Supporting Information

Discovery of volatile biomarkers for bladder cancer detection and staging through urine metabolomics

Joana Pinto ^{1,*}, Ângela Carapito ¹, Filipa Amaro ¹, Ana Rita Lima ¹, Carina Carvalho-Maia ^{2,3}, Maria Conceição Martins ^{2,3}, Carmen Jerónimo ^{1,2,3}, Rui Henrique ^{1,2,3}, Maria de Lourdes Bastos ¹ and Paula Guedes de Pinho ^{1,*}

¹ UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal

² Cancer Biology & Epigenetics Group–Research Centre, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal

³ Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072, Porto, Portugal

⁴ Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar–University of Porto (ICBAS-UP), 4050-313, Porto, Portugal

*Corresponding authors E-mail addresses: jipinto@ff.up.pt (Joana Pinto) pguedes@ff.up.pt (Paula Guedes de Pinho)

Address: UCIBIO/REQUIMTE, Laboratory of Toxicology Department of Biological Sciences Faculty of Pharmacy University of Porto Rua Jorge Viterbo Ferreira, 228 4050-313 Porto, Portugal Tel.: +351 220428599; fax: +351 226093390

Figure S1. PCA scores scatter plots obtained for urinary volatile profile (full set of VOCs and VCCs concatenated matrix) of all samples (BC n=53 and cancer-free controls n=56, green circles) and QCs (n=24, blue circles).

Figure S2. Statistical validation of the PLS-DA model obtained for the urinary volatile profile of BC patients (n=53) and cancer-free controls (n=56), after variable selection (109 observations × 4184 variables), by permutation testing (200 permutations; 2 components).

Figure S3. (a) PLS-DA scores scatter plot and (b) ROC curve obtained for urinary volatile profile (VOCs and VCCs concatenated matrix), after variable selection (43 observations × 495 variables), of stage T1 (red squares, n=17) compared with stage Ta/Tis (blue circles, n=26). (c) Statistical validation of the PLS-DA model by permutation testing (500 permutations; 2 components).

Figure S4. Statistical validation of the PLS-DA model obtained for urinary volatile profile of (a) patients diagnosed with MIBC (stages \geq T2, *n*=10) and NMIBC (stage Ta/Tis, *n*=26), after variable selection (36 observations × 486 variables), and (b) patients diagnosed with MIBC (stages \geq T2, *n*=10) and NMIBC (stage T1, *n*=17), after variable selection (27 observations × 856 variables), by permutation testing (200 permutations; 2 components).

							Identification
Metabolite "	KI (min)	Characteristic ions (<i>m/z</i>) NIST K		Experimental RI	R-match	CAS number	level ^d
Alkanes							
2-Methylnonane ^e	9.46	57/71/85	964	966	776	871-83-0	L2
2,4-Dimethylheptane ^e	5.47	57/71/85	821	823	908	2213-23-2	L2
2,6-Dimethylnonane ^e	11.15	57/71/85	1018	1022	881	17302-28-2	L2
4-Methyloctane ^e	6.53	57/71/85	863	863	907	2216-34-4	L2
Decane ^e	10.50	57/71/85	1000	1001	831	124-18-5	L1
Aldehydes							
2-Furaldehyde (furan-2-	23.16/23.63	83/181/248/291	-	1464/1483	965	98-01-1	L1
carbaldehyde) ^f							
2-Methylbutanal ^e	2.80	57/58/86	662	-	842	96-17-3	L1
2,5-Dimethylbenzaldehyde ^e	16.85	77/91/105/133	1208	1213	915	5779-94-2	L2
Formaldehyde ^f	9.92	117/161/181/195	-	995	874	50-00-0	L1
Hexanal ^{<i>f</i>}	22.36	181/239	-	1433	836	66-25-1	L1
$Methylglyoxal^f$	33.02/33.21/33.52	181/265	-	1907/1917/1933	943	78-98-8	L1
Octanal ^e	10.56	57/69/84	1003	1003	811	124-13-0	L1
Aromatic hydrocarbons							
1-Methylnaphthalene ^e	19.53	71/115/141/142	1307	1310	854	90-12-0	L2
1,2,3-Trimethylbenzene ^e	11.08	91/105/120	1013	1020	873	526-73-8	L2
1,2,4-Trimethylbenzene ^e	10.31	77/91/105/120	990	994	912	95-63-6	L2
1,2,4,5-Tetramethylbenzene ^e	14.06	91/119/134	1116	1118	877	95-93-2	L2

Table S1. List of volatile compounds significantly altered in urine of BC patients compared to cancer-free controls and between different BC st	ages, including their retention
time (RT), most abundant ions, NIST and experimental retention index (RI), R-match, CAS number and identification level.	

