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Abstract: Untargeted metabolomic studies have identified potential biomarkers of colorectal cancer
risk, but evidence is still limited and broadly inconsistent. Among 39,239 Cancer Prevention Study II
Nutrition cohort participants who provided a blood sample between 1998–2001, 517 newly diagnosed
colorectal cancers were identified through 30 June 2015. In this nested case–control study, controls
were matched 1:1 to cases on age, sex, race and date of blood draw. Mass spectroscopy-based
metabolomic analyses of pre-diagnostic plasma identified 886 named metabolites, after quality
control exclusions. Conditional logistic regression models estimated multivariable-adjusted odds
ratios (OR) and 95% confidence intervals (CI) for 1 standard deviation (SD) increase in each metabolite
with risk of colorectal cancer. Six metabolites were associated with colorectal cancer risk at a
false discovery rate < 0.20. These metabolites were of several classes, including cofactors and
vitamins, nucleotides, xenobiotics, lipids and amino acids. Five metabolites (guanidinoacetate,
2’-O-methylcytidine, vanillylmandelate, bilirubin (E,E) and N-palmitoylglycine) were positively
associated (OR per 1 SD = 1.29 to 1.32), and one (3-methylxanthine) was inversely associated with
CRC risk (OR = 0.79, 95% CI, 0.69–0.89). We did not replicate findings from two earlier prospective
studies of 250 cases each after adjusting for multiple comparisons. Large pooled prospective analyses
are warranted to confirm or refute these findings and to discover and replicate metabolites associated
with colorectal cancer risk.

Keywords: metabolomics; colorectal cancer; epidemiology; biomarkers; nested case–control

1. Introduction

Colorectal cancer (CRC) is a multi-factorial disease with many established lifestyle
and behavioral risk factors, including smoking, diet, pharmacologic agents, and several
variables related to energy balance and metabolism (e.g., diabetes, excess body weight,
physical inactivity) [1–3]. Metabolomic profiling measures metabolic end products and
exogenous exposures such as xenobiotics and it integrates influences of genetic variability.
As such, metabolomic profiling is an ideal method to identify novel biomarkers of colorectal
cancer risk. Studies have begun to identify circulating metabolomic features differentiating
CRC patients from controls [4–6], but most collected blood after diagnosis.

The use of metabolomic methods to identify candidate biomarkers of CRC risk is still a
new area of research,[6] with few prospective studies published to date [7,8]. Identification
of metabolic dysregulation biomarkers prior to CRC diagnosis may eventually lead to
objective risk assessment for potential targeted prevention measures and closer screening
and follow-up. Metabolites associated with CRC risk when restricting the analysis to the
first 5 years of follow-up may provide clues for high risk persons and early detection
of adenomas, and lead to a better understanding of the mechanisms through which risk
factors play a role in CRC. The purpose of this study was to conduct a comprehensive,
exploratory analysis of putative metabolomic markers of CRC risk using mass spectrometry
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in a nested case–control study of 517 CRC patients and 517 matched controls with pre-
diagnostic blood samples from the American Cancer Society’s (ACS) Cancer Prevention
Study (CPS)-II Nutrition Cohort.

2. Results

Participant characteristics are provided in Table 1. Due to matching, there were no
differences comparing cases to controls by age, sex and race/ethnicity. Colorectal cancer
cases had a significantly higher BMI and were less likely to have undergone colorectal
cancer screening compared to controls. Cases also consumed more red meat and had a
lower ACS dietary pattern score compared to controls.

Table 1. Participant characteristics of a nested, matched a case–control study in the Cancer Prevention
Study-II Nutrition Cohort.

Cases (n = 517) Controls (n = 517) p-Value b

Age at Blood Draw c, Mean (SD) 70.2 (5.5) 70.2 (5.5) Matched

Sex, n (%) Matched

Male 229 (44.3) 229 (44.3)
Female 288 (55.7) 288 (55.7)

Race, n (%) Matched

White 505 (97.7) 506 (97.9)
Black 4 (0.8) 4 (0.8)

Other/Unknown 8 (1.5) 7 (1.4)

Highest Education Level, n (%) 0.217

Less than High School 13 (2.5) 12 (2.3)
High School Grad 130 (25.1) 107 (20.7)

Some College 157 (30.4) 169 (32.7)
College Grad 113 (21.9) 111 (21.5)
Grad School 101 (19.5) 118 (22.8)
Unknown 3 (0.6) 0 (0.0)

