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Abstract: This work compares the metabolic profiles of plasma and the cerebrospinal fluid (CSF) of
the patients with high-grade (III and IV) gliomas and the conditionally healthy controls using the
wide-range targeted screening of low molecular metabolites by HPLC-MS/MS. The obtained data
were analyzed using robust linear regression with Huber’s M-estimates, and a number of metabolites
with correlated content in plasma and CSF was identified. The statistical analysis shows a significant
correlation of metabolite content in plasma and CSF samples for the majority of metabolites. Several
metabolites were shown to have high correlation in the control samples, but not in the glioma patients.
This can be due to the specific metabolic processes in the glioma patients or to the damaged integrity
of blood-brain barrier. The results of our study may be useful for the understanding of molecular
mechanisms underlying the development of gliomas, as well as for the search of potential biomarkers
for the minimally invasive diagnostic procedures of gliomas.

Keywords: glioma; metabolomics; liquid chromatography; tandem mass spectrometry; plasma;
cerebrospinal fluid

1. Introduction

Gliomas, which represent the majority (81%) of malignant brain tumors, are classified
using WHO grade criteria into 4 grades based on increasing degree of anaplasia and aggres-
siveness, with malignant gliomas comprising grades III and IV tumors. The most prevalent
glioma types include astrocytoma (WHO grade I–IV), oligodendroglioma (WHO grade II–
III), and oligoastrocytomas (WHO grade II–III). High-grade gliomas include glioblastoma
(WHO Grade IV astrocytoma), anaplastic (WHO Grade III) astrocytoma, anaplastic (WHO
Grade III) oligodendroglioma and mixed (WHO Grade III) oligoastrocytomas [1,2].

The most common type of glioma is glioblastoma, which accounts for 82% of malignant
gliomas and has the worst survival prognosis, with only 5% of patients surviving 5 years
after diagnosis [1,2]. The 5-year survival rates for Grade III malignant gliomas are signif-
icantly higher (~25% for anaplastic astrocytoma, 45% for anaplastic oligodendroglioma
and ~50% for mixed oligoastrocytic tumors [1]. A multimodal treatment including surgical
removal of tumor with a concomitant/adjuvant radio- and chemotherapy (temozolomide)
is the first-line standard-of-care for glioblastoma, the use of which increased the median
survival to 15 months vs 12 months with radiotherapy alone [2].
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Although the clinical point of view exists that early diagnosis (and treatment) do
not improve the outcomes in glioblastoma, an alternative opinion suggests that an early
diagnosis and accurate tumor classification must become a cornerstone of an efficient
personalized therapy [3]. In fact, the current diagnostic procedure for glioblastoma always
results in a late diagnosis, since it relies on neurological tests and neuroimaging. Meanwhile,
numerous studies underscore the importance of a maximum surgical removal of tumor
mass up to the borders of the healthy surrounding tissue for a better survival and life
expectancy of glioblastoma patients [3], which, in case of a brain tumor, is, apparently, less
feasible with larger and more advanced late-diagnosed neoplasms.

An early diagnosis of a brain tumor is, thus, an important task for the improvement of
treatment efficiency and survival of the patients. The development of minimally invasive
approaches for the early detection and classification of tumors is indispensable for choosing
a more efficient therapeutic strategy.

The malignant cells including those of brain tumors have been long known to pos-
sess metabolic alterations [4–6]. These features are due to their enhanced survival and
reproduction under the conditions when nutrients and oxygen are scarce, which may be
caused by the gene mutations resulting in an altered functioning of different enzymatic
pathways [7–9]. An apparent difference in the metabolic profiles of normal and malignant
cells laid the groundwork for the development of diagnostic methods relying upon the
identification of specific disease biomarkers. The study of brain tumor metabolome and
the search for biomarkers indicative of brain tumor development and helpful in tumor
grading or making the diagnosis of tumor recurrence pose an ongoing challenge, different
instrumental approaches to which are being developed.

