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1 The model balancing problem

To define a model balancing problem, we consider all model variables (kinetic constants and state variables),
describe their dependencies by a dependency schema, and define score functions based on priors, likelihood, and
posterior distributions (see Table 1).

1.1 Model variables, constraints, and cost scores

Model variables The model variables are split into independent “basic” variables and dependent “derived”
variables based on the following rules. (i) With kinetic constants described in log-scale, all dependencies are
linear. Among the kinetic constants, some are treated as basic variables, while all others are treated as derived.
There is some freedom in choosing the basic variables, and our matlab and python implementations of model
balancing use different choices. Here we describe the choice that is implemented in matlab1, with independent
equilibrium constants, Michaelis-Menten constants, and velocity constants (geometric means of forward and
backward catalytic constants) as basic variables, and dependent equilibrium constants and catalytic constants as
derived variables. (ii) For each metabolic state s, we consider a metabolite log-concentration vector x(s) = ln c(s),
an enzyme concentration vector z(s) = ln e(s), and a flux vector v(s). Vectors from different metabolic states are
not arranged into data matrices, but are merged into large vectors x, z, and v. The fluxes are predefined. (iii)
Since enzyme concentrations depend on kinetic constants, metabolite concentrations, and fluxes, they are treated
as dependent variables. (iv) Thermodynamic driving forces depend on equilibrium constants and metabolite
concentrations, and are therefore dependent. Thus, basic kinetic constants and metabolite concentrations are
the only basic variables. (v) The flux directions determine the signs of thermodynamic driving forces, leading
to linear constraints between (logarithmic) equilibrium constants and metabolite concentrations. Altogether, we
obtain the following variables and dependencies.

1 In parameter balancing, Gibbs free energies of formation are the independent parameters behind the equilibrium constants. The
Gibbs free energies of formation determine all equilibrium constants, but in a redundant way. While they could be used in model
balancing too, an alternative (minimal) set of variables is given by the equilibrium constants of a subset of the reactions l, where the
columns of the stoichiometric matrix (for all external and internal metabolites) corresponding to these reactions form a maximal set
of linearly independent columns.
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State variables
Metabolic flux v

(s)
l Reaction l, in state s

Metabolic log-concentration x
(s)
i = ln c

(s)
i Metabolite i, in state s

Enzyme log-concentration z
(s)
l = ln e

(s)
l Reaction l, in state s

Kinetic constants
Log kinetic constants q,qind,qdep

Equilibrium constants keq,k
ind
eq ,k

dep
eq

Catalytic constants k+
cat,l, k

−
cat,l Reaction l

Velocity constants KV,l =
√
k+

cat,l, k
−
cat,l Reaction l

Michaelis-Menten constants KM,li Reaction l, reactant i
Activation constants KA,li Reaction l, activator i
Inhibition constants KI,li Reaction l, inhibitor i

Estimation score functions
Prior prescore P ?(x, z,q)
Likelihood prescore L?(x, z,q)
Posterior prescore R?(x, z,q)
Prior score P (x,qind)
Likelihood score L(x,qind)
Posterior score R(x,qind)

Table 1: Mathematical symbols used in model balancing

1. Basic variables By default, our basic variables comprise (i) the independent kinetic constants in log-
scale (independent equilibrium constants lnK ind

eq , Michaelis-Menten constants lnKM, allosteric activation
constants lnKA, allosteric inhibition constants lnKI, and velocity constants lnKV) in a vector

qind =


ln kind

eq

ln kV

ln kM

ln kA

ln kI

 , (1)

and (ii) the metabolite log-concentrations from one or several metabolic states s, forming metabolite vectors
x(s) = ln c(s). We obtain a vector of free variables

y =


x(1)

x(2)

..

qind

 . (2)

With np independent kinetic constants, nm metabolites, and ns metabolic states, the vector contains
np + nm ns free variables.

2. Derived variables We consider three types of dependent variables: dependent kinetic constants, enzyme
concentrations, and thermodynamic forces. (i) The dependent kinetic constants on log-scale (dependent
equilibrium constants lnKdep

eq , forward catalytic constants ln k+
cat), and backward catalytic constants ln k−cat)

form a vector

qdep =

 ln kdep
eq

ln k+
cat

ln k−cat

 . (3)
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This vector can be computed from qind with the help of a linear function qdep = Mdep qind. The dependency
matrix Mdep follows from the stroichiometric matrix as described in [1]. Similarly, the vector q of all kinetic
constants is given by a linear formula

q =

(
qind

qdep

)
=

(
I

Mdep
ind

)
qind = Mall

ind qind. (4)

If we focus on only those constants that actually appear in the rate laws (catalytic constants and Michaelis
constants), we can list them in a smaller vector qmode, which is then related to the basic kinetic constants
via a similar formula qmod = Mmod

ind qind. (ii) The thermodynamic forces are computed by the linear formula

θ(s) = ln keq − S> x(s) (5)

or briefly θ = Mθ y with the stoichiometric matrix S (for all metabolites) and a matrix Mθ obtained from
the network structure. (iii) Based on rate laws and using Eq. (1), the enzyme concentration vectors e(s)

are given by

e
(s)
l =

v
(s)
l

kl(q,x(s))
. (6)

For a wide range of rate laws, both e(s)
l and its logarithm z

(s)
l = ln e

(s)
l are convex functions in (q,x).

Moreover, Eq. (6) yields positive enzyme concentrations on the entire solution space x (see below), except
when fluxes vanish: if v(s)

l = 0, we directly set e(s)
l = 0 (and omit ln e

(s)
l from the list of model variables).