Body Mass Index (kg/m2), Mean (SD) 26.5 (4.7) 25.7 (4.1) 0.004

Hours Since Last Meal c, Mean (SD) 2.3 (2.2) 2.2 (1.9) 0.232

Smoking Status, n (%) 0.773

Never 245 (47.4) 251 (48.5)
Former 247 (47.8) 247 (47.8)
Current 14 (2.7) 12 (2.3)

Unknown 11 (2.1) 7 (1.4)

Physical Activity, (MET-h/week), n (%) 0.825

<8.75 194 (37.5) 189 (36.6)
8.75–<17 143 (27.7) 137 (26.5)

17+ 173 (33.5) 181 (35.0)
Missing 7 (1.4) 10 (1.9)

Alcohol Consumption c, n (%) 0.662

<1 Drink/D 408 (78.9) 410 (79.3)
1+ Drinks/D 97 (18.8) 99 (19.1)

Unknown 12 (2.3) 8 (1.5)

NSAID User 0.161

No 213 (41.2) 190 (36.8)
Yes 304 (58.8) 327 (63.2)

Postmenopausal Hormone Use c,d, n (%) 0.093

Not a Current User 168 (58.3) 142 (49.3)
Current User 118 (41.0) 144 (50.0)

Unknown 2 (0.1) 2 (0.1)
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Table 1. Cont.

Cases (n = 517) Controls (n = 517) p-Value b

Cancer Subsite N/A

Control 0 (0.0) 515 (99.6)
Proximal Colon 204 (39.5) 2 (0.4)

Distal Colon 95 (18.4) 0 (0.0)
Rectum 74 (14.3) 0 (0.0)
Colon 137 (26.5) 0 (0.0)

Unknown 7 (1.4) 0 (0.0)

Cancer stage N/A

Control 0 (0.0) 515 (99.6)
Local 195 (37.7) 1 (0.2)

Regional 225 (43.5) 1 (0.2)
Distant (Metastatic) 53 (10.3) 0 (0.0)

Unknown 44 (8.5) 0 (0.0)

Colorectal Screening 0.003

Never Screened 159 (30.8) 120 (23.2)
Screened in the Past 302 (58.4) 355 (68.7)

Unknown Screening Status 56 (10.8) 42 (8.1)

Diet and Nutrients, Mean (SD)

Red Meat (servings/day) 0.7 (0.5) 0.6 (0.4) 0.042
Processed Meat (servings/day) 0.3 (0.3) 0.3 (0.3) 0.769
Caffeinated Coffee (drinks/day) 0.9 (1.2) 0.9 (1.3) 0.961
Decaffeinated Coffee (drinks/d) 0.6 (0.9) 0.6 (1.0) 0.770

Total Folate (mcg) 620 (287) 625 (282) 0.788
Dietary Fiber (g) 18.7 (7.0) 18.8 (7.2) 0.734

Total calcium (mg) 1102 (555) 1161 (537) 0.091
Total Vitamin D (IU) 395 (246) 418 (246) 0.138

Total Calories 1725 (493) 1734 (549) 0.769

Diet Score, mean (SD)

ACS Diet Score (range: 0–9 patients) 4.3 (1.9) 4.6 (2.0) 0.039
a Controls were matched to cases according to sex, race, age and date of blood draw. Two matched controls later
became cases. b p-values obtained from chi squared tests (categorical) or independent t-tests (continuous). c These
variables were obtained from the Lifelink biospecimen collection survey (1997 and 1998); sex, race and education
were from the 1982 CPS-II baseline survey; all others were from the CPS-II Nutrition Cohort 1999 follow-up
survey. d Numbers are for women only.