The cerebrospinal fluid (CSF), which is secreted by the choroids plexus and the
meninges, and circulates between brain ventricles and spinal subarachnoid space, is in-
volved in a number of protection, metabolic and drainage functions. Consisting of ~80% of
blood-derived and 20% of brain-derived components and being permanently renewed, it
maintains the electrolytic and acid-base balance of the brain and supplies the nutrients and
signal molecules to the neuronal and glial cells. Meanwhile, it serves as a lymphatic system
for the CNS by draining off the wastes and neurotoxic products of brain metabolism. It
also provides mechanical support and protection against brain traumas and is involved in
intracranial pressure maintenance. Filtration of blood-derived immune molecules, such as
the immunoglobulins and cytokines through the blood-brain barrier (BBB) into the CSF
ensures the immunological function of the CSF. Finally, the CSF is directly involved in
the circadian cycle control via its prostaglandin D2 (PGD2) and prostaglandin-D-synthase
(PGDS) system [10].

The CSF is an important diagnostic tool for the search of biomarkers of brain diseases
and dysfunctions. A number of published studies is dedicated to the identification of
biomarkers of Parkinson’s and Alzheimer’s diseases, multiple sclerosis, etc. [11–14]. An
apparent disadvantage of metabolomic approaches to the CSF analysis is the relative
invasiveness of the CSF withdrawal procedure, which requires a lumbar puncture.

A number of published studies presents the metabolomic screening for glioma biomark-
ers in individual CSF [15,16] or plasma [17,18] samples. Meanwhile, a limited number of
studies analyses the relative metabolite content in matched CSF and plasma samples in
different pathologies, e.g., Alzheimer disease [19], and neither publication compares the
matched CSF and plasma metabolite profiles in the patients with gliomas. Here, we present
a wide-range metabolomic analysis of the CSF and blood plasma samples in the groups
of glioma patients and conditionally healthy controls, as well as a correlation study of the
metabolomic profiles of matched CSF/plasma samples in the individual study subjects.

2. Results and Discussion

The plasma and CSF samples were obtained from each participant and analyzed in
three replicates. As much as 289 metabolites (Table S1) were screened by HPLC-MS/MS
using the approach described by Yuan et al. [20]. This approach consists of a targeted
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analysis of metabolites in MRM mode using positive/negative polarity switching followed
by a relative quantitation of the compounds. After analysis of samples, the resulting
chromatograms were integrated and the results (Table S2) were processed using statistical
methods. Thus, three vectors constructed using the metabolite peaks and characterizing
the metabolic profiles were obtained for each study subject (variation of metabolite peak
areas between these replicas is shown in Figure S1).

The projection of metabolic profiles onto a 2-D space using the Uniform Manifold
Approximation and Projection (UMAP) [21] was performed for the primary data analysis
and visualization, the results of which are shown in Figure 1. As seen in the figure, the
glioma and healthy control metabolic profiles are markedly different for the majority
of samples indicating the high diagnostics potential of the method (Figure 1A). Also, a
partial separation of profiles was observed between the CSF and blood plasma samples of
glioma patients (1B). However, significantly reduced separation of CSF and blood plasma
samples of glioma patients may indicate damaged blood-brain barrier. Better separation
between each of these pairs of groups was reached using OPLS-DA (see Figures S2 and
S3 in Supplementary Materials). To further investigate these observations, we conducted
detailed analysis of metabolic profiles.
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Figure 1. The projection of metabolic profiles onto a 2D space using the Uniform Manifold Approximation and Projection
(UMAP). Each point corresponds to a single metabolic profile measurement. (A) Points are colored in red and green for
glioma patients and control group, correspondingly. (B) Points are colored in blue and orange for CSF and plasma samples,
correspondingly. PCA and UMAP coordinates were calculated for the log-transformed measurement values using SCANPY
python package [22].

