# SUPPLEMENTARY MATERIALS

## S1 Untargeted metabolomic profilin

## S1.1 LC-MS analysis

Untargeted metabolic profiling was performed in positive and negative ionization mode on an Acquity Ultra Performance Liquid Chromatography (UPLC) system (Waters, U.K.) coupled to a Quadrupole Time-of-Flight (QToF) Synapt G2 HDMS mass spectrometer (Waters MS Technologies, Ltd., Manchester, U.K.).

For LC-MS analysis a Waters Acquity UPLC HSS T3 column 2.1 mm wide and 100 mm long packed with 1.8  $\mu$ m beads was used and its temperature was kept at 50 °C. The mobile phase flow rate was set at 0.5 ml/min. The gradient mobile phase consisted of water with 0.1% FA (A) and methanol with acetonitrile in a 90:10 ratio with 0.1% FA (B). Each sample run lasted 12 min and consisted of an isocratic phase of 5% B for 1 min, a linear increase to 30% B in 2.5 min, a linear increase to 95% B in 3 min, an isocratic phase of 95% B for 1.5 min, a washout phase of 5% B for 3 min. For each run, 5  $\mu$ l of sample were injected.

Mass acquisition was performed with the Quadrupole-Time-of-Flight (Q-TOF) Mass Spectrometer (Synapt G2, Waters Co.) operating at both positive-ion (ESI+) and negative-ion (ESI-)electro-spray ionization mode. The mass range scan was of 20 to 1200 amu, both in MS scan mode and in MSe mode to obtain the fragmentation spectrum of the variables that fall within the parameters set in the scan method in MSe. The capillary voltage was set at 3.5 KV in positive mode and 2.8 KV in negative mode; the sampling cone voltage was set at 30 V in both modes. The desolvation gas flow was set at 600 L/h with temperature kept at 350 °C. The cone gas flow was set at 20 L/h with temperature kept at 110 °C. To correct for changes in environmental or experimental condition over the course of the analysis, Leucine-Enkephalin ([M+H]+ = 556,2771 m/z and [M-H]- = 554,2615 m/z), at a concentration of 2 µg/ml in a solution of acetonitrile and water with 0.1% FA in a 50:50 ratio, was injected periodically (every 10 s) as internal reference (i.e. lock mass).

Quality control (QC) samples and standard solution samples were used to test for reproducibility and accuracy during the analysis and were injected at regular intervals throughout the sequence, together with blank samples. To further reduce analytical variability, in accordance with an in-house protocol, samples distribution in the plate and the sequence of sample injection in the UPLC-MS were randomized, and 5/6 of the fluid resulting from the addition of eluents to the sample was excluded from the ionization process (splitting). Splitting samples prevent the risk of smudge the internal surfaces of the spectrometer itself, thus reducing its sensitivity.

## S1.2 Data processing and pre-treatment

UPLC-MS data were processed by the ProgenesisQI software (Waters Corporation, Milford, U.S.A.) and two data sets were generated, one for the positive-ionization mode (POS data set) and the other for the negative-ionization mode (NEG data set). The parameters used for data extraction were optimized through the preliminary analysis processing of the QC samples. We used a filter strength of 0.25 for import raw data and a QC in the middle of the sequence as a reference for the automatic alignment of all runs in the sequence. For the peak picking the sensitivity of the automatic algorithm was set at 3, where retention time

limits were between 0.4 and 8 min. The so-called Rt\_mass variables (where Rt is the retention time and mass is the mass to charge ratio m/z of the chemical compound) were generated.

Variables with more than 20% of missing data were eliminated to avoid spurious statistical models generated by unrealistic combinations of the measured variables. For each variable passing such a filter, missing data were imputed with a random number between zero and the minimum value measured for the variable. Variables with a coefficient of variation greater than 20% for QC samples have been excluded. Variables detected in the blank samples have been subtracted to the samples. The ion intensities for each peak detected were normalized, based on the calibration models obtained for the QCs with different dilution factors (1:3, 1:5, 1:7). Then probabilistic quotient normalization was applied to take into account dilution effects.

