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1. Materials and methods
1.1. Pathogen strains and sample preparation

The experiments were performed with the following quality control strains from
American Type Culture Collection (ATCC): Escherichia coli (ATCC 25922), Haemophilus
influenzae (ATCC 9006), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC
29213), Stenotrophomonas maltophilia (ATCC 13636), Streptococcus pneumoniae (ATCC 49619).
BD Chocolate Agar (GC II Agar with IsoVitaleX), ready-to-use-plated media (Becton,
Dickinson and Company, Article number 254089), was used for Haemophilus influenzae
(ATCC 9006), for the other quality control strains BD Columbia Agar with 5% Sheep Blood,
ready-to-use-plated media (Becton, Dickinson and Company, Article number 254071) was
used. BD BBL Brain Heart Infusion, 8 ml (Becton, Dickinson and Company, Article number
220837) was used for sample inoculation.

1.2. Continuous headspace analysis with SESI-HRMS

A calibrated mass flow controller (Bronkhorst AG, model F-201EV-AAD-33-V) was
attached at the exhaust of the SESI ion source for monitoring of the flow through the system.
Medical respiratory air (PanGas) was filtered with a SGT Click-On Inline Super Clean Gas
Purifier (Supelco, Hydrocarbon Trap, 28863-U, Click-On Connectors 1/4′′ stainless steel,
28872-U) to remove any possible Hydrocarbon contaminants within the respiratory air.
Subsequently, the flow was regulated at 0.2 L/min with a calibrated mass flow controller
(Bronkhorst AG, model F-201CV-500-RAD-22-V). The filtered air was humidified with a
gas-washing bottle (Quickfit sintered bottle head for use with 125 mL bottles (Merck, article
number Z308501-1EA), Quickfit Drechsel bottle (Merck, capacity 125 mL, article number
Z308579-1EA), a metal standard taper clip, joint size 24 (Merck, article number Z222380-
6EA)) which was 3/4 filled with H2O (Optima, LC-MS grade, Fisher chemical). The
gas-washing bottle was heated to 65 °C using a home-build aluminum heating jacket and
kept constant using a Hei-Tec magnetic stirrer with Pt1000 temperature sensor (Heidolph
Instruments GmbH & CO.KG, article number 505-30081-00).
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Each headspace sampler consisted of a 5 mL round bottom flask (borosilicate glass,
NS 14.5/23, Duran), two PTFE valves (Buerkle GmbH, two-way, 4.5 mm outer diameter,
2 mm inner diameter, article number 8610-0010, used for safety reasons), a vacuum receiver
(borosilicate glass, cone NS 14.5/23, socket NS 14.5/23, Duran), two Keck Joint Clip
(standard taper, joint size 14, yellow), a custom-made PTFE adapter for PTFE tubing (inner
diameter 4 mm, outer diameter 6 mm) and vacuum receiver’s socket (NS 14.5/23), PTFE
tubing (inner diameter 4 mm, outer diameter 6 mm) and PTFE tubing (inner diameter
6 mm, outer diameter 8 mm). The samplers were disinfected with a mixture of 80/20 (v/v,
ethanol/water) with LC grade ethanol and cleaned with LC-MS grade methanol.

A custom-made aluminum heating box was fashioned to contain the headspace
samplers. A temperature regulator (Hillesheim GmbH, HT55H-10N-2-HAL), a temperature
sensor PT100 (Probag AG, article number 84620) and a temperature cartridge (Probag AG,
type HS, 6.5 mm diameter, length 100 mm, 230 V, 100 W) were used to keep the temperature
of the headspace samplers at 50 °C throughout the entire measurement duration. PTFE
tubing was used for all connections. The headspace sampler inlet was attached to the
humidifier and the outlet to the inlet of the SESI ion source.

1.3. Data preprocessing

The following section serves as the extended version of the data preprocessing section
in the main manuscript.