Constraints The solution space for our free variables is defined by two sorts of constraints. First, feasible ranges
on all variables except for the enzyme concentrations2

qmin ≤ q ≤ qmax, xmin ≤ x(s) ≤ xmax, θmin ≤ θ(s) ≤ θmax, (7)

where s is the index for metabolic states. Second, the driving forces must be positive along the flux directions,
and so the known fluxes define the signs of all driving forces. For reactions with non-zero fluxes v(s)

l 6= 0, we
obtain the thermodynamic constraints

v
(s)
l θ

(s)
l > 0, (8)

which (together with Eq. (5)) define linear constraints for the vector y. In reactions with zero fluxes, the driving
forces remain unconstrained (unless we know, for some other reasons, that reactions are in chemical equilibrium).
Together our constraints can be written as

A y ≤ b, (9)

with a matrix A and a vector b obtained from reaction stoichiometries and flux directions. These constraints
Eq. (7) and (9) define a convex solution polytope P. Each polytope point y describes a feasible set of model
parameters and metabolic states (i.e. states with positive driving forces). Conversely, any feasible set of kinetic
constants and metabolic states (respecting all bounds and constraints) corresponds to a point in the polytope.

2Positive enzyme concentrations are ensured by the other formulae. With thermodynamically feasible rate laws, the enzyme
concentrations e(s)l (q,x(s)) for active reactions, Eq. (6), are positive and convex on the entire solution polytope P. Upper bounds on
individual enzyme concentrations (or on weighted sums of enzyme concentrations) would yield non-linear inequality constraints, giving
the solution polytope a curved shape. However, since these constraints are convex, the resulting solution set would still be convex.
Such constraints are not considered here, but they could be used without any problems. Lower bounds on enzyme concentrations
(or on absolute metabolite concentrations), in contrast, would make the solution space (on log-scale), and therefore the optimality
problem non-convex.
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Geometry of the solution space Model balancing determines the vectors q and x at the same time. The
resulting vector y lives in a high-dimensional polytope (see Figure 1): the polytope resembles a Cartesian product
of the polytopes for these single vectors, but due to thermodynamic constraints between kinetic constants and
metabolite concentrations, some parts of this Cartesian product must be removed. To see how the metabolite
spaces for several metabolic states are combined, let us return to our simplified model balancing problem from
section 2.2. We can solve this problem separately for each state, and this is also the easiest way to solve the
problem. But we can also fit all metabolic states simultaneously by one big regression model. Each metabolite
profile x(s) must lie in a metabolite polytope P(s)

x . If the flux directions in all metabolic states are the same, these
polytopes are identical; if fluxes change their directions, the metabolite polytopes P(s)

x will differ. If we merge all
vectors x(s) into a vector x, the solution polytope for this vector will be higher-dimensional and will be given by
the Cartesian product

∏
s P

(s)
x . As before, we can consider the prior, likelihood, and posterior (for all metabolic

states) as functions on this solution space. Since the metabolic states are independent, the prior, likelihood, and
posterior functions can be split into products of priors, likelihoods, and posteriors for the single states, confirming
that the estimation problems could have been solved separately.

Prior and likelihood terms Finally, we define prior, likelihood and posterior scores. The posterior is obtained
from prior and likelihood terms. Kinetic constants, metabolite concentrations, and enzyme concentrations are
considered in log-scale and described by Gaussian priors and likelihood terms on this scale. For the basic kinetic
constants, we use a correlated prior described by independent prior terms (for independent kinetic constants) and
from pseudo values (for dependent kinetic constants). While pseudo values are introduced to define correlated
priors, they can be treated in practice as additional data points (see [1]). For the state variables (metabolite
log-concentrations x(s)

i and enzyme concentrations z(s)
i ) , we assume uncorrelated Gaussian priors (i.e. log-normal

priors for the concentrations themselves). Similarly, the logarithmic data values x(s)
i,data and z(s)

l,data in the likelihood
term, are assumed to be independent and follow Gaussian distributions around the true values.

1.2 Convex score functions

Convexity proof The truncated score function R0(y) (that is, the posterior loss, using a truncated function
quad0 for the enzyme term) is convex. To see this, we note:

1. The logarithmic flux-specific enzyme demand (or “reaction time”)

ln τl(x
(s),q) = ln

1

k(x(s),q)
(10)

(for reaction l and metabolic state s) is convex in (x(s),q) in the entire feasible space for (x(s),q) and for
all factorisable rate laws [2]. For x(s) alone, this has been shown in [3]. For the combined vector (x(s),q),
convexity holds because Eq. (10), with factorisable rate laws, can be entirely decomposed into functions
allowed in Disciplined Convex Programming [4]. For details, see section 4 and [5].

2. The enzyme log concentration ln el(x
(s),q) = ln[τl(x

(s),q) v
(s)
l ] is linear in τl(x

(s),q) and therefore a
convex function in (x(s),q).