## S1.3 Variables annotation

The relevant variables selected by multivariate data analysis were merged with those obtained from univariate data analysis and were annotated by searching our in-house database of commercial standards, the METLIN metabolite database, and the Human Metabolome Database to obtain a unique identification code (HMDB ID)

Annotation for each putative marker was assigned with a different level of confidence (as described in Viant et al. Curr Opin Chem Biol. **2017**;36:64-69), based on accurate mass, retention time, and the fragmentation patterns, where available. To improve confidence in the compound annotation, for the compounds not present in our database, theoretical fragmentation of the candidate list of compounds was performed in Progenesis, and the resulting *in silico* fragmentation matched against the observed fragments for a compound.

Level 1 was assigned for the compounds with a difference of 10 ppm for m/z, 0.2 min for rt, and, where available, with collision cross-section  $\geq 2\%$ , with respect to the standards of our in-house database, that were performed under identical analytical conditions of the current analysis.

Instead, level 2 and 3 was for metabolites with m/z  $\leq$ 10ppm respect to the online databases, and the fragmentation score  $\geq$  30 or < 30, respectively.

#### S1.4 Outlier detection

PCA has been applied to detect the presence of outliers in the untargeted metabolomic data obtained from urine samples. Specifically, T2 test and Q test have been applied with a significance level  $\alpha$ =0.05. Data have been mean-centered and 2 principal components have been considered. In figures S1 and S2 the score scatter plots and the T2/Q plots obtained respectively for the NEG and the POS data sets are reported.



Figure S1. NEG data set: score scatter plot (panel A) and T2/Q plot (panel B) obtained for the controls and score scatter plot (panel C) and T2/Q plot (panel D) obtained for the group of neonates developing sepsis; red dashed lines indicate the threshold at the significance level  $\alpha$ =0.05 used for outlier detection.



Figure S2. POS data set: score scatter plot (panel A) and T2/Q plot (panel B) obtained for the controls and score scatter plot (panel C) and T2/Q plot (panel D) obtained for the group of neonates developing sepsis; red dashed lines indicate the threshold at the significance level  $\alpha$ =0.05 used for outlier detection.

## S2 Targeted metabolomic analysis

## S2.1 Chemicals and reagents

The chemical standards and labeled standards were purchased from: Sigma-Aldrich Corporation (Milan, Italy); Fluka (Milan, Italy); CDN Isotopes (Pointe-Claire, Quebec, Canada).; Chromsystems Instruments &Chemicals (Gräfelfing, Germany), Toronto Research Chemicals (Toronto, Ontario, Canada); Santa Cruz Biotechnology, Inc. (Dallas, Texas, USA); Coompo Research Chemicals (Wuhan, Hubei, PRC). The commercial names and the specific chemical company for each analyte were indicated in Table S1 and Table S2. The purity of all analytes and labeled internal standards was  $\geq 98\%$ .

Water was purified with a Milli-Q Elix purification system (Millipore, Bedford, MA, USA). High-purity MS-grade solvents (formic acid, methanol, and acetonitrile) were obtained from Fluka (Milan, Italy) and used without further purification.

#### S2.2 Preparation of standard solutions and calibration curves

Individual stock solutions in water or methanol with different percentage of formic acid depending on the different solubility of the compounds were used. A series of solution mixtures of desired concentrations were prepared by suitable dilutions of the stock solutions in 0.1% formic acid in water. All the stocks were stored at -20 °C.

Stock solutions of labeled metabolites were prepared as the unlabeled and diluted as required, with water 0.1% FA, to obtain a concentration of 0.05-0.1  $\mu$ M for neurotransmitters, and polyamine, and 1-10  $\mu$ M for amino acids and kynurenine metabolites, and used as internal standard (IS).

Calibration curves of the analytes were prepared by spiking pooled plasma, obtained from volunteers, with the diluted mixed standard solutions and IS, to the concentration ranging from 0.3 to 100 nmol/L for neurotransmitters, from 30 to 3000 nmol/L for polyamines, and from 0.05 to 250  $\mu$ mol/L for amino acids and kynurenine metabolites.