The metabolic profiles of each sample were further averaged across the three replicate
measurements. A comparison of mean CSF and plasma metabolic profiles in the combined
group of glioma patients and healthy controls shows their high degree of similarity with
the correlation coefficient R = 0.85 (Figure 2). The same correlation analysis was performed
for the patient and the control groups individually, which did not significantly change
the obtained values (R = 0.86 and 0.82, respectively (figures not shown). The profiles
of metabolites content in plasma and CSF samples ranked according to their increased
representation value in plasma are shown in Figure 3.

Thus, herewith we show that the mean plasma and CSF metabolite profiles are highly
correlated to each other across the combined group of glioma patients and healthy controls.
However, this analysis does not provide information on the correlation between the content
of individual metabolites in plasma and CSF samples.
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Figure 2. Correlation (R = 0.85) between CSF and plasma metabolite profiles in a combined group of glioma patients and
healthy controls. Each point corresponds to an individual metabolite. Ln values of the average peak area of a metabolite in
plasma (SPL, axis X) and CSF (SCSF, axis Y) are shown, respectively.
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Figure 3. Metabolic profiles of blood plasma (blue line) and CSF (orange line) of the combined group of glioma patients and
control group. Metabolites are ranged according to their increasing plasma content. Ln values of the average peak area of a
metabolite are shown on the Y axis.

In order to find the correlation for each of the analyzed metabolites, we investigated
the correlations of their concentrations in plasma and CSF using the regression analysis
and Huber’s correlation method [23]. A comparison between the matched CSF and plasma
samples of the individual subjects was performed. The correlations were obtained for
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the combined group of glioma patients and healthy controls, as well as for the groups
of patients and controls, separately (see Supplementary Materials for further details).
Significant correlations (p < 0.05) were observed for 75, 68 and 23 out of 101 studied
metabolites in the combined group of glioma patients and healthy controls, or in the
patients or the controls groups, separately (see Supplementary Materials). Apparently, the
detected sets of metabolites are markedly different with only 16 metabolites being shared
by all three groups (see Figure 4).
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An analysis of overrepresentation of metabolic pathways from Reactome database
performed with a set of 16 found metabolites used as a query (Figure 4) identified 20 statis-
tically significant pathways (FDR < 0.05, see Table S3, isect_pathways). Six out of 20 over-
represented pathways were involved in the transport function of ions, small molecules
and other compounds across the cytoplasmic membrane (see Table 1). Additionally, sev-
eral other metabolic cascades have been identified among the 20 found pathways, as
follows: “Neurotransmitter release cycle” (R-HSA-112310), “Citric acid cycle (TCA cycle)”
(R-HSA-71403), “Pyruvate metabolism and Citric Acid (TCA) cycle” (R-HSA-71406) и“The
citric acid (TCA) cycle and respiratory electron transport” (R-HSA-1428517), which may
represent a particular interest for the disease under study.

Also of interest are the metabolites showing highest differences of correlation co-
efficients between the glioma patients’ group and the controls. The lists of metabolites
showing the highest correlation between CSF and plasma samples in the control group,
but not the patients group, and vice versa, are shown in Tables 2 and 3, respectively.

Overrepresentation analysis for the metabolites from the first set (with correlation lost
in patients) revealed that the most significant overrepresented pathways with more than
one metabolite found were: Metabolism of nucleotides (R-HSA-15869) and Metabolism
(R-HSA-1430728).
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Table 1. Biological pathways showing overrepresentation with metabolites from a 16-metabolite set with highest correlation
between plasma and CSF samples.

Pathway
Identifier Pathway Name Entities

Found
Entities

Total Entities FDR Submitted
Entities Found

R-HSA-425366 Transport of bile salts and organic acids,
metal ions and amine compounds 4 165 0.02317 C00719; C00791;

C00158; C00366

R-HSA-71291 Metabolism of amino acids
and derivatives 4 661 0.02875 C00719; C00791;

C00956; C00005

R-HSA-425407 SLC-mediated transmembrane transport 4 418 0.02875 C00719; C00791;
C00158; C00366

R-HSA-71403 Citric acid cycle (TCA cycle) 2 50 0.02875 C00005; C00158

R-HSA-549132 Organic
cation/anion/zwitterion transport 2 51 0.02875 C00791; C00366