Associations of all 886 metabolites with CRC risk are provided in Supplementary Table S1.
In Supplementary Figure S1, a heatmap illustrates interrelationships of the top 20 associated
metabolites using raw p-values. Six metabolites from the multivariable-adjusted model
met the criteria of false discovery rate (FDR) < 0.20 (Table 2). These included vanillylman-
delate (VMA), a metabolite of epinephrine and norepinephrine and involved in tyrosine
metabolism; 3-methylxanthine, a xenobiotic involved in xanthine metabolism; bilirubin
(E,E), a heme breakdown product; N-palmitoylglycine, an acyl glycine; guanidinoacetate,
an amino acid involved in creatine metabolism; and 2’-O-methylcytidine, a nucleotide in-
volved in pyrimidine metabolism. The ORs for each metabolite with CRC risk were similar
between minimally adjusted (including hours since last meal) and multivariable-adjusted
models; therefore, only multivariable-adjusted models are presented. 3-Methylxanthine
was inversely associated with risk; all other metabolites were associated with an increased
CRC risk. Table 2 provides ORs and 95% CIs for each metabolite, for continuous (per SD)
metabolites with and without mutual adjustment. In models simultaneously controlling
for the other five metabolites, risk estimates for guanidinoacetate, vanillylmandelate, 3-
methylxanthine, and 2′-O-methylcytidine changed least (raw p value < 0.05). Results using
categorical variables (based on quartile distribution) are also presented.
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Table 2. OR and 95% CI for metabolites associated with colorectal cancer risk at FDR < 0.2 in the Cancer Prevention Study II
Nutrition Cohort (n = 517 matched cases and controls).

Guanidinoacetate Vanillylmandelate
(VMA) 3-methylxanthine 2’-O-methylcytidine Bilirubin (E,E) N-palmitoylglycine

Multivariable Adjusted Continuous Model a

Per SD 1.32 (1.14, 1.52) 1.29 (1.12, 1.49) 0.79 (0.69, 0.89) 1.27 (1.11, 1.46) 1.29 (1.11, 1.50) 1.27 (1.11, 1.45)
p <0.001 <0.001 <0.001 <0.001 0.001 0.001

FDR 0.090 0.090 0.090 0.090 0.121 0.106

Continuous, Mutually Adjusted Model b

Per SD 1.24 (1.07, 1.45) 1.28 (1.09, 1.49) 0.74 (0.64, 0.85) 1.18 (1.02, 1.36) 1.15 (0.97, 1.36) 1.12 (0.96, 1.30)
p 0.005 0.002 <0.001 0.028 0.099 0.139

Multivariable Adjusted Quartiles a

Q1 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref)
Q2 1.26 (0.86, 1.83) 1.64 (1.13, 2.40) 0.63 (0.44, 0.91) 1.26 (0.89, 1.80) 1.10 (0.76, 1.60) 1.23 (0.85, 1.78)
Q3 1.42 (0.98, 2.06) 1.51 (1.04, 2.18) 0.65 (0.46, 0.93) 1.71 (1.18, 2.47) 1.51 (1.02, 2.24) 1.40 (0.97, 2.01)
Q4 1.87 (1.26, 2.77) 1.94 (1.31, 2.89) 0.51 (0.35, 0.73) 1.73 (1.20, 2.50) 1.64 (1.10, 2.45) 1.97 (1.36, 2.87)

ptrend
c 0.001 0.003 <0.001 0.001 0.008 <0.001

FDR 0.220 0.236 0.220 0.220 0.272 0.220

Note: CI, confidence interval; FDR, false discovery rate-adjusted p values; OR, odds ratio; SD, standard deviation. a Odds ratios (95%
confidence intervals) were estimated from conditional logistic regression models, matched on sex, race, age, and date of blood draw.
Models were adjusted for hours since last meal (continuous), body mass index at blood draw (continuous, kg/m2), smoking status in
1999 (never, former, current, unknown), recreational physical activity in 1999 in metabolic equivalent (MET)-h/week (<8.75; 8.75–<17;
17+, unknown), alcohol consumption in 1999 (nondrinker, <1 drink/day, 1+ drinks/day, unknown), current NSAID use in 1999 (yes, no),
ACS diet score (tertiles, comprised of scores for red and processed meat, proportion of whole vs. refined grains consumed and fruit and
vegetable consumption plus a missing category), and total calories (continuous). Individuals with missing continuous variables (BMI,
calories) were assigned the study median value. b Multivariable model, additionally adjusted for the other five metabolites. c p for trend
based on median values in each quartile.

Only one of these six metabolites had a statistically significant interaction with
sex, with a stronger association observed in men than women for 2’-O-methylcytidine
(pinteraction = 0.04) (Table 3). When stratifying the analysis by follow-up time between blood
draw and diagnosis (≤5 years, >5 years), most associations remained similar to those
from the overall models but a significant interaction was noted for N-palmitoylglycine,
with stronger associations when diagnosis occurred within the first five years of follow-up
(pinteraction = 0.04)(Table 3). None of these six metabolites reached statistical significance
in models stratified by tumor subsite. In analyses conducted separately by SEER stage,
2’-O-methylcytidine, 3-methylxanthine and guanidinoacetate were significantly associ-
ated with localized CRC tumors, and no metabolites were significantly associated with
regional or distant-metastatic staged disease. However, associations were generally in the
same direction regardless of tumor stage and tests of heterogeneity were all nonsignificant
(Pheterogeneity ≥ 0.05, not shown).