#### S2.3 Quality controls (QC)

Two different concentrations of QC's plasma were used for precision and accuracy. Where available we used QC from chemical companies, with 2 different level concentration (Amino Acid Quality Control set, low and High, Kairos<sup>TM</sup>, Waters Corporation, Milford, MS, USA), otherwise we prepared QC by spiking pooled plasma with 2 different concentration of the analytes.

The QC's plasma were extracted 2 times and analyzed 5 times within the same chromatographic run (n=10, intraday repeatability) and for 3 distinct days (n=30, between days reproducibility) to precision and reproducibility of the analytical method, expressed as coefficient of variation (CV%).

Difference between measured and expected values of QC's plasma samples (Bias%) was used to estimate the accuracy of the analysis

The analytes with CV% and Bias%  $\leq 20\%$  were considered for targeted analysis.

Plasma calibrations curve at 5 concentrations were built for assessing linearity, expressed as  $R^2$ .

Sensitivity, expressed as limit of quantification (LOQ, S/N $\ge$ 10), was extrapolated by lowest point of calibration solution. The R<sup>2</sup> and LOQ for each compound were reported in Table S1

#### S2.4 Sample preparation

# S2.4.1 Sample preparation for the analysis of amino acids, polyamines and metabolites of the kynurenine pathway

10  $\mu$ L of plasma were mixed with 10  $\mu$ L polyamine internal standard (IS), 10  $\mu$ L kynurenine internal standard, and 100  $\mu$ L amino acids internal standard mix in methanol 0.1% v/v formic acid.

The sample+IS mixtures were deproteinized and vortexed, then stored at -20 °C for 20 min and centrifuged at 13000 g for 7 min. For the analysis of the metabolites of the kynurenine pathway,  $50\mu$ L of supernatant were transferred to a vial and injected to LC-MS.

For amino acid and polyamine analysis,  $10 \ \mu$ L of the supernatant were mixed in a well plate with 70  $\mu$ L of borate buffer and 20  $\mu$ L of AccQ-Tag reagent, (AccQ-Tag Ultra Derivatization Kit, Waters Corporation)

then heated for 10 min at 55 °C for derivatization. The plate was placed under a stream of  $N_2$  for 10 min to evaporate the acetonitrile of the reagent, then 20 µL of buffer or H<sub>2</sub>O were added.

10  $\mu$ L of the samples were diluted with 190  $\mu$ L H<sub>2</sub>O in another plate for high-concentration amino acid quantification.

# S2.4.2 Sample preparation for the analysis of neurotransmitters associated with tyrosine and tryptophan metabolism

10  $\mu$ L of plasma were mixed with 5  $\mu$ L of IS and 100  $\mu$ L of cold acetonitrile. The sample+IS mixtures were vortexed and stored at -20 °C for 20 min, then centrifuged at 13000 g for 7 min. 10  $\mu$ L of the supernatant were mixed in a well plate with 70  $\mu$ L of borate buffer and 20  $\mu$ L of AccQ-Tag reagent, and heated for 10 min at 55 °C for derivatization. The plate was then placed under a stream of N<sub>2</sub> for 10 min to evaporate the acetonitrile of the reagent, then 20  $\mu$ L of buffer or H<sub>2</sub>O were added.