R-HSA-382551 Transport of small molecules 5 967 0.03432
C00719; C00791;
C00005; C00158;

C00366

R-HSA-71406 Pyruvate metabolism and Citric Acid
(TCA) cycle 2 98 0.034312 C00005; C00158

R-HSA-112310 Neurotransmitter release cycle 2 99 0.04432 C00189; C00719
R-HSA-917937 Iron uptake and transport 2 83 0.04500 C00005; C00158

R-HSA-1428517 The citric acid (TCA) cycle and
respiratory electron transport 2 233 0.04705 C00005; C00158

Table 2. Metabolites with plasma-CSF correlation lost in patients compared to control group. Huber
R/p denotes the corresponding R- or p-value of the correlation coefficient for the model with Huber
M-estimates.

Name
Patients Control

Huber R Huber p Huber R Huber p

Methylcysteine −0.12 0.53 0.96 9.75 × 10−15

N-Acetyl-L-alanine 0.34 0.10 −0.74 2.82 × 10−2

N-carbamoyl-L-aspartate −0.01 0.98 0.83 1.10 × 10−2

deoxyuridine 0.17 0.62 0.97 6.08 × 10−12

Acetylcarnitine 0.14 0.72 0.84 2.22 × 10−3

4-Pyridoxic acid 0.51 0.07 0.85 1.56 × 10−3

S-methyl-5-thioadenosine 0.51 0.09 0.75 2.29 × 10−2

Table 3. Top 10 metabolites (of 53 total) with plasma-CSF correlation lost in control group compared
to patients group. Huber R/p denotes the corresponding R- or p-value of the correlation coefficient
for the model with Huber M-estimates. For a full list see Table S3, corr_lostin_control.

Name
Patients Control Group

Huber R Huber p Huber R Huber p

biotin 0.92 7.69 × 10−31 −0.27 0.57
phenylalanine 0.86 2.14 × 10−12 −0.29 0.54

leucine-isoleucine 0.79 2.05 × 10−5 −0.36 0.63
Sedoheptulose

1,7-bisphosphate (SBP) 0.53 4.60 × 10−5 −0.52 0.31

hypoxanthine 0.71 9.50 × 10−9 −0.24 0.62
cysteine 0.85 1.69 × 10−7 −0.04 0.92
creatine 0.50 0.0021 −0.34 0.44
purine 0.84 1.12 × 10−6 0.077 0.91
alanine 0.44 0.0071 −0.32 0.49

2,3-Diphosphoglyceric acid 0.85 2.97 × 10−6 0.102 0.86
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Almost 70 pathways were found to be overrepresented with 53 metabolites show-
ing plasma-CSF correlation, which is lost in control compared to patients (see Table S3,
corr_lostin_control_pathways). These metabolites are frequently found in pathways associ-
ated with different kinds of transport, in particular, the transport across the cell membrane.

In addition to above analysis, the pairwise correlations between metabolites found in
plasma and CSF were studied using the degree-corrected nested stochastic block model [24]
(see Figure 5). The graph with 101 vertices and 1115 edges was constructed where each
weighted edge corresponds to the correlation with the given correlation coefficient. Two
blocks of vertices are distinguished in the main graph of pairwise correlations (corre-
sponding block state entropy was equal to 1856.54). Interestingly, the metabolites from
the first block are significantly overrepresented mostly in those Reactome pathways that
are associated with transport function (8 pathways among the first 20 ones). In contrast,
the metabolites from the second block are significantly overrepresented mostly in the
Reactome pathways associated with metabolism, catabolism, and salvage (14 pathways
out of 32 found). Detailed tables can be found in Table S3, block_0_pways, block_1_pways.