3. In the prior score, likelihood score, and posterior score

P (x) = quad(q− q̄pr,Σ
q
pr) + quad(x− x̄pr,Σ

x
pr) + quad(z(q,x)− z̄pr,Σ

z
pr)

L(x) = quad(q− q̄,Σq
lk) + quad(x− x̄lk,Σ

x
lk) + quad(z(q,x)− z̄,Σz

lk)

R(x) = quad(q− q̄po,Σ
q
po) + quad(x− x̄po,Σ

x
po) + quad(z(q,x)− z̄po,Σ

z
po). (11)
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Polytope of possible solutions

x
q

x,q

State 3State 1 State 2

Metabolite polytopes Kinetic constants (types of independent parameters)

ln Keq ln KV ln KM ln KA

x1
x2 x3

Cartesian product
Non−Cartesian product

Non−cartesian product

Figure 1: Solution space in model balancing. The basic model variables (kinetic constants and metabolite
concentrations on log-scale) are constrained by physiological bounds and thermodynamic constraints dependent
on flux directions. Together, these inequality constraints define a solution space, a high-dimensional polytope
in the space of log-variables (bottom). Geometrically, this polytope is a “non-Cartesian product” between a
metabolite polytope and a kinetic constant polytope (centre): a Cartesian product from which some parts are
removed by extra constraints. The metabolite polytope is a Cartesian product of the metabolite polytopes for
single metabolic states (which may differ due to different flux directions); the polytope of kinetic constant is a
(non-Cartesian) product of boxes for different types of constants (top right).

the first terms are quadratic in q and independent of x, while the second terms are quadratic in x and
independent of q. Both terms are therefore convex in (x(s),q). The third terms are quadratic in z(q,x) and
are not convex. However, if we replace the function quad by its truncated version quad0, each component
can be written as a sum of non-decreasing functions of z(s)

l (q,x), which are convex in (q,x), so the terms
are convex in (q,x) themselves.

Relaxed and convex score functions The original model balancing problem, minimising R(y), is in general
a non-convex problem. To make it convex, we can modify the posterior score for enzyme concentrations. We
assume an uncorrelated prior for enzyme concentrations, i.e. a separate Gaussian prior for each reaction l and
each metabolic state s. If we do this, the second term becomes a sum of the form

quad(z(x)− z̄,Σz) =
∑
ls

G(zl(x
(s))− z̄ls, σls), (12)

with a one-dimensional quadratic function G(x−x̄, σ) = 1
2

(x−x̄)2

σ2 . Next, we split this function into G = G++G−,
where G+ = G only if x ≥ a (and 0 otherwise) and G− = G only if x < a (and 0 otherwise), and define the
relaxed quadratic function

quadα(z(x)− z̄,Σz) =
∑
ls

G+(zl(x
(s))− z̄ls, σls) + α

∑
ls

G−(zl(x
(s))− z̄ls, σls). (13)

Note that by setting α = 1, we reobtain Eq. (12), by setting α = 0, we obtain only the first term (with G+),
and with α values in between we can interpolate between these two cases. Importantly, since G+ is an increasing
function, the function quadα(z(x)− z̄,Σz) is a sum of non-decreasing functions G+(·) of a convex function z(x)
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and therefore convex3 in x! We now define the relaxed prior loss Pα(x), the relaxed likelihood loss Lα(x), and
the relaxed posterior loss Rα(x) by replacing quad by quadα in the enzyme term. By varying α between 0 and 1,
we can interpolate between the convex truncated problem and the non-convex, original problem. By choosing α
small enough, the non-convex enzyme terms can be made arbitrarily small, and since the other terms are strictly
convex, there will be some positive value α > 0 below which the problem is always convex.

1.3 Additional regularisation terms

The posterior score function is based on data and prior beliefs about model variables. From a point of view of
maximum-likelihood estimation, prior scores can be seen as regularisation terms, expressing preferences for certain
values of model variables. Aside from the terms described in the paper, additional terms can be used to implement
additional biological hypotheses.

• Pseudo values. If we assume independent priors for all basic variables in the dependency schema, this
leads to a prior distribution of the dependent variables. However, this distribution may not match our
expectations about the dependent variables. To correct this, we would have to introduce a prior for the
dependent variables. While this is formally impossible (since their distribution is already defined via the
basic variables), we may employ so-called pseudo values: hypothetical data values with broad error bars
representing plausible ranges. Effectively, priors and pseudo values together define a dependent prior on the
basic variables. In our test examples, pseudo values did not considerably improve the results, and in our
code, they are not used by default.

• Regularisation term for c/KM ratios. If a KM value is much higher or lower than the corresponding
typical metabolite concentration, this can have disadvantages for the cell: in the first case, enzyme is used
inefficiently, while in the second case, the reaction is “inelastic” and a fluctuating substrate influx leads to
large concentration fluctuations. If we assume that cells prevent these two cases, we may penalise, as a
prior assumption, c/KM ratios that differ too much from 1. To keep metabolite concentrations reasonably
close to the respective KM values, we added a quadratic term that scores the sum of log ratios ln cis/KMil

over each metabolite i, corresponding enzymes l, and metabolic states s. The term is supposed to prevent
enzymes from operating in full saturation or fully in the linear range, and it can reduce – indirectly –
concentration changes for each metabolite. The penalty term can be formulated as

Tc/KM
=
∑
ils

β2

2
ln(cis/KMil)

2 (14)

with indices i (metabolite), l (reaction), s (sample), and a stringency parameter4 β. Since this term is
convex in our basic variables (and strictly convex in many of them) it improves the convexity of the overall
problem. When we tried using this term with artificial data, the prediction of KM values became worse;
while this was partially expected (because our artificial data were not made to yield c/KM ratios close to
1), we concluded that the term might do more harm than good, and did not use it in the remaining tests.

• Priors and data for thermodynamic forces. Thermodynamic forces, as model variables, may be expected
to lie in some typical ranges, and sometimes measurement data may be available [6]. Priors or data for
driving forces (not to be confused with priors for equilibrium constants) can be used to define new, force-
related terms in each of the pre-scores (P ?, L?, and R?), and as a consequence in P , L, and R. Since θ is

3Remember that the enzyme log demand ln e(x) is a convex function on the metabolite polytope [3] for a wide range of plausible
rate laws.