Raw mass spectra acquired through the experimental measurements of pathogen and
sterile medium samples were recorded by Analyst (Version TF 1.7, Applied Biosystems
Sciex, Toronto, ON, Canada) in the proprietary WIFF file format. Alignement of the spectra
was performed with PeakView software (Version 2.2, Applied Biosystems Sciex, Toronto,
ON, Canada) with respect to the exact m/z-values listed in Table S1. The data files were
then converted to the open mzXML format using the MSConvert (ProteoWizard version
3.0x, [1]) and further processed in R v3.4.4 (R Foundation for Statistical Computing, Vienna,
Austria). All mass spectra were resampled using piecewise cubic Hermite interpolation
[2] onto a linearly spaced m/z-axis with a resolution of 0.0005 (9× 108 data points, 50-500
m/z-axis range). The total ion chromatograms (TICs) of each experiment were calculated
by integration and then used to distinguish the mass spectra originating from sample and
baseline signals (see Figure S1).

Table S1. Alignement Table TripleTOF 5600+

Positive Ion Mode

Name Formula m/z

Acetone C3H6O +59.04914
Acetone-water C3H8O2 +77.05971
Methyl pyrrolidine C5H10NO +100.07569
Dibutylphtalate C16H22O4 +279.15909

Negative Ion Mode

Name Formula m/z

Fatty acid C2H4O2 -59.01385
Fatty acid C12H24O2 -199.17035
Formic acid dimer C2H4O4 -91.00368
Palmitic acid C16H32O2 -255.23295
Stearic acid C18H36O2 -283.26425

For each measured sample the average mass spectrum was calculated over scans
generated by the sample signal from which a list of m/z-features was extracted by picking
peaks above the absolute intensity of 200 cps (counts per second) in the positive mode
and 100 cps in the negative mode. In order to compensate for small variations in the
peak positions across the experiments all recorded m/z-features were combined into one
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single list from which a kernel density estimate (Gaussian kernel, bandwidth = 0.0025)
was computed. Local maxima of the smoothed density function were used to define the
final m/z-feature list representative for all samples. The m/z-features were then used to
centroid the peaks by integration (mass window m/z± ∆m/z, ∆m/z = 0.0025) in each
spectrum of each experiment, yielding intensities of the m/z-features and their time traces
per experiment. To exclude the features which do not originate from the sample only
those m/z-features with Pearson correlation coefficient larger than 0.7 between their time
traces and the TIC were selected. Additionally, when compared over all 30 repetitions,
m/z-features which were selected in this way in less than 80% of the repetitions of one
sample group (pathogen group or sterile medium) were excluded in order to avoid using
inconsistently measured features from further analysis. Normalization of the data was
performed with respect to the TIC, i.e. by averaging the intensities of m/z-features during
the scans generated by the sample signal and dividing by the averaged TIC over the
same scans. TIC normalization corrects for the total amount of molecules present in
the headspace and thus for the cell number. The relative contribution to the TIC of an
individual metabolite is assumed to be constant. It could be possible that commonly
expressed metabolites are characteristic for one pathogen because of a difference in their
growth rate or viability in the medium. Nonetheless, a non-trivial intensity of a feature in
a pathogen still indicates the presence of a particular species. The normalized intensities
were log10-transformed and arranged into a n× k matrix for further statistical analysis,
with n the number of samples and k the number of m/z-features.

Figure S1. Example of a typical TIC recorded in the positive mode during the experiment measuring
P. aeruginosa. The x-axis represents the scans (1 scan = 1 second) and y-axis the standardized (mean
centered and divided by the standard deviation) TIC. The scans with the standardized TIC > 0
belong to signals generated by the pathogen.

1.4. Statistical analysis

The following section serves as the extended version of the statistical analysis section
in the main manuscript. The data analysis pipeline borrows from the ideas in [3]. The main
difference was in the choice of the underlying machine learning algorithm, namely support
vector machines (SVM) and the ranking procedure of the features by recursive elimination
based on SVM. Our choice for the SVM algorithm, instead of a random forest algorithm as
employed in [3], is based on the fact that SVM was already successfully applied in prior
SESI-HRMS studies [4–7].

