characteristics as well as plotting of the aggregate
tool data to monitor the metabolomics software landscape.

Keywords: metabolomics; database; text mining; open-source software; workflows

1. Introduction

The need to list and categorize software tools used in different phases of data analysis
is recognized in the metabolomics and bioinformatics communities [1–5]. Technological
advances, both in instrumentation and computation, have allowed for more comprehensive
and sensitive measurements of metabolites. This has driven the growth of metabolomics
applications to study biological mechanisms, discover biomarkers, diagnose disease, and
monitor treatment responses [6–8]. The diversity of applications is matched by a diversity
of instrumental approaches, experimental designs, as well as the expansion of statistical
and computational methods applied to the growing amount of generated and curated
data from metabolomics studies. This translates to a large, complex, and expanding
collection of software tools used in metabolomics [1,9–22]. Unfortunately, it also translates
into the fragmentation of software and data resources, blunting the full advantage of the
expanded capabilities of modern metabolomics research [2,5,23]. Further, as metabolomic
data are to be integrated into multiple -omics datasets (e.g., multiomics or mixomics) or
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as a tool for systems biology, the problem of finding the right tools and data resources is
compounded [24–27].

The size, complexity, and variety of the set of software tools applicable to metabolomics
studies introduce some difficulty in delineating their optimal use and adoption as well as
their incorporation into best practices for reproducible science and data reuse. Metabolomics
researchers may not have dedicated bioinformatics support to help navigate the toolsets,
let alone to iterate the development of analysis workflows [5]. Multiple efforts have
sought to provide a reasonably up-to-date overview of the software tools being devel-
oped [1,14,16–19,21,28]. However, these have relied on either labor-intensive human cura-
tion of the most notable tools as they are released and/or on crowdsourcing of the most rec-
ommended tools available. The pace of metabolomics and software development combined
with the already-mentioned diversity of the field itself means that these efforts cannot cover
the entirety of the tool landscape, and they are bound to be quickly out of date. Inspired
by the work being conducted in other areas of bioinformatics tool development [2,29], we
propose that surveying and assessing the current landscape of metabolomics software
tools with respect to their functionality, interoperability, and reusability can be a “force
multiplier” for the metabolomics methods development community and for researchers
in general. To that end, we have developed MSCAT, a curated database of metabolomics
software tools that uses Machine Learning (ML) and text mining to automatically assist
the curator by scanning the literature for publications describing metabolomics tools and
identifying new metabolomics tools by name (Figure 1).
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Figure 1. Schematic of MSCAT function. A semi-automated process is implemented where the
database server periodically queries the literature and extracts new published tools to be displayed
in the user interface (UI). The tools classification is then curated by the database maintainer.

2. Results
2.1. Categorization of Software Tools

Given the large variety of instruments, approaches, and applications represented in
metabolomics research, any survey or catalog of software benefits from a framework to
categorize these tools. Different schemes have been explicitly and implicitly proposed
(see Table 1) by previous reviews and surveys. Two basic aspects emerge as criteria for
tool categorization: instrumentation used and step in the analysis pipeline. However,
many differences emerge among the schemes in their details. Another pitfall of an a priori
granular categorization of tools is that the structure may limit representation of the kinds of
workflows possible in metabolomics studies. This is especially a concern as the discipline
develops new approaches and refinements. Thus, when categorizing tools for MSCAT, we
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opted for a coarse categorization based on seven functionality categories: Pre-processing,
Post-processing, Statistical Analysis, Annotation, Database, Visualization/Network, and
Data/Workflow Management. Within the first four categories listed, each software tool
may implement multiple specific methodologies or tasks (e.g., Pre-processing tools may
be for peak detection, normalization, batch correction, etc.), and these are cataloged in
a separate field for each of the first four functionality categories for the user to further
filter the results in the main UI table or search for them in the Workflow Builder. Suite
solutions (tools that function at multiple pipeline stages) are curated as belonging to
multiple pipeline categories.

Table 1. Categorization (rows) of metabolomics software tools in previous surveys (columns).