Table 3. OR and 95% CI for metabolites associated with colorectal cancer risk at FDR < 0.2 in the Cancer Prevention Study II
Nutrition Cohort, stratified by follow-up time and participant sexa.

Model Guanidinoacetate Vanillylmandelate (VMA) 3-methylxanthine 2’-O-methylcytidine Bilirubin (E,E) N-palmitoylglycine

Individual Metabolites (continuous)

Follow-Up ≤5 years (229 cases)
Per SD 1.22 (0.99, 1.52) 1.34 (1.08, 1.66) 0.79 (0.65, 0.97) 1.30 (1.06, 1.60) 1.21 (0.97, 1.51) 1.47 (1.18, 1.83)

p 0.067 0.008 0.024 0.011 0.095 0.001
Follow-Up >5 years (288 cases)

Per SD 1.42 (1.17, 1.74) 1.26 (1.03, 1.53) 0.76 (0.63, 0.90) 1.27 (1.05, 1.53) 1.35 (1.09, 1.66) 1.15 (0.96, 1.37)
p 0.001 0.023 0.002 0.014 0.006 0.138

pinteraction 0.582 0.591 0.717 0.537 0.550 0.042
Men Only (229 cases)

Per SD 1.52 (1.21, 1.91) 1.33 (1.08, 1.64) 0.84 (0.68, 1.03) 1.54 (1.23, 1.92) 1.32 (1.05, 1.66) 1.19 (0.96, 1.47)
p <0.001 0.007 0.093 <0.001 0.018 0.109
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Table 3. Cont.

Model Guanidinoacetate Vanillylmandelate (VMA) 3-methylxanthine 2’-O-methylcytidine Bilirubin (E,E) N-palmitoylglycine

Individual Metabolites (continuous)

Women Only (288 cases)
Per SD 1.20 (0.99, 1.44) 1.25 (1.02, 1.53) 0.74 (0.63, 0.88) 1.11 (0.93, 1.33) 1.29 (1.05, 1.58) 1.34 (1.12, 1.61)

p 0.063 0.028 0.001 0.252 0.015 0.002
pinteraction 0.173 0.741 0.341 0.043 0.849 0.343

Note: CI, confidence interval; FDR, false discovery rate-adjusted p values; OR, odds ratio; SD = standard deviation. a Odds ratios (95%
confidence intervals) estimated from conditional logistic regression models, matched on sex (except sex-stratified models), race, age, and
date of blood draw. Models controlled for hours since last meal (continuous), body mass index at blood draw (continuous), smoking status
in 1999 (never, former, current, unknown), recreational physical activity in 1999 in metabolic equivalent (MET)-h/week (<8.75, 8.75–<17,
17+, unknown), alcohol consumption in 1999 (nondrinker, <1 drink/day, 1+ drinks/day, unknown), current NSAID use in 1999 (yes, no),
ACS diet score (tertiles, comprised of scores for red and processed meat, proportion of whole vs. refined grains consumed and fruit and
vegetable consumption plus a missing category) and total calories (continuous). Individuals with missing continuous variables (BMI,
calories) were assigned the study median value.

3. Discussion

In this study of 517 colorectal cancer cases and 517 matched controls, six metabo-
lites among 886 identified were moderately associated with colorectal cancer risk at the
FDR < 0.20. These metabolites covered a range of metabolite classes, including amino acids,
fatty acids, cofactors, nucleotides and xenobiotics. Only one metabolite association differed
by sex, and sex-specific associations were generally of the same magnitude, albeit with
varying precision.