## S2.5 UPLC-MS analysis

The analysis was conducted using a Xevo TQ-S triple-quadrupole mass spectrometer coupled to an Acquity UPLC (Waters Milford, MA, USA), interfaced with a source of Electrospray Ionization (ESI). The ESI was operated in the positive ion mode with multiple reaction monitoring (MRM). Chromatographic separation was done on a Waters Acquity UPLC HSS T3 2.1 x 100 mm 1.8 µm column (Waters Milford, MA, USA). Specific mobile phases and injection volumes were used for the different classes of metabolites as summarized below:

### Amino acids

Mobile phases consisted of waters 0.1% formic acid for phase A and acetonitrile 0.1% formic acid for phase B. Injection volume 2  $\mu$ L.

| Time(min) | Flow Rate | %A | %B |
|-----------|-----------|----|----|
| 0         | 0.6       | 96 | 4  |
| 0.5       | 0.6       | 96 | 4  |
| 2.5       | 0.6       | 90 | 10 |
| 5         | 0.6       | 72 | 28 |
| 6         | 0.6       | 5  | 95 |
| 7         | 0.6       | 5  | 95 |
| 7.1       | 0.6       | 96 | 4  |

# Polyamines

Mobile phases consisted of waters 0.1% formic acid for phase A and acetonitrile:methanol 90:10 0.1% formic acid for phase B. Injection volume  $20 \,\mu$ L.

| Time(min) | Flow Rate | %A | %B |
|-----------|-----------|----|----|
| 0         | 0.6       | 96 | 4  |
| 1         | 0.6       | 96 | 4  |
| 2.5       | 0.6       | 90 | 10 |
| 5         | 0.6       | 85 | 15 |
| 5.5       | 0.6       | 78 | 22 |
| 6         | 0.6       | 5  | 95 |
| 7         | 0.6       | 5  | 95 |
| 7.5       | 0.6       | 3  | 97 |
| 7.6       | 0.6       | 96 | 4  |
| 8.5       | 0.6       | 96 | 4  |

## Metabolites of the kynurenine pathway

Mobile phases consisted of waters 0.1% formic acid for phase A and acetonitrile:methanol 90:10 0.1% formic acid for phase B. Injection volume 5  $\mu$ L.

| Time(min) | Flow Rate | %A | %B |
|-----------|-----------|----|----|
| 0         | 0.3       | 98 | 2  |
| 2.6       | 0.3       | 65 | 35 |
| 3.5       | 0.3       | 40 | 60 |
| 4         | 0.3       | 10 | 90 |
| 4.5       | 0.6       | 10 | 90 |
| 4.51      | 0.6       | 10 | 90 |
| 5.5       | 0.6       | 10 | 90 |
| 6         | 0.6       | 98 | 2  |
| 6.9       | 0.6       | 98 | 2  |
| 7         | 0.3       | 98 | 2  |

## Neurotransmitters associated to tyrosine and tryptophan metabolism

Mobile phases consisted of waters 0.1% formic acid for phase A and acetonitrile:methanol 90:10 0.1% formic acid for phase B. Injection volume  $20 \,\mu$ L.

| Time(min) | Flow Rate | %A | %B |
|-----------|-----------|----|----|
| 0         | 0.6       | 99 | 1  |
| 0.5       | 0.6       | 99 | 1  |
| 1         | 0.6       | 96 | 4  |
| 3         | 0.6       | 90 | 10 |
| 5.5       | 0.6       | 72 | 28 |
| 6.5       | 0.6       | 5  | 95 |
| 7.5       | 0.6       | 5  | 95 |
| 8.01      | 0.6       | 99 | 1  |
| 8.5       | 0.6       | 99 | 1  |

Instrument control, data acquisition and analysis were managed with MassLynx software (version 4.1, Waters). Quantification was done using the TargetLynx function of the same software.

**Table S1.** The name of the 64 metabolites quantified by targeted methods, their chemical group, the LOQ concentration, the value of  $R^2$  for calibration curves, and the commercial name and the companies where we purchased the standards are reported.