4If we see this term as a prior, the stringency parameter β can be interpreted as 1/std(ln c/kM). Importantly, this is not equal
to 1/stdgeom(c/KM), but instead, to 1/ ln(stdgeom(c/KM)). In theory, specific priors (and even data values) for each single c/kM
ratio could also be used.
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a linear function of x, it adds another quadratic (and therefore convex) function of x to the existing term
for x. We did not use this feature so far, but it would be easy to implement.

• Temporal correlations in metabolite concentrations In measured time series, a metabolite concentration
will not fluctuate randomly, but rather smoothly, and will therefore be correlated between subsequent
timepoints. If we expect such correlations, we can implement this belief by a prior term for temporal
changes, i.e. a penalty on temporal differences ∆ti ln c = ln c(t(i + 1)) − ln c(ti). To derive such a term,
we may assume that each log metabolite concentration follows a diffusion process (Wiener process) in
continuous time τ . The difference ∆t ln c(τ) = ln c(τ) − ln c(0) starts at ∆t ln c(τ = 0) = 0 and its
standard deviation evolves like std(∆t ln c(τ)) =

√
t/Tchar, with a characteristic time5 Tchar. Based on

this model, we can define a quadratic penalty term of the form T = ln c(t+1)−ln c(t)
2 ∆τ/Tchar

. This penalty term is
convex in ln c and can be included into model balancing.

• Temporal correlations in enzyme levels Since enzyme dynamics is slower than metabolite dynamics, it
would be even more important to avoid variations of enzyme levels. In theory, we could do this by a similar
term, penalising differences zl(t+ 1)− zl(t) for each enzyme level zl = ln el and each (sample) timepoint
t. Unfortunately, such terms would be non-convex in our basic variables, for a simple reason: even if the z
terms themselves were convex, then some of them would appear with a minus sign, which makes the term
concave. To make all terms convex, z would have to be linear in x = ln c, which is obviously not the case.
Thus, to ensure smooth changes of enzyme levels, it is recommended not to add a penalty term, but to
smoothen the enzyme data in advance (or, alternatively, to smoothen the enzyme preposterior means). To
obtain the parameters for this smoothing a diffusion process (or a Kalman filter) can be applied, similar to
the smoothing for metabolites.

2 Model balancing as a practical tool

2.1 Implementation

Matlab implementation A Matlab implementation including example models, data, and documentation is
available at github.com/liebermeister/model-balancing. The file format for models and data (kinetic constants,
fluxes, metabolite concentrations, protein concentrations) is SBtab [7] and metabolic networks can be defined in
SBML [8] or SBtab files. Data structures describing model balancing problems can be exported as .mat files (for
model balancing in matlab) or json (for model balancing in python).

Python implementation An indendent implementation in python features several numerical solvers, including
a disciplined convex programming solver in cvxpy (for the case α = 0). Code and documentation can be found
at gitlab.com/elad.noor/model-balancing. Model balancing problems must be formulated as json files (including
model structure and preposterior modes and variances). Such json files can be generated in matlab, and can
be used to run direct comparisons between matlab and python solvers. For further details, see model-balancing.
readthedocs.io

Comparison between matlab and python implementation We compared the results from our matlab and
python implementations, which solve the same problem (defined in the same data structure) with different solvers.
In a small test example, the results were largely identical, with minor discrepancies in some of the kinetic constants.
In the E. coli model, there were larger discrepancies. A detailed comparison for two test models is shown in the
github repository, folder examples/graphics/matlab_python_comparison.

5Tchar is the time at which std(∆t ln c(τ)) = 1, i.e. the geometric standard deviation of c(τ) is given by e.

7

github.com/liebermeister/model-balancing
gitlab.com/elad.noor/model-balancing
model-balancing.readthedocs.io
model-balancing.readthedocs.io


2.2 Variants and simplifications

Model balancing can be adapted in various ways.

• Model balancing without any data If a type of data is not used, likelihood terms for this data type are
omitted. Even without any data, priors will keep the results in biochemically plausible ranges.

• Precisely known parameters If certain parameters (e.g. the equilibrium constants) are precisely known,
their values can be predefined (e.g. by treating them as data with very small standard errors).

• Cross-covariances As noted in the main article, the preposterior cross-covariances between different types
of kinetic constants can be ignored, thus omitting some terms in the z-scores. In this case, the z-score for
kinetic constants considers covariances within each type of variables, but not between types of variables.
Our tests show that this has almost no effect on the results. We therefore omit these terms by default in the
matlab implementation, and always in the python implementation (where it would have increased the size of
the json files and increased the effort in disciplined convex programming). It is important to note that the
Haldane relationships in our model depend on the parameterisation, not on the usage of cross-covariances;
therefore, these relations still hold.

• Cost terms for allosteric regulation An allosteric activation with efficiency factor ηreg = c/KA
1+c/KA

in

the rate laws yields a cost factor 1+c/KA
c/KA

= 1 + KA/c in the formulae for enzyme demands. At constant

metabolite levels, this corresponds to an extra enzyme demand ∆el =
elKA,li
ci

(where l and i denote
the regulated reaction and the regulating metabolite, respectively). Similarly, an allosteric inhibition with
efficiency factor ηreg = 1

1+c/KI
yields a cost factor 1 + c/KI . If the metabolite levels are kept constant,

this corresponds to an extra enzyme demand ∆el = el ci
KI,li

.

• Irreversible rate laws Model balancing also applies to models with irreversible rate laws. In an irreversible
rate law, there are fewer kinetic constants (since backward catalytic constants, equilibrium constants, and
velocity constants do not play a role); the forward kinetic constant is a free parameter, and no Haldane
relationship is considered. Describing (some or all) rate laws as irreversible changes the structure of the
kinetic dependency matrix M.