As a first step in statistical analysis, the effect of the sterile medium was reduced by
applying the same method as in [3]. More precisely, the Mann–Whitney U test [8] together
with Benjamini–Hochberg adjustment [9] for p-values was used to select the m/z-features
which are significantly different in pathogen groups than in sterile media. The adjusted
p-value threshold was set to 0.05. A careful reader will notice that we did not assume that
the features were drawn from a normal distribution in each group and therefore applied
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a nonparametric test for that reason. Indeed, we conducted the Shapiro-Wilk test for
normality [10] on the residuals of each of the m/z-features and found that a majority of
the features were not normally distributed. Out of the 939 m/z-features resulting from the
data preprocessing (section 1.3) we found that for approximately 80% of the m/z-features
the null hypothesis was rejected (p < 0.05).

In order to avoid using highly correlated m/z-features simultaneously for further
analysis the intensity matrix was reduced by grouping m/z-features with similar intensity
profiles. For that purpose, hierarchical clustering with correlation based distance measure
was conducted. Pearson correlation coefficients ci,j of each pair of m/z-features i, j were
transformed into a distance measure 0.5 · (1− ci,j) from which a dissimilarity matrix for
hierarchical clustering was constructed. The resulting dendrogram was cut at a fixed height
of 0.1 grouping m/z-features with similar intensity profiles into clusters. To represent each
cluster with a single element principal component analysis (PCA) was performed on the
set of m/z-features of each cluster (intensities of the m/z-features were mean centered and
divided by the standard deviation prior to PCA). The major (first) principal component
was selected as the representant of the cluster (here referred to as the m/z-representant).
In case of a single element cluster the feature itself was selected as the representant. The
m/z-representants were arranged into a data matrix of pathogen profiles reducing the
dimensionality of the data set.

Principal component analysis (PCA) was conducted on the data matrix given by
the m/z-representants. Principal component scores plots were created to visualize the
separation between the pathogen groups. HCA with Euclidean distance measure and
average linkage method [11] was used to analyze the hierarchical relationship between
samples. Prior to PCA and HCA variables were standardized (mean centered and divided
by the standard deviation).

To conduct supervised machine learning we selected the support vector machine
algorithm (SVM) [12] with linear kernel and soft margin constant C = 1. Recall that the
intuition behind the two-class SVM is to find a hyperplane wTx + b = 0 with the largest
separation between the two classes, where w is the so called weight vector, x a feature
vector and b a scalar. Given n training samples (xi, yi)i=1,...,n, where xi are feature vectors
and yi ∈ {−1, 1} class labels, w = (w1, . . . , wn) and b result from the optimization problem
of maximising the distance between all possible hyperplanes and closest (training) samples
from each of the two classes. For the precise formulation of the underlying optimization
problem we refer the reader to [12]. The class membership of any (test) feature vector
x is then determined by sign(wTx + b) ∈ {−1, 1}. A generalization of the binary SVM
to a multi-class problem was suggested by Bottou et al. in [13]. Following [13], in case
of k ≥ 3 classes c ∈ {1, 2, . . . , k}, k binary SVM classifiers are constructed by comparing
each class against all remaining classes relabeled to a single new class, i.e. one-versus-all
(OVA) model. The hyperplanes wT

c x + bc are then used to determine the class membership
of a feature vector x by argmaxc(w

T
c x + bc), i.e. the predicted class of a (test) feature x

corresponds to the maximum value of k binary classifiers.
Applying this generalization of SVM to multi-class problems the, predictive power of

the pathogen profiles was assessed in a leave-one-out cross-validation (LOOCV). In each
of the 180 loops of the cross-validation one sample file was left out and assigned no label.
The remaining 179 samples were used to generate pathogen profiles of m/z-representants
and subsequently train a multi-class classifier with SVM by training 6 OVA models. The
prediction was then made on the left out sample and compared with the original label. The
overall accuracy was calculated as the ratio of correct predictions divided by 180. Note that
all the processing steps needed to derive the m/z-representants data matrix of pathogen
profiles were repeated in each loop of the cross-validation, see [14,15].