| Metabolite             | HMDB_ID     | Commercial name                      | Company       | group/pathway                      | LOQ         | R2     |
|------------------------|-------------|--------------------------------------|---------------|------------------------------------|-------------|--------|
| 2-aminobutyric acid    | HMDB0000452 | L-a-Amino-n-butyric Acid             | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 0.9841 |
| 3-aminobutyric acid    | HMDB0031654 | 3-aminobutyric acid                  | Sigma-Aldrich | aminoacids                         | 2.46 µmol/L | 0.9819 |
| 3-aminoisobutyric acid | HMDB0003911 | D,L-B-Aminoisobutyric Acid           | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 1      |
| 3-methylhistidine      | HMDB0000479 | 3-Methyl-L-histidine                 | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 0.9999 |
| ADMA                   | HMDB0001539 | dimethylarginine-<br>dihydrochloride | Sigma-Aldrich | aminoacids                         | 0.04 µmol/L | 0.9985 |
| alanine                | HMDB0000161 | L-Alanine                            | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 0.9708 |
| aminoadipic acid       | HMDB0000510 | L-a-Aminoadipic Acid                 | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 0.9909 |
| 3-aminopropanoic acid  |             | ß-Alanine                            | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 0.9903 |
| arginine               | HMDB0000517 | L-Arginine                           | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 0.9952 |
| asparagine             | HMDB0000168 | L-Asparagine                         | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 0.9924 |
| Aspartic               | HMDB0000191 | L-Aspartic Acid                      | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 0.9993 |
| carnosine              | HMDB0000033 | L-Carnosine                          | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 0.9958 |
| citrulline             | HMDB0000904 | L-Citrulline                         | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 0.9996 |
| cystathionine          | HMDB0000099 | Cystathionine*                       | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 0.9987 |
| Cystine                | HMDB0000192 | L-Cystine                            | Sigma-Aldrich | aminoacids                         | 1.54 µmol/L | 0.9976 |
| dl-kinurenine          | HMDB0000684 | L-Kynurenine                         | Sigma-Aldrich | aminoacids/kynu<br>renine pathways | 0.12 µmol/L | 0.9873 |
| Ethanolamine           | HMDB0000149 | Ethanolamine                         | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 0.9958 |
| GABA                   | HMDB0000112 | g-Amino-n-butyric Acid               | Sigma-Aldrich | aminoacids                         | 3.08 µmol/L | 0.9875 |