Kusonmano et al. [30] Spicer et al. [1] Stanstrup et al. [31] Misra et al. [18] Chang et al. [32]

Data Acquisition
Instrument

Pre-Processing
LC-MS
GC-MS
NMR

Metabolite Profiling
MS Data

ProcessingNMR Data
ProcessingUV Data

Processing

Data Preprocessing Data Preprocessing

Data Preprocessing
Normalization
Identification

Binning

Annotation
Identification
Quantification

Metabolite
Annotation

Ion grouping
MS/MS

Structure Databases

Statistical Tools Statistical Analysis

Data Analysis
PCA

Clustering
SVM
PLS

Post-Processing

Data Analysis
Statistics

Network Analysis
Pathway Analysis

Annotation Tools Identification

Data Interpretation
Databases

Network Visualization
Pathway Analysis

Statistical Analysis Biological
Interpretation Functional Analysis

Workflow and other
tools Databases Metabolic Modeling

Instrument-based
Workflows

To supplement the stage-based categorization of tools, these are also curated by instru-
mentation category (LC-MS, GC-MS, MS, NMR) and by biomolecule type to accommodate
tools that are used in multi-omics (i.e., not strictly the analysis of metabolite data). Further
software tool characteristics (OS, programming language, version, user interface type, etc.)
are curated to ensure “findability” of software and to be compatible with a simple software
ontology (https://github.com/allysonlister/swo, accessed on 20 September 2021).

2.2. Database Design

We designed a relational database using PostgreSQL [33,34] (version 12.1) housing
17 tables that were normalized to the fifth normal form [35]. Following these normalization
guidelines allows for a database that can be updated frequently while preventing data
inconsistency and minimizing redundancy. The tables in the database are listed in Table 2.

We chose to base MSCAT on a relational database model rather than as a single flat
table to allow for extensibility. The software tool’s name was chosen as the primary key or
foreign key across tables, giving the data model a primarily one-to-many relation structure.

2.3. Literature Mining: Tool Publications

To begin populating our database, we defined a scope of the metabolomics tools
to find and curate. As dictated by best practices, we limited our survey to open-source
software tools. Additionally, in order to ensure both findability of documentation and to

https://github.com/allysonlister/swo
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obtain rich information for tool curation, we limited ourselves to metabolomics software
tools that have a publication associated with them (i.e., a publication announcing and
describing a tool or its development). Thus we needed to mine the metabolomics literature
to find a specific type of publication, also known as a Document Classification Problem. As
a first approach, we built a PubMed query comprising the main concepts of metabolomics
and software through keywords and Medical Subject Headings (MeSH) (Table 3).

Table 2. Structure of the MSCAT database consisting of 17 tables and their descriptions.

Database Table Name Description

Main Tool name, release year, link to website, date of last.update, etc

Functional Characteristics

Molecule Type Molecule types the tool works with
Approach Metabolomics approach (targeted, untargeted) if defined

Instrument Data Type of instrument data the tool uses, if defined
Functionality Functionality categorie(s) of the tool
Annotation Annotation methods the tool provides

Pre-processing Pre-processing methods the tool provides
Post-processing Post-processing methods the tool provides

Statistical Analysis Statistical methods the tool provides

Software Characteristics

File formats The file formats the tool works with
Operating system Tool’s operating system compatibility

Programming language Tool’s available programming languages
Software license Tool’s software licenses

User interface Tool’s available User interfaces
Containers Is the tool available as a container (URL)
Citations Aggregate number of citations of tool publications

Publications Publications associated with the tool

Table 3. Outline of first PubMed query to obtain metabolomics software tools papers based on
metabolomics and software-related keywords and MeSH terms.

Concept Metabolomics Software

Keywords
Metabolomics
Metabolonics

Metabonomics
Programming Language

Controlled Vocabulary (Mesh) Metabolomics Software

The query defined by Table 3 returned 987 results as of 16 June 2021, and upon
manual curation of titles and abstracts, 45.3% of them were publications of the desired type
(i.e., publications primarily about a metabolomics software tool or tools, as opposed to
metabolomics applications where a software tool is talked about in the abstract).

Manual checking of some previously logged publications with this literature search
quickly revealed, however, that this simple query was not capturing all of the metabolomics
software literature. We then formulated a second version of the PubMed query to cast a
wider net. (Table 4).

This second query returns 9698 results (as of 16 June 2021), and upon manual curation
of the titles and abstracts, 39.2% of them were publications of the desired type. This number
is close to that obtained by the first query, however, it includes more software papers in
areas outside of metabolomics, thus, while the second query catches more relevant papers,
the “signal-to-noise” ratio is lower. As we will see in the following section, this may also
affect the performance of our tool name identification method.