The internal mechanism of the SVM algorithm can also be used to rank the features
according to their predictive power. One of the most popular methods is SVM Recursive-
Feature-Elimination (SVM-RFE) which was originally proposed for two-class problems
by Guyon et al. in [16]. It can be shown (see [16, section 2.5]), that the magnitude of
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squared coefficients w2
i of the weight vector w = (w1, . . . , wn) can be used as a criterion for

feature ranking. When removing a training feature xi, the change in the cost function of
the underlying optimization problem of SVM is approximately given by w2

i . Therefore, the
lower w2

i the less impact can be associated to the feature xi when optimizing the separation
of samples through hyperplanes. Using this, the ranking of the features is then done by
eliminating recursively the features with the lowest impact [16, section 2.6]: the SVM
classifier is trained on the complete data set and the feature with the lowest weight w2

i is
removed giving it the lowest rank. A new SVM classifier is then trained on the remaining
data set where again the feature with lowest weight is removed giving it the second lowest
rank, etc. By repeating this process until all features are removed a ranking is produced for
the complete feature set.

Applied to our data set with six pathogen labels, we defined six different two-class
problems by comparing each pathogen against the other five labeled as a single new
group. Subsequent application of SVM-RFE to each of the two-class problem gave six
different rankings, one for each pathogen group. (The method of splitting the multi-class
problem into several OVA two-class problems is one possible generalization of SVM-RFE
to multi-class situation, see e.g. [17] and also [18, section 3.1]). For each of the six different
rankings we selected top 10% m/z-representants per pathogen group. For later compound
identification we treated each set separately by focusing on those m/z-representants with an
elevated intensity for the pathogen group in question. That is, from each m/z-representant
set we singled out only those representants for which the intensity was higher for the
pathogen associated with m/z-representant set when compared to each of the other five.
To achieve this, one-tailed Mann-Whitney U-test was applied in many-to-one fashion
(comparing the pathogen with each of the five others) with the Hochberg adjustment [19]
for p-values. The adjusted p-value threshold was set to 0.05 for the representant to be
selected. Finally, the union over all selected m/z-representants was used for compound
identification.

1.5. Putative identification workflow

The selective features were putatively assigned to chemical structures in a multi-step
process, involving the freely available software SIRIUS [20–22] and a previously published
MATLAB code [23], which was slightly modified i.e. debugged and adapted to process
molecular formulas found from SIRIUS. The detailed parameters and settings of each step
are described in the schematic below (see figure S2). In words, the individual steps can be
summarized as follows:

1. Isotope filtering: The features were isotope filtered.
2. Checking for electrospray ionization (ESI) characteristic similarities: Features within

one cluster were analyzed in respect to ESI characteristic similarities i.e. we checked
for proton/alkali metal exchange, positive/negative ionization of the same compound
or typical in-source collision induced dissociation (CID) neutral losses of common
functional groups as outlined in [24]. Beside potential in-source H2O adducts or
losses, no repetitive similarity patterns were found.

3. Orbitrap reproducibility: The selective features from MS1 TTOF 5600+ measurements
were compared to the MS1 detected features on the Orbitrap QE. Features, which
were not detected (not reproducible) on the Orbitrap, were filtered out.

4. Orbitrap MS2 interpretation: In-source CID of features within the same cluster were
excluded by comparing a feature’s MS2 fragment peaks with the other features in
the same cluster. Then, the MS2 spectra were analyzed with SIRIUS (4.4.29) [20–
22]. The reported structures correspond to the top SIRIUS hit which is reported in
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database or the Human
Metabolome Database (HMDB). Molecular formulas, which could not be identified
by MS2 spectra (due to low abundance, low molecular weight, interference), were
fed into the MATLAB code FindCommonKeggPathways.m from [23] to search for a
KEGG pathway linking the molecular formulas with each another. These Molecular
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formulas within one cluster being metabolically linked according to KEGG are also
reported.

5. In a literature search, we checked whether the putatively identified compounds were
reported in the context of bacteria volatiles.