• Model parameterisations Instead of independent equilibrium constants, standard chemical potentials may
be used as independent parameters [1].

• Initialising model balancing by parameter balancing or ECM A preposterior for kinetic parameters may
be obtained by previous parameter balancing, and pseudo values for metabolite and enzyme concentrations
may be obtained by a previous ECM.

• Penalising high concentrations To penalise unrealistically high metabolite or enzyme concentrations, a
regularisation term may be added, for example, proportional to the cost function considered in ECM.

• Relative changes between metabolis states Instead of containing absolute metabolite and enzyme con-
centrations, as assumed above, omics data may contain relative changes between metabolic states. To
account for such data, a variant of the dependency schema might be considered: for each metabolite,
we split the log-concentrations ln c

(s)
i into a reference value ln ci and a deviation ∆ ln c

(s)
i . Uncorrelated

priors for these variables yield a meaningful correlated prior for the metabolite concentrations, and a similar
splitting can be used for enzyme concentrations.

• Data preprocessing by parameter balancing In theory model balancing can be run in two steps, in which
the first step is a simple parameter balancing problem: we consider only kinetic constants and fit them to
kinetic data. The result is a multivariate Gaussian posterior for all log kinetic constants [1] that summarises
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all data and prior knowledge about the kinetic constants. In the second step, we use this posterior as a prior
for the kinetic constants and fit kinetic constants and model states (metabolite and enzyme concentrations)
to metabolite and enzyme data. Since the kinetic data are already used to define the prior, they can be
ignored in this part of the estimation. The calculation is equivalent to the method described in this paper.
By processing the kinetic data separately, we can see what information is contained in these data, before
combining them with metabolic data. Moreover, a kinetic “prior” that already captures the kinetic data may
help us constrain the solution space for kinetic constants. This feature has not been implemented so far.

2.3 Measurement units

• Measurement units In metabolic modeling, different conventions exist about measurement units, and in
principle, model balancing works for any of these conventions. However, in our implementation, priors
and constraints are defined in a central file, which assumes the units mM (for metabolite and enzyme
concentrations), mM/s for fluxes, and 1/s for kcat values. When changing the units, this file must be
modified.

• Standard concentrations In reaction thermodynamics, quantities such as equilibrium constants or Gibbs
free energies of reaction are defined with respect to a standard concentration, which plays a role in reactions
with unequal numbers of substrate and product molecules. Typically, flux balance models and kinetic ODE
models use different conventions (1 M in the case of flux balance models, and 1 mM in the case of kinetic
models). Our implementation allows for either of the conventions. To avoid errors, the convention must be
stated in all input files containing thermodynamic data.

• Compartments Model balancing can be applied to compartment models; like in all models without com-
partments, fluxes are expressed as concentrations per time and the compartment sizes do not play a role.

• Transport reactions In transport reactions, the flux is defined as a concentration (of reaction events) per
time. The definition of concentrations (e.g. in a membrane) reflects the concentration of enzyme molecules
(in the same membrane).

2.4 Calculation details

Model balancing can be improved by a number of tricks and simplifications.

1. Calculation of the posterior To compute the posterior score from prior and likelihood scores (Eq. 6
for metabolite concentrations, and similar formulae for enzyme concentrations and kinetic constants), we
need to invert a covariance matrix. This can be numerically expensive. To compute the posterior of the
independent kinetic constants, we need to solve

Σq
ind,post = [Σq

ind,prior
−1

+ M>Σq
lk
−1

M]−1

q̄ind,post = Σq
ind,post [Σq

ind,prior
−1

q̄ind,prior + M>Σq
lk
−1

q̄lk] . (15)

The calculation of Σq
ind,prior

−1 and Σq
lk
−1 (precision matrices for metabolite and enzyme concentrations) is

easy because the original covariance matrices are diagonal and the matrices D select single vector elements.
However, inverting the term in brackets may be hard. To speed up the calculation, we set A = Σq

ind,post
−1

and obtain the similar formulation

A = Σq
ind,prior

−1
+ M>Σq

lk
−1

M

q̄ind,post = A−1 [Σq
ind,prior

−1
q̄ind,prior + M>Σq

lk
−1

q̄lk] . (16)
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Now the costly matrix inversion in the first equation is avoided, and the right-hand side in the second
equation can be computed without explicitly computing the matrix inverse (e.g. by using the matrix left
division operator \ in matlab). This calculation is faster and works for sparse matrices.

2. Reactions with vanishing flux If a reaction is always inactive – that is, if the flux is zero in all metabolic
states – the kinetic constants for this reaction are ill-determined and the reaction should be removed from the
model. But what if a reaction flux vanishes in some of the metabolic states? A vanishing flux can be caused
by a vanishing enzyme level or by a vanishing thermodynamic force. However, for the purpose of model
balancing, we assume that a vanishing flux always goes with a vanishing enzyme level. Therefore, whenever
there is a zero flux, we set the enzyme level to zero in this metabolic state and ignore the corresponding
term in the posterior score for enzyme levels.