The metabolites best correlated with each other are depicted by a subgraph of the
graph depicted in Figure 5 (see Figure 6 below). This subgraph was obtained after filtering
out those edges which have weight below 0.86 (i.e., 95th percentile of all weights). When
most of the lower correlating metabolites were filtered out from the subgraph there were
five connected components (C1 to C5) with more than a pair of vertices and an edge
left. Each of these five connected components has no any edge to other ones. From
the interactions found in the subgraph on Figure 6 it is seen that, e.g., citrate, isocitrate,
and citraconic acid (all three are from C5) levels significantly correlate with each other
in the studied samples. This is probably due to the fact that these three metabolites are
involved in the same metabolic pathway(s). To check this hypothesis, an overrepresentation
analysis using the Reactome database was conducted for metabolites from each of the
five connected components shown in the subgraph above. As expected, metabolites
from each connected component had common overrepresented pathways (see Table S3,
connected_component_X_pathways, where X is from 1 to 5).

Our analysis supports the idea that the two types of samples under study, namely,
plasma and CSF, contain a range of metabolites that change their levels in a correlated
manner. The first evidence is the presence of at least 16 metabolites that show significantly
correlated levels in plasma and CSF. The second one is that there are pairwise correlations
between the levels of a number of metabolites when both samples types are considered
together with patients and controls are also pooled. The latter fact suggests the presence
of groups of metabolites that might be expected to be involved in common metabolic
pathways or are under common regulation. Knowledge of such molecular mechanisms is
important for understanding the mechanisms of pathology. There are metabolites from
these groups for which there is a correlation between their plasma levels and CSF. Such
metabolic groups have been isolated here and can now be further studied.

In our study it was found that the CSF and plasma have a set of metabolites correlated
in their content in both matrices. Some of the identified metabolites show an increased
correlation in samples from glioma patients compared to the controls, while others show
the decreased correlation. We hypothesize that the change in metabolite correlation in
patients may be due to differences in blood-brain barrier permeability or active transport
of metabolites in glioma patients compared to healthy controls. The increased correlation
between CSF and plasma metabolites in patients with gliomas may be due to impaired BBB
integrity, leading to an increased correlation between the representation of metabolites in
plasma and the CSF. A decreased correlation indicates at a weakening of this dependence,
which may be associated with impaired specific transport functions. The molecular mech-
anisms underlying this distribution of metabolites are of particular interest both for the
understanding of the mechanisms of disease development and for building of diagnostic
models [25,26].
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Currently, there are various hypotheses about the abnormalities of the blood-brain
barrier in brain tumors. Tumors are known to compromise the integrity of the BBB,
resulting in a vasculature known as the blood-tumor barrier, which is highly permeable
and heterogeneous and possessing numerous distinct features including non-uniform
permeability and active efflux of molecules [27]. It is also known that tumor cells, including
glioblastoma cells, produce extracellular vesicles capable of crossing the BBB [28,29]. At
the same time, the content of a number of metabolites in the vesicles produced by GBM
cells can differ significantly from their content in cells [30,31].



Metabolites 2021, 11, 133 9 of 13
Metabolites 2021, 11, 133 9 of 14 
 

 

 
Figure 6. Fragment of the main graph of metabolites pairwise correlation. Only those correlations with correlation coeffi-
cients above 95 percentile (R > 0.86) of all correlation coefficients are left. Edge color corresponds to the correlation coeffi-
cient (from yellow to black for R ranging from 0.87 to 0.99). Pairs of vertices colored in gray have only a single edge, and 
vertices colored in blue have more than one edge. The connected components are outlined in gray (entitled C1 to C5). 

Our analysis supports the idea that the two types of samples under study, namely, 
plasma and CSF, contain a range of metabolites that change their levels in a correlated 
manner. The first evidence is the presence of at least 16 metabolites that show significantly 
correlated levels in plasma and CSF. The second one is that there are pairwise correlations 
between the levels of a number of metabolites when both samples types are considered 
together with patients and controls are also pooled. The latter fact suggests the presence 
of groups of metabolites that might be expected to be involved in common metabolic path-
ways or are under common regulation. Knowledge of such molecular mechanisms is im-
portant for understanding the mechanisms of pathology. There are metabolites from these 
groups for which there is a correlation between their plasma levels and CSF. Such meta-
bolic groups have been isolated here and can now be further studied. 