6. Finally, we checked the plausibility of the putatively identified compounds, i.e. we
checked if their volatility is sufficient to be detectable with SESI, and excluded com-
pounds with very low SIRIUS MS2 scores, i.e. lower than -300.

n=94 features in N=30 clusters  
of M=6 bacteria from features selection

n=90 features in N=30  
clusters of M=6 bacteria

isotope filtering: 
filtering out higher m/z features if Δm/z of two features in one cluster 
(assuming correlation between monoisotop and isotopologues) fits 
(m/z±0.0005) one of the following differences: 
 
 H– H 
 C–  C 
 N–  N 
 O–  O 
 O–  O 
 S–  S 
 S–  S 
 K–  K 

2 1
13 12
15 14
17 16
18 16
33 32

34 32
41 39

4 features are 
isotopologues

n=90 features in N=30  
clusters of M=6 bacteria

adduct/loss pattern search e.g. from in-source CID: 
searching (m/z±0.0005) for characteristic adduct or loss patterns within one 
cluster (assuming correlation between [M+H]  or [M–H]  and adduct or 
loss). Considered adduct types: protone/alkali metal exchange, water 
adduct or loss, ammonia loss, functional group specific losses depending 
on polarity.

+ –

main adduct/loss type found: water adduct or 
loss (indistinguishable). Only three functional 
group specific losses found. No indication for 
proton/alkali metal exchange. Thus, adducts/
losses were ignore in the subsequent analysis.

positive/negative polarity relationship pattern search: 
looking for relationships (m/z±0.0005) within clusters containing features with 
opposite polarities (assuming correlation between positive and negative 
feature arising from the same analyte). Considered relationship: [M+H]  to 
[M–H] , [M+Na]  to [M–H] , [M+K]  to [M–H] , [M+H]  to [M+H O –H] ,  
[M+H O +H] to [M–H]

No relationship between features in positive and 
negative polarity within one cluster found. +

+ + +
+

– – – –
– 2

2

n=76 features in N=30  
clusters of M=6 bacteria

14 of the originally TTOF 5600+reported features 
were not detected on the Orbitrap QE in MS 

targeted MS  and MS  measurements of the M=6 bacteria with a n=94 
target list on the SESI Orbitrap QE mass spectrometer to acquire fragment 
spectra. Assignment of the n=90 TTOF 5600+ features to the n=94 targeted 
Orbitrap MS  features; m/z depending threshold (m/z 50-100: 20 ppm, m/z 
100-200: 10 ppm, m/z 200-500: 20 ppm).

1 2

1
1

n=37 features in N=20  
clusters of M=6 bacteria

the n=76 features' MS  spectra were converted to.mgf files (msconvert, Proteowizard) and fed 
into SIRIUS (version 4.4.29). Instrument: Orbitrap, Input parameters: MassDev (ppm): 5 ppm, 
Possible Ionization: [M+H]  , [M–H]  (from previous adduct study), Elements allowed in 
Molecular Formula: H 0 to inf, C 0 to inf, N 0 to inf, O 0 to inf, P 0 to 1, S 0 to 1, ZODIAC 
activated, CSI:FingderID activated: all databases, Fallback Adducts: [M+H] , [M+H O+H] ,  
[M–H O+H] , [M–H] , [M+H O–H] , [M–H O–H] . SIRIUS output saved as project directory and 
further processed with Matlab. 1), all possible molecular formulas were listed together with their 
ZODIAC score and adduct type in a .csv file. The highest ranked score was reported as most 
likely formula. In case of multiple identical scores, the adduct free feature was prioritized. 2), we 
tested whether one feature corresponds to another feature's loss due to in-source CID within 
one cluster (assuming correlation between the feature and its loss). To do so, we checked 
whether MS  spectra signals correspond to another reported feature in the same cluster (m/z 
depending threshold: m/z 50-100: 20 ppm, m/z 100-200: 10 ppm, m/z 200-500: 20 ppm). Since 
we didn't find any correlations, we concluded that the features within one cluster are proper 
features (no in-source CID adducts or losses). 3), the top 10 SIRIUS hits (if available) fitting the 
most likely formula from step 2) are listed as SMILES together with their score into the .csv file. 
4), all hits being reported in biological databases (KEGG, HMDB) are listed in the next column 
of the .csv file together with the score and their position in the ranked score list of all hits 
(including those which are not reported on KEGG/HMBD). 5) The top scored hit having an entry 
on KEGG/HMDB was listed as mostly likely structure. A certainty level was assigned i.e. level 
A1 if the biological hit corresponds to the top ranked hit of the complete score list (including 
those which are not reported on KEGG/HMBD) or A2 if it was not ranked on the first position. 6) 
Unassigned features from step 5) but with a molecular formula from step 1) were further 
processed: within one cluster, the formulas were fed into KEGG. If the set or a subset of 
formulas in one cluster has metabolic links reported in a KEGG map, the KEGG map explaining 
the highest number of formulas in that cluster is assumed to metabolically link these formulas. 
Thus, we assigned the structures of this KEGG map to the corresponding formulas. These 
features are labeled with certainty level B1.