							Identification
Metabolite "	RT (min)	Characteristic ions (<i>m/z</i>)	NIST RI "	Experimental RI ^e	R-match	CAS number	level ^d
2-Methylnaphthalene ^{<i>e</i>}	19.11	71/115/141/142	1298	1294	868	91-57-6	L2
2-Ethyl-1,3-dimethylbenzene ^e	13.00	91/119/134	1080	1083	904	2870-04-4	L2
<i>p</i> -Cresol (4-methylphenol) ^{<i>e</i>}	12.65	77/107/108	1077	1071	908	106-44-5	L1
Heterocyclic Compounds							
(1S,5R)-1,5-dimethyl-6,8-	8.73	72/100/142	949	942	824	28401-39-0	L2
dioxabicyclo[3.2.1]octane ^e							
Ketones							
2-Butanone (butan-2-one) ^f	16.62/16.71	56/181/195/250	-	1219/1222	836	78-93-3	L1
4-Heptanone (heptan-4-one) f	22.02	70/128/181/253/309	- 1419		867	123-19-3	L1
Terpenoids							
Carvone (2-methyl-5-(prop-1-	17.67	54/82/93/108	1242	1243	871	99-49-0	L1
en-2-yl)cyclohex-2-en-1-one) ^e							
Levomenthol ((1R,2S,5R)-5-	15.79	71/81/95/123/138	1175	1190	946	2216-51-5	L2
methyl-2-propan-2-							
ylcyclohexan-1-ol) ^e							
Piperitone (3-methyl-6-propan-	17.93	82/95/110/137/152	1253	1252	889	89-81-6	L2
2-ylcyclohex-2-en-1-one) ^e							
Unknowns							
Unknown 1 ^e	12.00	68/105/116	-	1050	-	-	L4
Unknown 2 ^e	12.16	57/71/85	-	1055	-	-	L4
Unknown 3 ^e	12.26	57/71/85	-	1062	-	-	L4
Unknown 4 ^e	16.58	135/164	-	1204	-	-	L4

Motobolito (DT (min)	Characteristic ions (m/s)	NIST DI <i>b</i>	Europin antal DI 6	R-match	CAS number	Identification
Wietabonite "	KI (mm)	Characteristic ions (<i>m/z</i>)	NIST KI*	Experimental KI			level ^d
Unknown 5 ^e	18.47	137/152	-	1271	-	-	L4
Unknown 6 ^f	19.61	181/226	-	1327	-	-	L4
Unknown 7 ^e	14.15	79/91	-	1121	-	-	L4
Unknown 8 ^e	15.24	83/121/136	-	1158	-	-	L4
Unknown 9 ^f	23.52	161/181	-	1479	-	-	L4

^{*a*} Common metabolite name (IUPAC name). ^{*b*} Theoretical Kovats retention index (RI) extracted from NIST 14 database. ^{*c*} Experimental Kovats RI determined using a commercial hydrocarbon mixture (C6–C20). ^{*d*} Levels of confidence in metabolite identification [21,22]: L1 - identified metabolites (GC-MS analysis of the metabolite of interest and a chemical reference standard under identical analytical conditions within the same laboratory); L2 - putatively annotated compounds (spectral MS similarity with the NIST database); L3 - putatively characterized compound classes (spectral MS consistent with a particular class of organic compounds); L4 - unknown compounds. ^{*e*, *f*} Compounds detected through VOCs and VCCs analytical methods, respectively.

Metabolite ^a	Correlation coefficient (r)	<i>p</i> -value
Alkanes		
2-Methylnonane	0.23	0.0160
2,4-Dimethylheptane	0.23	0.0159
2,6-Dimethylnonane	0.28	0.0027
4-Methyloctane	0.26	0.0074
Aldehydes		
2-Furaldehyde (furan-2-carbaldehyde)	-0.16	0.1062
2-Methylbutanal	-0.23	0.0172
Formaldehyde	-0.21	0.0252
Glyoxal	-0.10	0.3068
Hexanal	-0.16	0.0909
Aromatic hydrocarbons		
1-Methylnaphthalene	0.31	0.0009
2-Methylnaphthalene	0.27	0.0041
1,2,4-Trimethylbenzene	0.29	0.0020
<i>p</i> -Cresol (4-methylphenol)	0.22	0.0203
Heterocyclic Compounds		
(1S,5R)-1,5-dimethyl-6,8- dioxabicyclo[3.2.1]octane <i>Ketones</i>	-0.31	0.0012
2-Butanone (butan-2-one)	-0.25	0.0079
4-Heptanone (heptan-4-one)	-0.12	0.2125
Terpenoids		
Carvone (2-methyl-5-(prop-1-en-2- yl)cyclohex-2-en-1-one)	-0.31	0.0012
Piperitone (3-methyl-6-propan-2- ylcyclohex-2-en-1-one)	-0.28	0.0032
Unknown 1	0.19	0.0457
Unknown 2	0.24	0.0112
Unknown 2	0.24	0.0674
Unknown 4	0.16	0.0074
Unknown 5	-0.20	0.0020
Unknown 6	-0.28	0.0029

Table S2. Correlation coefficients and corresponding *p*-values computed between age and the set of metabolites found altered in urine of BC (n=53) compared to cancer-free controls (n=56).