3. Divergence of enzyme concentrations close to polytope boundaries. Enzyme concentrations (and
therefore the likelihood function) increase very steeply close to thermodynamics-related polytope boundaries;
to avoid numerical problems, a region close to the boundary may be excluded by extra constraints, or the
log(log posterior) may be minimised instead of the log posterior. Here are some details. Each thermodynamic
constraint defines a boundary of the solution polytope. Close to this boundary, an enzyme concentration
goes to infinity and the likelihood function explodes. This steep increase can cause numerical problems
during optimisation. To handle them, we may apply the logarithm function once more to the (likelihood or
posterior) score, and use the resulting function as our minimisation objective. This new objective function
will still go to infinity at polytope boundaries, but less steeply. The new objective function may be non-
convex, but since it depends monotonically on a convex function, it will still have a single local minimum.
A second way to avoid this problem is to exclude problematic regions close to the boundary by introducing
some extra constraints. In practice. we can make all thermodynamic constraints a bit tighter, by requiring
small, non-zero thermodynamic forces in every reaction [3].

2.5 Missing and redundant data points

So far we assumed that one data value is available for each of the model variables. For example, we assume
that each metabolite level in each metabolic state has been measured, and that an in-vitro value is available
for each kinetic constant. To account for the fact that values may be missing or measured multiple times, we
need to relate a vector of model variables to the corresponding vector of variables measured (possibly, comprising
multiple measurements of the same variable). The connection can be made by a data mapping matrix Dx

(for metabolite log concentrations, and similar mapping matrices for other variables) that maps the vector of
metabolite log-concentrations in the model onto the vector of metabolite log-concentration data values. In the
ideal case (all values have been measured exactly once), Dx is a simple identity matrix. If a concentration has not
been measured, the corresponding row of this identity matrix must be omitted, and if a value has been measured
multiple times, the row must be duplicated. With mapping matrices, our likelihood loss score (with terms for
kinetic constants and state variables) becomes

L?(x, z) = quad(Dq q− q̄lk,Σ
q
lk) + quad(Dx x− x̄lk,Σ

x
lk) + quad(De z− z̄lk,Σ

z
lk), (17)

and formula (6) for posterior means and covariances reads

Σ?x
po = [Σx

pr
−1 + D>x Σx

lk
−1Dx]−1

x̄?po = Σx?
po [Σx

pr
−1 x̄pr + D>x Σx

lk
−1 x̄lk]. (18)

Of course, missing and multiple values for kinetic constants, enzyme concentrations, and thermodynamic forces
can be treated in the very same way (with analogous terms for q, z, and possibly θ). This is particularly important
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for kinetic constants, where typically only a small fraction of the constants have been measured in vitro. Finally,
instead of using mapping matrices, there is also a simpler practical solution. Whenever data values are missing,
we can replace them by invented values with infinite error bars. Likewise, if multiple data values exist for one
variable, we can merge them into a single value to be used as a data point. The calculation follows the same
scheme a Eq. (18), with a vector x̄lk containing the multiple measured data values, σxl their standard deviations,
mapping matrices D = (1, 1, ..)> relating a single model variable to multiple measured values, and no prior. We
obtain

σ2
out = [D>diag(σ2

x)
−1

D]−1 = 1/
∑
l

σ−2
xl

x̄out = σ2
out [D diag(σ2

x)
−1

x̄lk] =

∑
l x̄l/σ

2
x∑

l 1/σ
2
xl

. (19)

3 Parameter distributions

3.1 Parameter identifiability

Parameter identifiability To see what useful information can be extracted from data, we need to think about
parameter identifiability and the usage of priors. In model fitting, parameters or parameter combinations may be
non-identifiable: such parameters have no effect on measured variables, and therefore cannot be inferred from
available data [9]. Similarly, if parameters have little effect on measured variables, and if data are just a bit noisy,
our estimates of these parameters will be very uncertain. For example, if a reaction is strongly forward-driven, its
backward kcat and KM values have little effect on state data and are hard to determine (compared to forward
kcat and KM values); if an enzyme is always close to saturation, its KM value is hard to infer, and if an enzyme is
always in its linear range (because substrate levels are low), the kcat/KM ratio may be well-determined, but not
the kcat and KM individually; finally, enzyme concentrations and kcat values appear in rate laws in the form of
a product (which is therefore well-determined by the fluxes), but their ratios may be ill-determined. This means
that a scaling an error in flux or enzyme data will have an immediate effect on kcat estimates.

Problems arising from non-identifiability If model variables are non-identifiable (or poorly identifiable), this
will cause large uncertainties in the posterior distribution. With a convex problem and non-flat priors, we know
that the posterior mode is a single point in solution space. However, this point is somewhat arbitrary if the priors
are broad, and posterior sampling would reveal that many other solutions (along the “non-identifiable subspace”)
are almost as good. This raises some practical questions. Can we improve the result by using more data (e.g.,
metabolite concentrations from more metabolic states)? How many metabolic states are needed to identify all
kinetic parameters? Which variables are hard to infer, and which variables will remain non-identifiable, no matter
how much state data are provided? Paradoxically, variables that are always non-identifiable (or poorly identifiable)
are not a big problem, because these variables do not matter for model predictions. For example, if an enzyme
is always close to saturation, we cannot determine its KM value, but we also don’t need it for simulation. Only
if we simulate other conditions (in which the enzyme is not close to saturation), the results may be poor. Of
course, identifiability issues are not specific to model balancing; other estimation methods would face the same
problem.

3.2 Prior distributions

Importance and choice of priors Since non-identifiable parameters are estimated solely based on priors, the
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choice of realistic priors is important! If data for variables are available, the usage of priors pushes the estimates
towards the prior mean: high values will be estimated too low and low values will be estimated too high. This
effect will be small if a variable has been measured precisely or if priors are very broad. However, for non-
identifiable variables the effect is large: while model balancing predicts a single (posterior mode) value, this
value is almost arbitrary, determined entirely by the choice of the prior, and carries a large uncertainty (marginal
posterior variance). On the one hand, this calls for posterior sampling (instead of reporting only the posterior
mode). On the other hand, this underlines the need for realistic, informative priors.