2

+ –

+ +
2+

2
–

2
–

2
–

2
assignment of 39 features failed because: 
 
- no molecular formula found under the set 
SIRIUS restrictions 
- no biologically reported (KEGG/HMDB) 
molecular structures found by SIRIUS 
- no metabolic correlation between molecular 
formulas was found on KEGG

1.

2.

3.

4.

5.
6 compounds have been reported as volatile 
markers for bacteria. 12 compounds are known 
microbial metabolites and possible novel volatile 
markers for these pathogens. 19 compounds 
could not be assigned to known microbial 
metabolites and are possible novel volatile 
markers for these pathogens, when comparing 
these six pathogen groups, and measured with 
continuous headspace SESI-TOF analysis.

Literature comparison: For most m/z features, multiple compounds were 
suggested by SIRIUS with either a KEGG or HMDB database entry. 
Compound candidates were compared with the literature by comparison 
with the reported origins by: 1) KEGG database entry, 2) HMDB database 
entry and 3) google search with the keywords “compound name”, 
“bacteria” and “volatile”. A match with known volatile markers from bacteria 
were assigned as most likely compounds, followed by known microbial 
metabolites. In case of multiple remaining possibilities, the candidate with 
top SIRIUS MS2 matching score was listed. Multiple candidates were listed 
in case of more than one candidates from the top score up to a score of 
+30 (Supplemental table 2). 

n=37 features in N=20  
clusters of M=6 bacteria

6. 4 features had a very low Sirius MS2 matching 
score (< 300), we decided to not report these as 
putative compound structure but listed their 
elemental composition

Plausibility control: For plausibility control, we investigated the volatility and 
polarity (both with ACD/Labs Percepta PhysChem Module, version 2020, 
Advanced Chemistry Development, Inc., Toronto, On, Canada) for the 
putatively identified compounds. Three of the suggested compound 
structures had very low volatility (boiling point > 500 °C) and were very polar 
(log(D)<–4). These compounds were also the ones with very low SIRIUS MS2 
matching scores <–300. Although, boiling point is not a strict exclusion criteria 
for SESI, which is capable to detect compounds with very high boiling points 
such as for amino acids, e.g. L-Pyroglutamic acid (453.1±38.0 °C) or even 
formoterol (603.2±55.0 °C), we decided to report the elemental composition 
and not the compound structure for compounds with very low SIRIUS MS2 
scores <–300 (Supplemental table 3). 

n=33 features in N=20  
clusters of M=6 bacteria

Figure S2. Process schema of putative assignment
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2. Tables associated with putative compound identification

• Table S2 (link): Target list with structure.
• Table S3 (link): Putative markers literature comparison.
• Table S4 (link): Plausibility control.
• Table S5 (link): List of putatively identified compounds.

Pediatric exhalomics group (PEG)

Astghik Baghdasaryan, Christoph Berger, Christian Bieli, Tobias Bruderer, Naemi
Haas, Martin Hersberger, Katharina Heschl, Demet Inci, Andreas Jung, Malcolm Kohler,
Srdjan Micic, Alexander Moeller, Simona Müller, Nathan Perkins, Renate Spinas, Bettina
Streckenbach, Jakob Usemann, Ronja Weber and Renato Zenobi.
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