In our study it was found that the CSF and plasma have a set of metabolites correlated 
in their content in both matrices. Some of the identified metabolites show an increased 
correlation in samples from glioma patients compared to the controls, while others show 
the decreased correlation. We hypothesize that the change in metabolite correlation in pa-
tients may be due to differences in blood-brain barrier permeability or active transport of 
metabolites in glioma patients compared to healthy controls. The increased correlation 
between CSF and plasma metabolites in patients with gliomas may be due to impaired 
BBB integrity, leading to an increased correlation between the representation of metabo-
lites in plasma and the CSF. A decreased correlation indicates at a weakening of this de-
pendence, which may be associated with impaired specific transport functions. The mo-
lecular mechanisms underlying this distribution of metabolites are of particular interest 
both for the understanding of the mechanisms of disease development and for building 
of diagnostic models [25,26]. 

Currently, there are various hypotheses about the abnormalities of the blood-brain 
barrier in brain tumors. Tumors are known to compromise the integrity of the BBB, result-
ing in a vasculature known as the blood-tumor barrier, which is highly permeable and 
heterogeneous and possessing numerous distinct features including non-uniform perme-
ability and active efflux of molecules [27]. It is also known that tumor cells, including gli-
oblastoma cells, produce extracellular vesicles capable of crossing the BBB [28,29]. At the 
same time, the content of a number of metabolites in the vesicles produced by GBM cells 
can differ significantly from their content in cells [30,31]. 

Figure 6. Fragment of the main graph of metabolites pairwise correlation. Only those correlations with correlation
coefficients above 95 percentile (R > 0.86) of all correlation coefficients are left. Edge color corresponds to the correlation
coefficient (from yellow to black for R ranging from 0.87 to 0.99). Pairs of vertices colored in gray have only a single edge,
and vertices colored in blue have more than one edge. The connected components are outlined in gray (entitled C1 to C5).

Numerous literature data show that targeted metabolomic analysis may become an
important diagnostic platform in clinical practice in the future. This is facilitated by the
comprehensive metabolomic studies based on different platforms (HPLC-MS/MS, GC
and GC/MS, NMR, etc.) [32,33], as well as by equipping clinics with modern analytical
equipment and developing the bioinformatic methods in systems biology [34,35]. The
development of minimally invasive approaches for metabolomics-based diagnostics is an
urgent task to be accomplished for the promotion of such techniques, and the choice of
plasma instead of CSF as a biological matrix is one of the solutions to this problem.

The application of the described approach made it possible to detect, for example,
Alzheimer’s disease at early stages [36,37]. Another study indicates that the metabolomic
analysis similar to the one conducted in the current paper can bring forward some ideas to
the search of metabolite or peptide markers of Parkinson’s disease by analyzing plasma
and CSF samples from 20 patients and 20 healthy controls [38]. As seen from a metabolomic
study performed in rats, there is a significant correlation between the levels of steroids
extracted from plasma and CSF and their levels in the nervous system [39]. Our analysis
not only showed a correlation between a fairly large number of metabolites in plasma and
CSF, but also provided preliminary information about the involvement of some metabolic
pathways in the development of glioblastoma. Based on these data, we plan to expand the
study cohorts and develop analytical methods targeting impaired metabolic pathways.

The use of targeted metabolomic screening by HPLC-MS/MS searches for a large
number of metabolites with high sensitivity, so we believe that such studies will provide a
more detailed description of the metabolic changes associated with this disease, which may
be useful for disease management. The clinical significance of our study lies in the approach
to the development of diagnostic methods based on the measurement of metabolites with
correlated plasma and CSF content. All of the above suggests the possibility of predicting
the diseases of the CNS using plasma metabolome analysis of patients. This will allow
future assessment of the metabolomic profile of CSF from plasma sample data, paving the
way for the creation of minimally invasive diagnostic methods without CSF sampling.
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3. Materials and Methods
3.1. Study Subjects