Informative priors To define informative priors for kinetic constants [10, 11], we followed the procedure from
parameter balancing [1] which accounts for parameter dependencies. We start by assuming independent Gaussian
priors for all independent constants and (independent Gaussian) pseudo values for dependent constants: taken
together, they define a correlated prior for all constants. Non-diagonal covariance matrices for lnKeq values, ob-
tained from equilibrator, could be taken into account. Mean values and standard deviations were taken from [12]
and manually refined to match empirical distribution of kinetic constants. For the state variables (metabolite and
enzyme log-concentrations), we typically use diagonal covariances Σx

lk = diag(σx
lk)2 and Σz

lk = diag(σz
lk)2, assum-

ing independent measurement errors. However, correlated errors (e.g. caused by normalisation for metabolomics or
proteomics samples) may be taken into account. There are several possible reasons to do this: first, concentrations
differ more strongly between metabolites than between metabolic states for the same metabolite. This means, for
the vector of all metabolite data, that values for each metabolite tend to be correlated. We could describe this
by splitting the data values into x(s)

i = xref
i + ∆x

(s)
i , with a reference value xref

i and deviations ∆x
(s)
i . Assuming

uncorrelated priors for xref
i and ∆x

(s)
i entails, directly, a correlated prior for x(s)

i (and the same for enzyme log
concentrations zl). Second, if we model metabolic time series, and assume that state variables vary smoothly over
time, we can implement this assumption by imposing a prior that assumes correlations between (one and the same
concentration at) subsequent time points. Third, there may even be reasons to assume correlated errors in data
values: for example, in metabolomics data, differences in sample preparation or a normalisation per sample will
lead to correlated measurement errors (by which, for example, all metabolite concentrations in one sample may
appear too high or too low). In theory, such effects could be accounted for by assuming a correlated covariance
matrix in the likelihood terms.

Choice of priors and constraints To define priors in practice, pseudo values, and constraints (for kinetic
constants, metabolite concentrations and enzyme concentrations), we used the default values from parameter
balancing (see www.parameterbalancing.net). However, when running parameter balancing as a test, we found
that the available kcat values were typically much higher than the prior median value as expected for enzymes
in central metabolism [13]. In view of these data, we changed the prior for kcat values from a median of 10
s−1 (geometric standard deviation 100) to a median of 200 s−1 (geometric standard deviation 50). Likewise,
we changed the prior width for KM values from a geometric standard deviation of 10 to a geometric standard
deviation of 20 (while keeping the median 0.1 mM unchanged). A table describing the priors is provided in
the github repository, file resources/data/data-prior/model-balancing_prior.tsv. These values, used in the matlab
implementation, can easily be modified. Importantly, in the actual model balancing calculations, a much broader
prior was used in order to put more weight on existing data.

3.3 Artificial data

Artificial data were generated as follows:

• Artificial kinetic constants Artificial data for kinetic constants are generated as follows. Given a network
structure, true artificial kinetic constants are generated by assigning random (log-normal) values to the basic
kinetic constants (lnK ind

eq , lnKM , and lnKV ), using the same distributions that are also used as priors in
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General scheme S1: Noise−free data, kinetic constants used as data S2: Noise−free data, kinetic constants unknown

S3: Noisy data, kinetic constants used as data S4: Noisy data, kinetic constants unknown
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Figure 2: Model balancing: estimation scenarios with artificial data. Left: general procedure. Kinetic constants
for a given model are drawn from random distributions (respecting their dependencies), and metabolic state data
are generated by combining sampling and simulation runs (top row). From these “true” values, artificial kinetic
and state data are generated by adding uncorrelated noise (centre row). Kinetic parameters and metabolic state
variables (bottom row) are estimated by model balancing and compared to the true values. Right: Four variants
of this procedure (called S1-S4): with or without noise, and with or without usage of kinetic constants as data
(or as a third option, with usage of equilibrium constants only).

model balancing. Derived kinetic constants are computed from the basic constants, and Gaussian random
variables are added on logarithmic scale. In the data structures, the “true” artificial data (without noise)
are given in true, while artificial data with noise (or no noise, depending on the scenario) are given in
kinetic_data. The artificial data contain no estimates of the error bars; for these error bars, information
from the prior table is used.

• Artificial metabolic state data: small test models To generate artificial data for metabolic states, enzyme
concentrations and external metabolite concentrations are randomly sampled from the same distributions
that are used as priors in model balancing. Then the model is parameterised with the “true” artificial kinetic
constants and solved to obtain a steady reference state (steady-state metabolite concentrations and fluxes).
Based on this reference state, a number of metabolic states are constructed by randomly varying metabolite
and enzyme concentrations (again, following the prior distribution) and computing the (non-steady) reaction
rates6. The resulting states are seen as “true values”. To generate noisy state data, uncorrelated random
noise is added.

• Artificial metabolic state data: E. coli model Artificial data for the E. coli model, generated as described,
turned out to be very unrealistic: the fluxes did not show any resemblance at all to metabolic fluxes observed
in central metabolism. For more realistic test scenarios, we generates artificial datat for this model, based
known metabolic states. We first initialised fluxes and metabolite concentrations with realistic values from
ECM [3], and then multiplied the enzyme levels by log-normal random variables with a geometric mean of
1 and a geometric standard deviation of 1.5. The equilibrium constants were taken from ECM. Fructose
bisphosphatase (which is inactive in this state) was shut down to 10−8 to obtain plausible states.