| glutamic acid                | HMDB0000148 | L-Glutamic Acid                                             | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9974 |
|------------------------------|-------------|-------------------------------------------------------------|---------------------|------------------------------------|--------------------|--------|
| glycine                      | HMDB0000123 | Glycine                                                     | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9918 |
| HArg                         | HMDB0000670 | L-homoarginine hydrochloride                                | Fluka               | aminoacids                         | 0.04 µmol/L        | 0.9985 |
| histidine                    | HMDB0000177 | L-Histidine                                                 | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9981 |
| homoserine                   | HMDB0000719 | L-homoserine                                                | Fluka               | aminoacids                         | 2.46 µmol/L        | 0.9922 |
| isoleucine                   | HMDB0000172 | L-Isoleucine                                                | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.997  |
| leucine                      | HMDB0000687 | L-Leucine                                                   | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9995 |
| lysine                       | HMDB0000182 | L-Lysine                                                    | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9869 |
| methionine                   | HMDB0000696 | L-Methionine                                                | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9988 |
| NMMA                         |             | N-monomethyl-L-arginine                                     | Sigma-Aldrich       | aminoacids                         | 0.04 µmol/L        | 0.9998 |
| OH-lysine/allo-OH-<br>lysine | HMDB0000450 | d-DL-Hydroxylysine                                          | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.991  |
| ornithine                    | HMDB0000214 | L-Ornithine                                                 | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9821 |
| phenylalanine                | HMDB0000159 | L-Phenylalanine                                             | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.998  |
| proline                      | HMDB0000162 | L-Proline                                                   | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9926 |
| sarcosine                    | HMDB0000271 | L-Sarcosine                                                 | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9987 |
| SDMA                         | HMDB0003334 | dimethyl-L-arginine-di(p-<br>hydroxyazobenzene-p-sulfonate) | Sigma-Aldrich       | aminoacids                         | 0.04 µmol/L        | 0.9976 |
| serine                       | HMDB0000187 | L-Serine                                                    | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9906 |
| taurine                      | HMDB0000251 | Taurine                                                     | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9963 |
| threonine                    | HMDB0000167 | L-Threonine                                                 | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9988 |
| tryptophane                  | HMDB0000929 | L-Tryptophan                                                | Sigma-Aldrich       | aminoacids/kynu<br>renine pathways | 3.08 µmol/L        | 0.9943 |
| tyrosine                     | HMDB0000158 | L-Tyrosine                                                  | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9994 |
| valine                       | HMDB0000883 | L-Valine                                                    | Sigma-Aldrich       | aminoacids                         | 3.08 µmol/L        | 0.9955 |
| 3-HAA                        | HMDB0001476 | 3-Hydroxyanthranilic acid                                   | Sigma-Aldrich       | kynurenine<br>pathways             | 0.01 µmol/L        | 0.995  |
| 30H-KYN                      | HMDB0011631 | 3-Hydroxy-DL-kynurenine                                     | Sigma-Aldrich       | kynurenine<br>pathways             | 0.01 µmol/L        | 0.9974 |
| 5-HIAA                       | HMDB0000763 | 5-Hydroxyindole-3-acetic acid                               | Sigma-Aldrich       | kynurenine<br>pathways             | 0.01 µmol/L        | 0.9888 |
| 5-OH-ind                     | HMDB0001855 | 5-Hydroxyindole                                             | Sigma-Aldrich       | kynurenine<br>pathways             | 0.05 µmol/L        | 0.9997 |
| IAA                          | HMDB0000197 | 3-Indoleacetic acid                                         | Sigma-Aldrich       | kynurenine<br>pathways             | 0.05 µmol/L        | 0.9899 |
| IPA                          | HMDB0002302 | Indole-3-propionic acid                                     | Sigma-Aldrich       | kynurenine<br>pathways             | 0.05 µmol/L        | 0.9918 |
| KYNA                         | HMDB0000715 | kynurenic acid                                              | Sigma-Aldrich       | kynurenine<br>pathways             | 0.02 µmol/L        | 0.9706 |
| XA                           | HMDB0000881 | xanthurenic acid                                            | Sigma-Aldrich       | kynurenine<br>pathways             | 0.004<br>μmol/L    | 0.9719 |
| agmatine                     | HMDB0001432 | Agmatine sulfate salt                                       | Sigma-Aldrich       | polyamine                          | 0.12 µmol/L        | 0.9931 |
| cadaverine                   | HMDB0002322 | Cadaverine dihydrochloride                                  | Sigma-Aldrich       | polyamine                          | 0.09 µmol/L        | 0.9986 |
| N1-AcetylSPD                 | HMDB0001276 | N1-acetylspermidine<br>(hydrochloride)                      | Cayman<br>Chemicals | polyamine                          | 0.03 µmol/L        | 0.9958 |
| putrescine                   | HMDB0001414 | Putrescine dihydrochloride                                  | Sigma-Aldrich       | polyamine                          | 0.03 µmol/L        | 0.9922 |
| spermidine                   | HMDB0001257 | Spermidine trihydrocholride                                 | Sigma-Aldrich       | polyamine                          | 0.03 µmol/L        | 0.9948 |
| Spermine                     | HMDB0001256 | Spermine tetrehydrocholride                                 | Sigma-Aldrich       | polyamine                          | 0.06 µmol/L        | 0.9993 |
| Dopamine                     | HMDB0000073 | 3-Hydroxy-Tyramine HCL                                      | Sigma-Aldrich       | neurotrasmitters                   | 1.56 nmol/L        | 0.9701 |
| epinephrine                  | HMDB0000068 | (-) Epinephrine                                             | Sigma-Aldrich       | neurotrasmitters                   | 1.56 nmol/L        | 0.9879 |
| Metanephrine                 | HMDB0004063 | D,L-Metanephrine<br>Hydrochloride                           | Sigma-Aldrich       | neurotrasmitters                   | 1.56 nmol/L        | 0.9982 |
| norepinephrine               | HMDB0000216 | DL-Noroadrenaline                                           | Fluka               | neurotrasmitters                   | 2.5 nmol/L         | 0.9976 |
| Octopamine                   | HMDB0004825 | (±)-Octopamine hydrochloride                                | Sigma-Aldrich       | neurotrasmitters                   | 1.25 nmol/L        | 0.9963 |
| Serotonin                    | HMDB0000259 | 5-Hydroxytyramine<br>hydrochloride                          | Sigma-Aldrich       | neurotrasmitters                   | $0.62 \ \mu mol/L$ | 0.9963 |