Study subjects (Table 4, age distribution of subjects is shown in Figure S6) were en-
rolled at the Tsiviyan’s Novosibirsk Research Institute of Traumatology and Orthopedics.
Only the patients with a confirmed pathomorphological diagnosis of glioblastoma Grade
III or IV admitted for surgical resection of tumor were included in the study cohort. The
reference group included 11 conditionally healthy donors hospitalized for reconstructive
surgery after craniofacial trauma. The diagnosis was confirmed by MRI and the histopatho-
logical examination of an excisional biopsy specimen. Glioma patients had not received
any drug therapy at the time of their enrollment in the study.

Table 4. Age and gender characteristics of control and glioma groups.

Group Gender
(M/F) Min. 1st

Qu.
2nd
Qu.

3rd
Qu. Max. Average Median SD

Control 6/5 28.0 52.0 52.0 52.0 77.0 53.0 53.0 12.2
Glioma 11/9 21.0 50.5 50.5 50.5 65.0 55.2 56.0 10.0

3.2. Compliance with Ethical Standards

The study was reviewed and all experimental protocols were approved by the Ethics
Committee of the Novosibirsk Research Institute of Traumatology and Orthopedics named
after Ya. L. Tsiviyan (No 050/17 of 11.09.2017). The study was registered on ClinicalTri-
als.gov, Identifier No NCT03865355 (accessed on 21 January 2021) [40]. All procedures
involving human participants were found to be compliant with the ethical standards of
the institutional research committee and the 1964 Helsinki Declaration and its subsequent
amendments or similar ethical standards. An informed consent form was completed and
signed by every study subject.

3.3. Blood and Cerebrospinal Fluid (CSF) Collection and Processing

The matched blood and CSF samples were collected from fasting subjects on the first
day of admission before taking any medications (~7:30–9:30 a.m.). Venous blood was
collected into 10 mL BD Vacutainer® KEDTA tubes containing potassium EDTA as an
anticoagulant. Plasma was separated from blood cells by 15 min centrifugation at 2000× g
and 4 ◦C, aliquoted and kept frozen at −80 ◦C until further use.

CSF withdrawal was performed by a lumbar puncture at L3–L5 levels using a 19-gauge
atraumatic needle. As much as 3 mL of CSF was withdrawn into a 15 mL polypropylene
tube, the CSF cells were removed by a 10 min centrifugation, and the CSF samples were
aliquoted and kept frozen at −80 ◦C until further use.

3.4. Sample Preparation

All samples were processed at the same time according to the protocol described by
Yuan et al. [20]. Briefly, a 100 µL of plasma or CSF sample was precipitated with 400 µL
of cooled methanol and incubated overnight at −80 ◦C for protein precipitation. Then,
samples were centrifuged at +4 ◦C and 16,000× g for 15 min. Supernatant was transferred
into a new polypropylene tube and dried in a SpeedVac concentrator centrifuge (Thermo
Fisher Scientific/Savant, Waltham, MA, USA). Reconstitution was performed in 100 µL of
water/methanol (80:20) and subjected to a modified targeted metabolomics analysis with
relative quantification. Each sample was analyzed in three replicates.

3.5. LC-MS/MS Analysis

Samples were analyzed using a Shimadzu LC-20AD Prominence chromatograph (Shi-
madzu Corporation, Japan) equipped with SIL-20AC autosampler (Shimadzu Corporation,
Japan) thermostated at 10 ◦C. Sample (10 µL) was injected onto a Prontosil 120-5-Amino
column (2.1 × 75 mm) (Econova LLC, Russia). The mobile phase consisted of HPLC
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buffer A (pH = 9.0, 95% [vol/vol] water, 5% [vol/vol] acetonitrile, 20 mmol/L ammonium
hydroxide, 20 mmol/L ammonium formate) and HPLC eluent B (100% acetonitrile), the
flow rate during analysis was 0.25 mL/min. The HPLC elution gradient was as follows:
from 0 to 3 min, the mobile phase B was decreased from 97% B to 85%; from 3 to 4 min,
the percentage of solvent B was decreased from 85% to 30%; from 4 to 10 min, the mobile
phase B was decreased to 2% and was kept at 2% for an additional 4.5 min. At minute
14.5, solvent B was increased back to 97% and the column was equilibrated for additional
2.5 min at the flow rate of 0.5 mL/min.