6Alteratively, state data could also be snapshots from simulated dynamic time course (fluxes, metabolite concentrations and
enzyme concentrations).
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• Flux directions Artificial flux data contain additive noise. However, since infeasible flux directions are not
allowed, noise is omitted whenever the flux direction would change.

4 Enzyme demand: a formula for disciplined convex programming

Disciplined Convex Programming [4] is a framework for convex optimisation in which optimality problems are
guaranteed to be convex. To this end, objectives and constraints must be defined by formulae composed of
defined sets of mathematical functions. Here we show that a central formula in model balancing, the formula for
the logarithmic enzyme demand as a function of logarithmic kinetic constants and metabolite concentrations, can
be expressed in this way.

We consider a reaction with stoichiometric coefficients in a sparse vector n and KM values in a sparse vector
k. Metabolite concentrations are given in a vector c. All three vectors are columns of length nmet (number of
metabolites in the network). For convenience we define the molecularities ms

α = |nα| if nα < 0 (0 otherwise) for
substrates and mp

β = |nβ | if nβ > 0 (0 otherwise) for products. The denominator of the common modular rate
law [14] reads

Dcm =
∏
α

(1 + cα/kα)m
s
α +

∏
β

(1 + cβ/kβ)m
p
β − 1. (20)

Effectively, the first product contains only terms for substrates (all other terms are equal to 1 and can be neglected).
An exponent ms

i = 2 means, effectively, that the same term appears twice in the product (analogous, three times
for ms

i = 3, and so on). So we can do the counting differently: instead of iterating over metabolites, we iterative
over the list of substrates, where substrates can be listed several times depending on their molecularity. For each
index i in this list, we define the metabolite index (pointing to elements in the vector c) by α(i). In case of
molecularities larger than 1, several i map to the same α. With similar definitions for products, we obtain

Dcm =
∏
i

(1 + cα(i)/kα(i)) +
∏
l

(1 + cβ(l)/kβ(l))− 1. (21)

We now use the abbreviation ys
i = ln(

cα(i)

kα(i)
). The vector ys can be written, for convenience, as

ys = Ts (ln(c)− ln(k)) = Ts ln(c)−Ts ln(k) (22)

with a matrix Ts (of size = length of substrate list ×nmet) that contains, in each row i, a single entry =1 in
column α(i). For the product side, we obtain a similar vector yp and a matrix Tp. Now our denominator reads,
in short,

Dcm =
∏
i

(1 + ey
s
i ) +

∏
l

(1 + ey
p
l )− 1, (23)

and by reordering the terms we obtain

Dcm = 1 +
∑
i

ey
s
i +

∑
i 6=j

ey
s
iey

s
j +

∑
i 6=j 6=k

ey
s
iey

s
jey

s
k + ...

+
∑
l

ey
p
l +

∑
l 6=q

ey
p
l ey

p
q +

∑
l 6=q 6=r

ey
p
l ey

p
q ey

p
r + ... (24)

with indices i, j, k, .. from the substrate list and indices l, q, r, .. from the product list. The maximal size of tuples,
for the substrate side, is given by the length of the substrate list (and accordingly for the product side). We next
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write this as

Dcm = 1 +
∑
i

ey
s
i +

∑
i6=j

ey
s
i+y

s
j +

∑
i 6=j 6=k

ey
s
i+y

s
j+y

s
k + ...

+
∑
l

ey
p
l +

∑
l 6=q

ey
p
l +ypq +

∑
l 6=q 6=r

ey
p
l +ypq+ypr + ... (25)

Now, for the sake of example, we assume a reaction with four substrate molecules (substrate list of length 4).
We define matrices with rows corresponding to all single items, pairs, triples, and quadruples (and columns
corresponding to the elements of ys):

K
(4)
1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , K
(4)
2 =



1 1 0 0

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 0 1 1



K
(4)
3 =


1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

 , K
(4)
4 =

(
1 1 1 1

)
(26)

and combine them in a matrix

K(4) =


K

(4)
1

K
(4)
2

K
(4)
3

K
(4)
4

 . (27)

With this matrix, the single sum terms from the first line, written as a vector, are given by eK
(4) ys

, where the
exponential function is applied componentwise to the vectorial exponent. If we generalise this from the case
ns = 4 to substrate lists of any length, we obtain the respective matrix K(ns). Altogether, for a reaction with
substrate list length ns and product list length np, the exponent terms in Dcm are given by the vector

z =

 0

Kns ys

Knp yp

 . (28)

Dcm itself is given by Dcm =
∑
q ezq . As mentioned before, ys and yp can be written as y± = A± ln c + b±,

so the overall formula becomes

Dcm =
∑
l

eal(ln c−lnk). (29)

The vectors al are the rows of the matrix

A =

 0

Kns Ts

Knp Tp

 , (30)

where 0 is a zero row vector. Now our aim is to obtain a convex expression for 1/ηkin = Dcm/Dsm with
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Dsm =
∏
i
cα(i)

kα(i)
. By writing Dsm as

Dsm = e
∑
i y

s
i = e1S

s(ln c−lnk), (31)

we obtain

1

ηkin
cm

=
Dcm

Dsm
=
∑
l

eal(ln c−lnk)−1Ss(ln c−lnk) =
∑
l

ebl(ln c−lnk), (32)

where vectors bl are the rows of the matrix

B = A− (1 1>) Ts. (33)

Finally, the term − ln ηkin
cm can be written as the log of sum of exponentials of the vector B(ln c − ln k). We

obtain

ln ηkin
cm = − ln

Dcm

Dsm
= −LogSumExp



 0

Kns Ts

Knp Tp

− (1 1>)Ss

 (ln c− ln k)

 , (34)

a formula compliant with disciplined convex programming.
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