Matabalita 4	Effect size ±	Variation ±	<i>p</i> -value	<i>p</i> -value	AUC	Down- or up-		Detential biashamizal notheray
Wietadonite	ESse ^b	uncertainty (%)	original	FDR ^c	AUC	regulated		Fotential biochemical pathway
Alkane								
Decane ^{<i>d</i>, 12}	0.63 ± 0.48	183.7 ± 21.3	0.0475	0.0633	0.681	$\mathbf{\uparrow}$	HMDB0031450	Lipid peroxidation [12]
Aldehyde								
Octanal ^{d, L1}	0.72 ± 0.48	66.7 ± 12.1	0.0294	0.0632	0.674	$\mathbf{\uparrow}$	HMDB0001140	Lipid peroxidation [12]
Terpenoid								
Levomenthol ((1R,2S,5R)-5-	$\textbf{-0.76} \pm 0.48$	$\textbf{-57.0} \pm 34.5$	0.0177	0.0632	0.715	\checkmark	HMDB0003352	Lipid metabolism [17]
methyl-2-propan-2-ylcyclohexan-								
1-ol) ^{<i>d</i>, <i>L</i>2}								
Unknowns								
Unknown 7 ^{d, L4}	0.36 ± 0.47	139.2 ± 32.2	0.0371	0.0632	0.690	$\mathbf{\uparrow}$	-	-
Unknown 8 ^{d, L4}	$\textbf{-0.96} \pm 0.49$	$\textbf{-63.4} \pm \textbf{37.9}$	0.0040	0.0320	0.758	\checkmark	-	-

Table S3. List of five volatile metabolites found altered in urine of patients diagnosed with stage T1 (n=17) compared with stage Ta/Tis (n=26).

^{*a*} Common metabolite name (IUPAC name). ^{*b*} Effect size ± ES_{SE} (effect size standard error) determined as described in reference ²¹. ^{*c*} False discovery rate (FDR) correction of original *p*-values, computed as described in reference ²⁰. ^{*d*, *e*} Compounds detected through VOCs and VCCs analytical methods, respectively. Levels of confidence in metabolite identification, defined as described in references ^{16,17}: ^{*L1*} Identified metabolites (confirmed using a chemical reference standard); ^{*L2*} Putatively annotated compounds (NIST14 database); ^{*L3*} Putatively characterized compound classes (spectral MS similarity); ^{*L4*} Unknown compounds.

Motobolito "	Effect size ±	Variation ±	<i>p</i> -value	<i>p</i> -value	AUC	Down- or up-	LIMDD ID	Potontial bioghomical nothway
Miciabolite	ESse ^b	uncertainty (%)	original	FDR ^c	AUC	regulated	HWIDB ID	r otentiai biochennicai pathway
Alkanes								
2,4-Dimethylheptane ^{<i>d</i>, <i>L</i>2}	1.86 ± 0.85	260.1 ± 46.3	0.0002	0.0010	0.881	\uparrow	-	-
4-Methyloctane ^{<i>d</i>, <i>L</i>2}	1.49 ± 0.81	493.9 ± 81.2	0.0001	0.0004	0.904	\uparrow	-	-
Decane ^{<i>d</i>, <i>L1</i>}	1.39 ± 0.79	186.1 ± 52.5	0.0055	0.0078	0.796	\uparrow	HMDB0031450	Lipid peroxidation [12]
Aldehydes								
2,5-Dimethylbenzaldehyde ^{<i>d</i>, <i>L</i>2}	$\textbf{-0.81} \pm 0.75$	$\textbf{-31.2}\pm10.7$	0.0037	0.0071	0.692	\checkmark	HMDB0032014	-
Aromatic compounds								
1,2,3-Trimethylbenzene ^{d, L2}	0.72 ± 0.75	50.6 ± 22.4	0.0310	0.0344	0.735	\uparrow	HMDB0059901	-
1,2,4-Trimethylbenzene ^{d, L2}	0.77 ± 0.75	45.7 ± 19.2	0.0281	0.0344	0.738	\uparrow	HMDB0013733	-
1,2,4,5-Tetramethylbenzene ^{<i>d</i>, <i>L</i>2}	1.22 ± 0.78	97.5 ± 24.6	0.0042	0.0071	0.804	\uparrow	-	-
Unknowns								
Unknown 2 ^{d, L4}	1.34 ± 0.79	228.6 ± 59.4	0.0025	0.0071	0.819	\uparrow	-	

Table S4. List of eight volatile metabolites found altered in urine of patients diagnosed with stages \geq T2 (*n*=10) compared with stage Ta/Tis (*n*=26).