Few studies have used metabolomic approaches to identify pre-diagnostic metabolic
biomarkers of CRC carcinogenesis. Of 9 studies included in a recent systematic literature
review,[6] all but one analyzed biomarkers after CRC diagnosis, which can be biased by
surgery, treatment, cancer progression, and changes in lifestyle after diagnosis. In these
studies,[6] the number of cases ranged from 28 to 282, with 6 studies having fewer than
100 cases. Pathways that varied by case status included protein biosynthesis, urea cycle,
alanine metabolism and glutathione metabolism; markers of energy and lipid metabolism
also differed by case–control status.[6] Two studies that had access to pre-diagnosis blood
samples (including one from the systematic review [8]) conducted untargeted metabolomic
analyses using mass-spectrometry to identify biomarkers of CRC “exposotype” [7,8]. In
an analysis of 254 cases and 254 matched controls in the Prostate, Lung, Colorectal and
Ovarian Cancer Screening Trial cohort (PLCO), none of the 278 named metabolites mea-
sured by Metabolon’s platforms (and present in 80% of the study participants) were
associated with CRC risk after adjusting for multiple comparisons, although serum gly-
cochenodeoxycholate, a bile acid metabolite, was associated with a five-fold increased risk
among women only.[8] In the current analysis, glycochenodeoxycholate was positively
associated with CRC risk, but did not meet the FDR threshold (OR = 1.18, 95% CI 1.03,
1.34, p = 0.015, FDR = 0.39; Supplementary Table S1). The association was positive in both
sexes, but slightly stronger in women (OR = 1.21, 95% CI 1.0, 1.46, p = 0.050, FDR = 0.61;
not shown). In the Shanghai Men’s and Women’s Health Study cohorts (SMHS and SWHS)
including 250 cases and 250 controls, 35 of the 618 annotated metabolites were statistically
significantly associated with CRC risk using FDR < 0.05 to define significance, of which
nine metabolites were independently associated with risk [7]. The strongest independent
metabolite in that analysis, picolinic acid, was not replicated in the current study (picino-
late, OR = 1.01, 0.88–1.15, Supplementary Table S1). In SMHS and SWHS, the metabolites
most strongly associated with risk were those that play a role in glycerophospholipid
dysregulation which may impact lipid profiles, energy balance, and insulin signaling.[7]
We detected two lipids that were significantly inversely associated with risk in SMHS and
SWHS: one (1-palmitoyl-2-docosahexaenoyl-GPC (16:0/22:6)) was not associated with risk
(OR = 0.93, 95% CI 0.81, 1.06), and the other, 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE
(P-16:0/20:4), a plasmalogen, was inversely associated with risk (0.86, 95% CI 0.75, 0.98,
p = 0.024) in our study but did not meet the FDR cutpoint (FDR = 0.44). The other six
metabolites were not identified in this study. Thus, two previously identified metabolites,
glycochenodeoxycholate [8], a secondary bile acid formed in the large intestine by microbial
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flora, and 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4) [7], a plasmalogen, were
significant at p < 0.05 without adjusting for multiple comparisons; these metabolites are
candidates for further study.

There are several potential reasons why the studies to date have not robustly identified
the same risk metabolites. These include different study populations, blood collection
conditions,[9] the statistical methods employed, measurement error, limited power, and
platform used. Other reasons may explain differences in statistical significance across
studies. For example, in the PLCO cohort, Cross et al. [8] utilized a minimally adjusted
model to identify metabolic signatures associated with CRC risk, whereas Shu et al. [7]
controlled for many lifestyle variables in their models. In theory, these approaches answer
a somewhat different question. Without covariates, the metabolomic signature could reflect
biomarkers of multiple influences on CRC risk (genetic, lifestyle and other exposures); in the
latter, controlling for known risk factors would more likely emphasize mechanisms distinct
from known lifestyle risk factors, such as other environmental influences, pharmaceuticals
and genetics. We present results using multivariable models to identify metabolites that are
not obscured by differences in common behavioral characteristics. Nevertheless, although
P-values differed, the ORs did not change in the present analysis from minimally adjusted
to multivariable-adjusted models, suggesting minimal confounding from the covariables
included in the models.

The metabolites identified in this study have biologically plausible roles in CRC
carcinogenesis. A hallmark of cancer is impaired lipid metabolism, as was noted in the
traditional case–control studies (where blood was collected after cancer diagnosis), and
in the two prior nested case–control studies [7,8]. Changes in fatty acid profiles may
indicate increased membrane synthesis and cellular turnover. In the current study, N-
palmitoylglycine, a fatty acid (acyl glycine) was significantly positively associated with
CRC risk, and was the only metabolite with a significantly stronger association within
the first 5 years of follow-up. Whether N-palmitoylglycine is a risk factor involved in
carcinogenesis, or a biomarker of the cancer itself is not known.