As mentioned above, the primary key in the MSCAT main database table is the tool’s
name since multiple papers can talk about the same tool, and we want to be able to detect
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tools named anywhere in the metabolomics literature. Further, although FAIR (Findable,
Accessible, Interoperable, and Reusable) Principles for Research Software [36,37] call for
unique identifiers for software, adoption of this metadata standard is not complete. Thus,
in order to properly track the tools to curate as they are published, in practice, we needed a
way of detecting the tool name in the literature query results. In other words, on top of our
literature query, we needed to solve a Named Entity Recognition (NER) problem [38,39].

Table 4. Outline of second PubMed query to obtain metabolomics software tools papers based on metabolomics and
software-related keywords and MeSH terms.

Concept Metabolomics Software

Keywords

Metabolomics
Metabonomics
Metabolonics

Metabolite
Multiomic
Mixomic

Metabolome

Algorithm
Toolkit
Code

Software (framework/pipeline/tool/package/suite/workflow)
Open source
Source code

Web application
Command line

Programming language
Github
Gitlab

Sourceforge
Bioconductor

Bio(python/java/ruby)

Controlled Vocabulary (MeSH) Metabolomics
Metabolome Computing Methodologies

2.4. Literature Mining: Tool Name Detection

Using the information that is retrieved by mining PubMed, our goal now was to detect
metabolomics software tools contained within the text. For this reason, we employed a
Named Entity Recognition model to extract predicted probabilities that a certain token,
usually a word, is a metabolomics software tool name.

The title often contains information about the metabolomics tool name if the article is
a true positive. Thus, we concatenated all titles with their respective abstracts obtained
from the first PubMed query above. To train a NER model, we needed to first split the data
into training and testing sets. We opted for an 80% for training and 20% for the testing split.
To generate both the training and testing sets, we tokenized the words in the concatenated
title and abstracts, then we removed English stop words, as defined by the Python Natural
Language Toolkit (NLTK) package [40], and we tagged each token with a part of speech
(POS) tag. We also identified where sentences end for each collection of tokens, and we
created our label by tagging tokens that match a predefined list of known metabolomics
software tools (combining [1] and our manual curation). An example of the processing
can be seen in Table 5 (see Materials and Methods). Finally, we formatted the training
and testing data to conform to the conference on natural language learning (CoNLL)
format. We used a pre-trained deep learning model, provided by the Python spark-nlp
package [41], to produce ELMo embeddings [42] for each sentence’s tokens. These word
embeddings were used as features in the deep learning NER model. The deep learning
(neural network) architecture that the NER model was built on starts with a character
convolutional neural network (CNN) followed by a bi-directional long short-term memory
(LSTM) layer followed by conditional random fields (CRF) layer [43,44]. The F1 score (see
Materials and Methods) is an evaluation metric that aims to balance a model’s predictive
correctness (precision) and its ability to identify the relevant data (recall). Against the
dataset obtained from the first PubMed query, the CNN-LSTM-CRF model performs with
an F1 of 76.5% versus an F1 of 64% using the CRF layer alone. When applied against a
dataset from the second, broader PubMed query, the CNN-LSTM-CRF model performs
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with an F1 of 63.5% while using only the CRF layer performs with an F1 score of 45%. The
poorer performance of the model on the second query may be partly due to the sparseness
in tool name tokens in the dataset text. However, the size of the curated training set used
to test the second query was also much smaller in relation to the size of the dataset (600 out
of 9698 abstracts) compared to the curated training set used for the first query (600 out of
987 abstracts). Thus, this may also indirectly affect the NER performance. In the end, we
chose to use the first, narrower PubMed query in the currently available version of MSCAT,
and future updates will feature an optimized literature query.

Table 5. Example of processed training data. Where each row corresponds to a word from the
collection of abstracts in the training data. The Part of Speech column (POS) tag tokens as a common
noun (NN), adjective (JJ), etc. The sentence ID column identifies a training example (i.e., all tokens
with the same Sentence ID are inserted into the model as one training example. The label column
describes whether a token is a software tool (T) or not (O).