^{*a*} Common metabolite name (IUPAC name). ^{*b*} Effect size ± ES_{SE} (effect size standard error) determined as described in reference ²¹. ^{*c*} False discovery rate (FDR) correction of original *p*-values, computed as described in reference ²⁰. ^{*d*}. ^{*e*} Compounds detected through VOCs and VCCs analytical methods, respectively. Levels of confidence in metabolite identification, defined as described in references ^{16,17}: ^{*L1*} Identified metabolites (confirmed using a chemical reference standard); ^{*L2*} Putatively annotated compounds (NIST14 database); ^{*L3*} Putatively characterized compound classes (spectral MS similarity); ^{*L4*} Unknown compounds.

	Effect size ±	Variation ±	<i>p</i> -value	<i>p</i> -value		Down- or up-		
Metabolite "	ESse ^b	uncertainty (%)	original	FDR ^c	AUC	regulated	HMDB ID	Potential biochemical pathway
Alkane								
2,4-Dimethylheptane ^{<i>d</i>, <i>L</i>2}	1.06 ± 0.83	138.8 ± 38.0	0.0039	0.0165	0.829	$\mathbf{\uparrow}$	-	-
Aldehydes								
2,5-Dimethylbenzaldehyde ^{d, L2}	$\textbf{-0.88} \pm 0.82$	$\textbf{-21.0} \pm \textbf{9.0}$	0.0419	0.0419	0.747	\checkmark	HMDB0032014	-
Formaldehyde ^{f, L1}	0.90 ± 0.82	81.0 ± 30.7	0.0401	0.0419	0.724	\uparrow	HMDB0001426	Folate derivatives breakdown, protein and
								nucleic acid demethylations, glycine and
								serine metabolisms [13,14]
Methylglyoxal f, Ll	1.10 ± 0.83	58.4 ± 19.2	0.0141	0.0247	0.776	\uparrow	HMDB0001167	Pyruvate metabolism, glycine and serine
								metabolism, spermidine and spermine
								biosynthesis [17]
Terpenoid								
Levomenthol ((1R,2S,5R)-5-	1.07 ± 0.83	207.7 ± 50.4	0.0047	0.0165	0.824	$\mathbf{\uparrow}$	HMDB0003352	-
methyl-2-propan-2-ylcyclohexan-								
1-ol) ^{<i>d</i>, <i>L</i>2}								
Unknowns								
Unknown 9 ^{d, L4}	1.17 ± 0.84	129.2 ± 37.3	0.0093	0.0218	0.800	$\mathbf{\uparrow}$	-	-

Table S5. List of six volatile metabolites found altered in urine of patients diagnosed with stages \geq T2 (*n*= 10) compared with stage T1 (*n*=17).

^{*a*} Common metabolite name (IUPAC name). ^{*b*} Effect size ± ES_{SE} (effect size standard error) determined as described in reference ²¹. ^{*c*} False discovery rate (FDR) correction of original *p*-values, computed as described in reference ²⁰. ^{*d*}. ^{*e*} Compounds detected through VOCs and VCCs analytical methods, respectively. Levels of confidence in metabolite identification, defined as described in references ^{16,17}: ^{*L1*} Identified metabolites (confirmed using a chemical reference standard); ^{*L2*} Putatively annotated compounds (NIST14 database); ^{*L3*} Putatively characterized compound classes (spectral MS similarity); ^{*L4*} Unknown compounds.

Pre-processing steps	VOCs	VCCs
Crop filtering	RT range: 2-34 min	RT range: 9.8-46 min
	<i>m/z</i> range: 50-250	<i>m/z</i> range: 50-300
Peak detection	Noise level: 1×10 ⁴	Noise level: 1×10 ⁵
Chromatogram builder	Intensity threshold: 5×10^4	Intensity threshold: 5×10 ⁶
	m/z tolerance: 0.07	m/z tolerance: 0.1
Deconvolution	Baseline level: 1×10 ⁴	Baseline level: 5×10 ⁵
	Peak range: 0.03-0.5 min	Peak range: 0.03-0.5 min
Alignment	RT tolerance: 0.2 min	RT tolerance: 0.2 min
	m/z tolerance: 0.07	m/z tolerance: 0.1

Table S6. Pre-processing steps of GC-MS chromatograms of VOCs and VCCs performed in MZmine-2.52.