Metabolites (n = 289) were analyzed in MRM mode. Data acquisition was performed
on API 6500 QTRAP mass spectrometer (AB SCIEX, USA) equipped with an electrospray
ionization source operating in the positive/negative switch mode. The main mass spec-
trometric parameters were as follows. The IS (ion spray) voltages were set at 5500 V and
−4500 V for positive and negative modes, respectively. The ion source temperature was
set at 475 ◦C, CAD gas was set as “medium”, Gas1, Gas2 and curtain gas were 35, 35 and
30 psi, respectively. Declustering potential was at ±93V, entrance potential at 10V, and
collision cell exit potential at 20 V for positive and negative ion modes. In addition, the
polarity switching (settling) time was set to 5 ms, and dwell time was 3 ms for each MRM
transition. The precursor ion and fragment ion transitions, the metabolite names, dwell
times, and the appropriate collision energies for both positive and negative ion modes were
adapted from [20], with several metabolite transitions added by our group. The device was
controlled and information collected using Analyst 1.6.2 software (AB SCIEX, Framingham,
MA, USA).

3.6. Data Processing and Statistics

MRM data were processed in MultiQuant™ 2.1 Software (AB SCIEX, Framingham,
MA, USA). Gaussian smooth width was 1.0 point, the minimum peak height was 300 cps,
and retention time half window was 30 s. After automated integration, the chromatograms
were controlled visually and then the integration results were exported to Microsoft Excel
spreadsheet.

The Uniform Manifold Approximation and Projection (UMAP) method was used to re-
duce the dimension and projection of metabolomic profiles into two-dimensional space [21].
Metabolite set enrichment analysis was carried out using OPLS-DA [41] implemented in
pyopls Python library [42].

To assess the relationship between the level of metabolite in plasma and CSF samples,
both conventional least squares linear regression and robust regression with Huber’s M-
estimates were applied [19]. Comparison was made between plasma and cerebrospinal
fluid samples from the same subjects. The correlation coefficient between these two groups
of samples, its significance, and residuals were evaluated. The regression residuals were
scaled so that the sum of the squares of the residuals for each subject’s samples was equal to
one. Additionally, the proportion of total residues attributable to the patient group and the
control group was investigated. Correlation coefficient for robust regression was calculated
based on weighted least squares model using samples weights obtained from the robust
linear models with Huber M-estimates.

Statistical analysis was done using Python and its packages: numpy, scipy, pandas,
statsmodels, seaborn, and matplotlib. Graph visualization was done using graph-tool [24]
and Cytoscape [43].

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-198
9/11/3/133/s1, Figure S1: Relative variation of metabolite levels over three experimental replicas.
The notations of the rows (vertical axis) correspond to the individuals (patients and control), those
of the columns (horizontal axis) to the metabolites, respectively. Individual code is composed of
internal identifier (GBM-X), plasma or CSF (P or L), patient or control (P or C) and positional number,
Figure S2: OPLS-DA separation of plasma samples from CSF ones, Figure S3: OPLS-DA separation
of glioma patients from control ones, Figure S4: ROC curves for PLS-DA (blue) and OPLS-DA (red)
cross-validation of separation between plasma and CSF samples, Figure S5: ROC curves for PLS-DA

https://www.mdpi.com/2218-1989/11/3/133/s1
https://www.mdpi.com/2218-1989/11/3/133/s1
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(blue) and OPLS-DA (red) cross-validation of separation between glioma patients and control, Figure
S6: Participants’ age distribution, Table S1: MRM data, Table S2: raw data, Table S3: statistics data.
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