Token POS Sentence ID Label

MetaComp NN 1.0 T
comprehensive JJ 1.0 O

analysis NN 1.0 O
software NN 1.0 O

comparative JJ 1.0 O

2.5. Database User Interface

The current version of the MSCAT presents the user with three different views of the
data (Figure 2). The user interface (UI) communicates with the PostgreSQL backend and
is built using the Dash web framework. The main tab presents the tools and a subset of
their characteristics sorted by how recently the tool has been updated and by the number
of citations from the corresponding publication. The user is able to filter the table view by
any combination of matching values in multiple fields. The user is also able to extract the
full dataset of MSCAT as a single table in csv format from this tab.

In the middle tab of the application, we displayed aggregate data from the curated
tools in MSCAT detailing the proportion of programming languages, methodologies, the
timeline of release, and others. It is our intention to motivate from this view future detailed
assessment of the software landscape (using the curated data in MSCAT) that may help
identify gaps or overrepresentation of the kinds of metabolomics software being developed
and areas where interoperability can be improved.

The third tab in the user interface is our first approach to providing the user with a way
to design a metabolomics pipeline or workflow. In the current implementation, the user
chooses specific methods within two or more functionality categories from among those
most often linked together as pipelines or workflows (i.e., Pre-processing, Post-processing,
Statistical Analysis, and Annotation) as well as other optional, additional discriminants
(Instrument type, UI type, Molecule type) if needed. The interface then draws a Sankey-
type diagram [45] representing the possible tool combinations that can constitute such
a pipeline. This workflow generator interface does not present the other functionality
categories (Database, Workflow Management, Visualization) since tools in those categories
are largely agnostic or independent from the pipeline categories. The end-user can still
perform a custom search of tools in those categories via the main interface tab.

2.6. Curation Workflow

We based our initial scan of the literature to start populating the database on the first
query described above, plus previous reviews of metabolomics software tools [1,14,17–21,31].
From this scan of publications and NER identification of tools, we see that there are
approximately 500 published metabolomics software tools (as of 16 June 2021), of which we
have curated 400 thus far. For automation of updates of the landscape, MSCAT runs a script
that calls the R functions that re-run the PubMed query and the Python code that detects
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the predicted tool names. The script then checks the updated results against previously
predicted tokens, logged publications, and tools already in our database to prepare a report
that it sends to the database curator with a list of possible new metabolomics tools (and
their publication) to add. The script also runs an R function that queries the CrossRef
API [46] for the citation numbers of each publication listed in MSCAT. Currently, we are
running the literature mining script monthly and incorporating its results alongside the
backlog of known tools still being curated. We are also using the ticket/issue feature of
the code repository of MSCAT for community members to submit tool suggestions or
data corrections.
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3. Discussion

We have built MSCAT and its associated ML and automation parts in order to provide
a catalog of metabolomics software tools that can be updated in a sustainable fashion
without exclusive reliance on crowdsourced data or literature reviews. The database and
its associated web interfaces are hosted at the Metabolomics Workbench website [47], an
international repository for the metabolomics community. The catalog has three main
purposes: make metabolomics tools more findable even if user requirements are very
specific, providing a bird’s-eye-view of the efforts of the metabolomics software community,
and, lastly, provide a way to determine interoperability between tools. Aside from the
benefits to the user in finding and choosing compatible software for analysis workflows,
our database project brings a structured framework to conduct surveys of metabolomics
software tool development. We thus see the database also as a platform for the community
to discuss needs and trends in the field and identify gaps in functionality as well as best
practices for tool documentation and deployment.