| Synephrine | HMDB0004826 | (±)-Synephrine          | Sigma-Aldrich | neurotrasmitters | 0.31 nmol/L | 0.9918 |
|------------|-------------|-------------------------|---------------|------------------|-------------|--------|
| Tryptamine | HMDB0000303 | Tryptamine              | Sigma-Aldrich | neurotrasmitters | 3.12 nmol/L | 0.9984 |
| Tyramine   | HMDB0000306 | 4-Hydroxyphenethylamine | Sigma-Aldrich | neurotrasmitters | 3.12 nmol/L | 0.9807 |

**Table S2.** The labeled standards used for calibration curves and the name of the chemical companies where we purchased the internal standards are reported.

| Labeled standards                 | Company            |  |  |
|-----------------------------------|--------------------|--|--|
| Histidine D3                      | Sigma-Aldrich      |  |  |
| Glycine 13C215N                   | Chromsystem        |  |  |
| Arginine D7                       | Chromsystem        |  |  |
| Glutamine D5                      | Sigma-Aldrich      |  |  |
| Serine D3                         | CDN isotope        |  |  |
| Aspartic Acid D3                  | Chromsystem        |  |  |
| Citrulline D2                     | Chromsystem        |  |  |
| Glutamic acid D5                  | Chromsystem        |  |  |
| Alanine D4                        | Chromsystem        |  |  |
| GABA D6                           | CDN isotope        |  |  |
| Ornithine d6                      | Chromsystem        |  |  |
| Proline D7                        | Sigma-Aldrich      |  |  |
| Lysine D4                         | Sigma-Aldrich      |  |  |
| Tyrosine D4                       | Chromsystem        |  |  |
| Methionine D3                     | Chromsystem        |  |  |
| Valine D8                         | Chromsystem        |  |  |
| Leucine D3                        | Chromsystem        |  |  |
| Phenylalanine D5                  | Chromsystem        |  |  |
| Tryptophane D5                    | Sigma-Aldrich      |  |  |
| Creatinine D3                     | CDN isotopes       |  |  |
| Creatine-D3                       | CDN isotopes       |  |  |
| Taurine D4                        | Sigma-Aldrich      |  |  |
| 5HIAA-D5                          | Sigma-Aldrich      |  |  |
| L-Dopa-D3                         | CDN isotope        |  |  |
| Agmatine D8                       | Coompo             |  |  |
| Putrescine D4                     | CDN isotopes       |  |  |
| Cadaverine D4                     | CDN isotopes       |  |  |
| Spermidine 13C4                   | Sigma-Aldrich      |  |  |
| Spermine D8                       | Sigma-Aldrich      |  |  |
| Kynurenine-D4                     | Toronto Chemicals  |  |  |
| Histamine D4                      | CDN isotopes       |  |  |
| 2-phenyl-d5-ethylamine (B-PEA-D5) | CDN isotopes       |  |  |
| Octonamine D4                     | CDN isotopes       |  |  |
| Donamine D4                       | CDN isotopes       |  |  |
| Synenhrine 13C215N                | Santa Cruz Biotech |  |  |
| Noreninenbrine D6                 | CDN isotopes       |  |  |
| Serotonin D4                      | CDN isotopes       |  |  |
| Eninenhrine D6                    | CDN isotopes       |  |  |
| Matananhrina D2                   | Sigma Aldrich      |  |  |
|                                   | CDN isotomos       |  |  |
| Senetenin D4                      | CDN isotopes       |  |  |
| Serotonin D4                      | CDN isotopes       |  |  |