Vanillylmandelate (VMA), an organic compound used in vanilla flavor synthesis
and a byproduct of epinephrine and norepinephrine metabolism, and also involved in
tyrosine metabolism, was positively associated with CRC risk in this study. Mandelate, a
fecal metabolite related to VMA, was associated with a three-fold increase in colorectal
cancer risk in a study designed to quantify technical variability of fecal metabolomics data
from 48 cases and 102 controls.[10] As altered protein synthesis has been identified as
present in cancer metabolism [11], the increased risk associated with both metabolites may
be relevant.

Bilirubin, a degradation product of heme which is conjugated in the liver and excreted
in the bile, is a metabolic marker of liver disease, and also known to have antioxidant and
potentially cytotoxic effects [12,13]. In non-metabolomic-based studies, a case–control [12]
and cross-sectional study [14] reported inverse associations between blood bilirubin levels
and CRC risk, whereas bilirubin was not associated with colorectal cancer risk in a German
prospective cohort study (RR = 1.40, 95% CI 0.93, 2.09) [15] or a prospective analysis from
NHANES [16]. In the current analysis, a bilirubin metabolite (E,E) was associated with
a 29% increased risk of CRC. Tobacco use is associated with lower bilirubin levels [14];
therefore, potential confounding by tobacco should be carefully ruled out in epidemiologic
analyses of bilirubin and cancer risk. Our participants were mostly non-smokers and we
controlled for smoking status.

A metabolite of caffeine and theophylline, 3-methylxanthine was inversely associated
with CRC risk in our study. 3-methylxanthine is a biomarker of coffee consumption [17],
and coffee consumption is inversely related to CRC risk in epidemiologic analyses [18,19].
Guertin et al., observed that caffeine and theophylline both mediated the inverse association
of coffee with colorectal cancer risk in the PLCO cohort [20]. Whether this metabolite plays
a mechanistic role in CRC prevention, or whether it reflects other lifestyle risk factors
associated with coffee consumption deserves further investigation.
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Strengths of this analysis include its prospective design, large number of cases and
controls, and ability to control for important CRC risk factors. Potential limitations include
the one-time measurement of metabolites and processing delays in sample preparation.
These factors may contribute to measurement error, which could attenuate the estimates of
risk associations. However, in a previous study [21], we found good reproducibility for up
to 48 h of processing delay for the five metabolites that were identified in both analyses.
Some associations may also have been underestimated due to technical variation, and
residual confounding due to between-person differences in fasting status, although we
controlled for time since last meal to minimize the influence. Finally, with a relaxed false
discovery rate p value cut-point, some results may be due to chance.

In summary, we identified six metabolites that were moderately associated with CRC
risk in multivariable-adjusted models. These metabolites may reflect altered lipid and
amino acid metabolism in carcinogenesis, and potentially other pathways including xeno-
biotic metabolism. Whether bilirubin and 3-methylxanthine reflect biologically meaningful
mechanisms, or serve as biomarkers of exposure to CRC risk factors (e.g., red meat and
coffee consumption), remains to be elucidated. To date, the limited number of prospective
studies did not identify the same metabolite-CRC risk associations. Large pooled analyses
of studies using similar laboratory and analytic methodology are warranted to identify
and confirm candidate metabolites associated with CRC risk with greater statistical power.

4. Materials and Methods
4.1. Study Population and Design

Men and women in this study were participants in the CPS-II Nutrition Cohort, a
subset of 1.2 million participants in the CPS-II Cohort (1982), who resided in 21 U.S. states
when they were invited to enroll in the CPS-II Nutrition Cohort of incident cancer follow-up,
beginning in 1992–1993 [22]. Between 1998–2001, 39,200 of these men and women provided
a non-fasting blood sample. The Emory University School of Medicine Institutional Review
Board approved all aspects of the CPS-II (Ethical Approval Code: IRB00045780).

Among those who provided blood samples, 617 CRC cases were identified through
30 June 2015 via self-report which was verified with medical records, state cancer registry
linkage, or linkage with the National Death Index (defined by ICD-10 codes 18.0, 18.2–18.9,
19.9 and 20.9, excluding non-adenocarcinomas). After excluding 97 cases with prevalent
cancer except for nonmelanoma skin cancer at or before blood draw, one case with an
incorrect diagnosis date, and two cases with insufficient plasma, 517 cases remained [229 in
men, 288 in women; 436 colon (204 proximal, 95 distal, 2 overlapping and 135 unknown),
74 rectum] and 7 unknown subsite. Controls were incidence-density matched 1:1 to cases
on sex, race/ethnicity, age at blood draw (± 6 months) and date of blood draw (± 30 days).