The interoperability determination goal is represented in the current MSCAT imple-
mentation, as the workflow builder Table Currently, the determination of interoperability
depends on salient features of the software tool (e.g., operating system dependencies,
compatible file formats) and its classification of chief functionality (e.g., annotation, pre-
processing, statistical analysis). Relying on this chiefly syntactic definition of interoper-
ability is not error-proof, it depends strongly on user metabolomics expertise, and it does
not adequately describe all the meaningful analysis workflows that can be assembled.
We initially tried mitigating the lack of semantics by matching input and output file for-
mats between tools in a pipeline. However, the file formats used in metabolomics do not
provide a sufficient specification for this. The recent development of newer, more metadata-
rich file formats [48–50] for metabolomics tells us there is an increasingly urgent need
to standardize the knowledge representation and metadata elements in this community
to achieve better interoperability and information exchange. There is a similar problem
being worked on in the healthcare space [51], and a similar effort is likely needed when
dealing with large, diverse datasets as in metabolomics and multi-omics. Future work will
aim to build some semantic characterization of the software tools into their curation into
MSCAT. This characterization could combine the metadata in the new file formats together
with a Software Description Ontology [52] thus that future versions of the MSCAT can
characterize software tools by their input and output variables to programmatically assess
interoperability and outline all possible meaningful analysis pipelines [53]. We expect that
this future capability would help improve the compliance of metabolomics studies to FAIR
principles as well as provide an entry point for researchers with less specialized expertise
to formulate a sophisticated data analyses workflow that takes full advantage of what the
metabolomics software community has to offer.

4. Materials and Methods

We surveyed the landscape of available metabolomics tools by mining the literature
repository PubMed. PubMed citations come from MEDLINE indexed journals as well
as journals and manuscripts deposited in PubMed Central. We used the easyPubMed
R package [54] to make API calls to PubMed, retrieving the abstracts that matched the
PubMed query that we defined. The first PubMed query used for model training and initial
scanning was:

((software [MeSH Terms] OR “programming language” [All Fields]) AND
(metabolomics [MeSH Terms] OR “metabolomics” [All Fields] OR “metabolomics”
[All Fields] OR “metabolomic” [All Fields] OR “metabonomic” [All Fields] OR “metabo-
nomics” [All Fields])).

The second PubMed query, which collects many more publications but at a lower
percentage of relevant ones, was:

(((“metabolomic” [All Fields] OR “metabolomics” [All Fields] OR “metabonomic” [All
Fields] OR “metabonomics” [All Fields] OR “metabolonics” [All Fields] OR “metabolite”
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[All Fields] OR “metabolites” [All Fields] OR “multiomic” [All Fields] OR “multiomics”
[All Fields] OR “mixomic” [All Fields] OR “mixomics” [All Fields] OR “metabolome”[All
Fields] OR “metabolomes”[All Fields] OR Metabolomics[Mesh] OR metabolome [Mesh]))
AND (((algorithm OR toolkit) AND (code OR software)) OR “open source” OR “source
code” OR “web app” OR “web application” OR “command line” OR “programming
language” OR (software AND (framework OR pipeline OR tool OR package OR suite
OR workflow)) OR github OR gitlab OR sourceforge OR Bioconductor OR biopython OR
biojava OR bioruby OR “Computing Methodologies” [Mesh])).

The mined data included the article’s PMID, the title, and the abstract. Publication
types were curated manually using Endnote software (Clarivate).

We concatenated all titles with their respective abstracts. To train a NER model, we
split the 600 manually curated abstracts retrieved from mining PubMed using Query 1
into training and testing sets. We opted for an 80% for training and 20% for testing
split and further pulled 10% from the training as a validation set. To both the training
and testing sets we tokenized the words in the concatenated title and abstracts, then we
removed English stop words, as defined by the Python NLTK package, and we tagged each
token with a part of speech (POS) tag. We also identified where sentences end for each
collection of tokens, and we created our label by tagging tokens that matched a curated list
of known metabolomics software tools derived from the 600 manually curated abstracts.
An example of the processing is shown in Table 5. Finally, we formatted the training and
testing data to conform to the conference on natural language learning (CoNLL) format.
We then used a pre-trained deep learning model, provided by the Python “sparknlp”
package [41], to produce ELMo embeddings for each sentence’s tokens. These word
embeddings were used as features in the deep learning NER model that was generated
using the “sparknlp” package.

The deep learning (neural network) architecture that the NER model is built on
includes a character convolutional neural network (CNN) followed by a bi-directional long
short-term memory (LSTM) layer followed by conditional random fields (CRF) layer [55].
The parameters of the character CNN take 100 number of characters, a filter size of 25, and
a kernel of 3 × 3, and the LSTM cells are of size 128 for the bi-directional LSTM layer. We
evaluate model performance using the f1 score statistic.

f1 score = 2
(precision)(recall)
precision + recall

=
TP

TP+ 1
2 (FP + FN)

where TP, FP, and FN are the true positive, false positive, and false negative predic-
tions, respectively.
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