4.2. Metabolomics Assessment

Metabolomic profiling was conducted by Metabolon, Inc. (Durham, NC, USA) using
untargeted, ultrahigh performance liquid chromatography-tandem mass spectrometry
(UPLC-MS/MS) [17,23]. Briefly, methanol was added to precipitate protein, followed by
centrifugation. Four sample fractions were dried and reconstituted in different solvents
for measurement under four different platforms, including two separate reversed phase
(RP)/UPLC-MS/MS methods with positive ion mode electrospray ionization (ESI), one
RP/UPLC-MS/MS method with negative ion mode ESI and one hydrophilic interaction
chromatography (HILIC)/UPLC-MS/MS with negative ion mode ESI. Individual metabo-
lites were identified by comparison with a chemical library maintained by Metabolon that
comprises more than 3300 commercially available purified standard compounds and recur-
rent unknown entities, based on retention index, mass to charge ratio, and fragmentation.
Peaks were quantified using area-under-the-curve and day-to-day variation corrected by
setting median values for each compound to 1 for each run-day and normalizing each data
point proportionately. Missing values were assumed to reflect amounts below the level of
detection and were imputed to the observed minimum of the non-missing values.
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Colorectal cancer cases and controls were analyzed in the same batch in a blinded
fashion. Replicate quality control samples from 29 study participants were included with
the study samples and used to assess intra- and inter-batch variation in the metabolite
measurements. A total of 1063 named metabolites were measured. Metabolites which
were undetectable in >90% of the samples (n = 27) and those with a technical intraclass
correlation coefficient (ICC) that was missing (n = 74) or <0.50 (n = 76) were excluded from
the analyses, leaving 886 named metabolites with an average CV% 0.29 (interquartile range
0.18–0.35) and ICC 0.82 (interquartile range 0.74–0.92).

4.3. Statistical Analysis

Metabolites were log-transformed and auto-scaled to account for non-normal distri-
bution, consistent with our previous studies.[17] Covariates were assessed either at blood
draw (1998–2001) or on the 1999 follow-up survey.

We used conditional logistic regression to estimate the odds ratios (OR) and 95%
confidence intervals (CI) per one standard deviation (SD) increase of each named metabolite
with CRC risk. The statistical models were conditioned on the matching factors and
adjusted for: hours since last meal (to account for length of fasting), body mass index
(BMI, kg/m2), smoking, recreational physical activity, alcohol drinking, non-steroidal
anti-inflammatory drug use, American Cancer Society diet guidelines score (higher scores
represent greater consumption of vegetables, whole fruit and whole grains, and lower
consumption of red and processed meat intake), [24] and total energy intake (see footnote
to Table 2 for details).

Associations were considered statistically significant if the false discovery rate (FDR) [25]
adjusted p value was <0.20; this relaxed p value has been used in similarly sized stud-
ies [26,27] to allow for generating hypotheses. Conditional logistic regression models were
used to examine associations stratified by sex and by years between blood draw and CRC
diagnosis (≤5 follow-up, >5 years of follow-up). The likelihood ratio test was used to
calculate p for interaction by comparing the full model with interaction terms to a reduced
model without interaction terms. We also examined risk according to CRC tumor subsite
and Surveillance, Epidemiology and End Results (SEER) stage at diagnosis: localized
[invasive tumors confined to the colorectum (n = 195 cases)]; regional [tumors that extend
through the bowel wall to adjacent tissue or regional lymph nodes (n = 225 cases)] and
distant metastases (n = 53). The Wald p value for heterogeneity by tumor site and stage was
estimated from an unconditional nominal polytomous logistic regression model using the
model-based variance–covariance matrix estimate [28]. Analyses were conducted using R
version 4.0.2 (The R Foundation for Statistical Computing, Vienna, Austria) [29], and SAS
version 9.4 (SAS Institute, Cary, NC, USA).

Supplementary Materials: The following are available online at https://www.mdpi.com/2218-198
9/11/3/156/s1, Table S1: Individual metabolite (n = 886) associations with colorectal cancer risk in
the CPS-II Nutrition Cohort (n = 517 matched cases and controls), Figure S1: Interrelationships of top
20 CRC-associated metabolites priorbased on raw p-values.
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