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Abstract: Genome-scale stoichiometric modeling methods, in particular Flux Balance Analysis (FBA)
and variations thereof, are widely used to investigate cell metabolism and to optimize biotechno-
logical processes. Given (1) a metabolic network, which can be reconstructed from an organism’s
genome sequence, and (2) constraints on reaction rates, which may be based on measured nutrient
uptake rates, FBA predicts which reactions maximize an objective flux, usually the production of cell
components. Although FBA solutions may accurately predict the metabolic behavior of a cell, the
actual flux predictions are often hard to interpret. This is especially the case for conditions with many
constraints, such as for organisms growing in rich nutrient environments: it remains unclear why a
certain solution was optimal. Here, we rationalize FBA solutions by explaining for which properties
the optimal combination of metabolic strategies is selected. We provide a graphical formalism in
which the selection of solutions can be visualized; we illustrate how this perspective provides a
glimpse of the logic that underlies genome-scale modeling by applying our formalism to models of
various sizes.

Keywords: flux balance analysis; elementary flux modes; elementary conversion modes; genome-
scale modeling; stoichiometric modeling; phenotype phase plane analysis

1. Introduction

Flux Balance Analysis (FBA) is a constraint-based optimization method that is used to
study metabolic networks in steady state [1,2]. In the most basic FBA, the rate of biomass
synthesis is maximized to model metabolic behavior under selection for fast growth. This
biomass synthesis is limited by a constraint on some nutrient uptake rate, mimicking the
limited availability of this nutrient.

However, Flux Balance Analyses often become much more complicated. For example,
because the studied cell can use many different nutrients, in which case there may be
many uptake rates with an upper bound, or the modeler may be interested in inferring
the full metabolic behavior from the measurement of some reaction rates, which would
lead to equality constraints that fix these experimentally measured rates. Alternatively,
models may include a growth-independent maintenance parameter via a lower bound on
the production of the energy-equivalent ATP. All these cases lead to Flux Balance Analyses
with multiple constraints, and a small sample of published models indeed shows that
multi-constraint models are abundant (Table 1). When FBA is used with several such
constraints, it can become extremely challenging to understand why a certain solution is
optimal. This severely obstructs a deep understanding of the model results, and with that,
the understanding of the cell’s metabolism. It is therefore important to lay bare the logic
that underlies FBA solutions. This is what we intend to do in this paper.
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A comprehensive list of minimal reaction sets that can sustain a steady-state flux
through the network is given by the Elementary Flux Modes (EFMs) [3]. EFMs can be
viewed as the minimal metabolic strategies that a cell has at its disposal, and each metabolic
state is a combination of these EFMs. Therefore, understanding FBA solutions comes down
to rationalizing why the selected EFMs are used. For example, if only one flux constraint
is used, often the uptake rate of the sole energy or carbon source, FBA will always select
the EFM with the highest yield, i.e., the pathway that produces the most moles of biomass
per mole of the limiting substrate [4,5]. Therefore, although FBA appears to explicitly
maximize the biomass production rate as a proxy for maximizing the growth rate, the
resultant high-yield strategy does not necessarily lead to the fastest biomass production
in real organisms [4,6–8], because they may be limited by thermodynamic and enzyme-
kinetic limitations [9,10]. Indeed, many microorganisms, and even cancer cells, do not
use the high-yield pathways in fast-growth conditions, but rather use seemingly wasteful
pathways that, for example, lead to ‘overflow metabolism’ [11–15].

Although it has been well-understood that FBA with one constraint selects the
maximal-yield EFM, this logic underlying the solution cannot be readily extended to
cases with multiple constraints. We will use small toy models to prove that the highest-
yield pathways are not always selected in such cases. Instead, we will show that FBA
selects Elementary Flux Modes based on a weighted combination of their product yields
for the various constrained uptake rates.

Table 1. Published genome-scale models often have several active constraints on reaction rates. A
constraint is active when it has a nonzero reduced cost.

Organism Model Number of Active Constraints

E. coli iJR904 [16] 2
E. coli iAF1260b [17] 2

L. lactis [18] 10
L. plantarum [19] 4

M. tuberculosis iNJ661 [20] 4
S. cerevisiae iMM904 [21] 3

To visualize all possible product yields for a model, we use the enumeration of
Elementary Conversion Modes (ECMs) [22,23]. The ECMs are the minimal stoichiometric
relations that the cell can use to convert substrates into products and biomass, and all
ECMs together comprise all its conversion capabilities. The set of ECMs therefore span all
possible overall reactions from nutrients to products, and, importantly, each Elementary
Conversion Mode has a corresponding Elementary Flux Mode that leads to the same
conversion. Thus, if we can decide which ECMs are selected, we also know which EFMs
are selected. It is beneficial to use ECMs rather than EFMs because they can be enumerated
on much larger metabolic networks [22]. We will combine the enumerated ECMs with
a graphical cost vector formalism [24] to obtain a figure that shows exactly the part of the
metabolic capabilities of the model that is relevant for the specific FBA. Aided by this
graphical formalism, it can be easily seen why a certain combination of minimal metabolic
pathways is optimal.

We provide several examples that illustrate the benefit of analyzing why a certain
FBA solution was selected. We use the cost vector formalism to show for a genome-scale
model of Escherichia coli how much the FBA-solution changes when one gradually changes
a constraint, as such providing insight in the robustness of the FBA-predictions (known
as robustness analysis [25]). Genome-scale models of Lactococcus lactis and Lactobacillus
plantarum are used to illustrate how our method facilitates a deeper understanding of
FBA-results, even when many constraints are used to model nutrient-rich environments.
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2. Results
2.1. Small Models Show that FBA Solutions Are Not Just Selected for Maximal Yield

In this section, we will use three small networks to identify the properties of metabolic
pathways that determine whether the pathway will be used in the FBA-solution. A general
Flux Balance Analysis problem can be written as

max
v
{vBM | Nv = 0, virrev ≥ 0, vi1 ≤ Ci1 , . . . , viK ≤ CiK}, (1)

where N is the stoichiometry matrix that indicates which metabolites (rows) are used or
produced in each reaction of the metabolic network (columns). It is multiplied by the flux
vector, v, containing all reaction rates. Some of the reaction rates also appear separately: vi1
denotes the first of K constrained uptake rates. Although in Equation (1) we have chosen
to use only upper bounds, the results in this paper remain valid when these constraints are
lower- or equality bounds. The objective reaction rate is denoted by vBM: a virtual reaction
combining all cell components in the right proportions for cell-synthesis. Finally, virrev ≥ 0
indicates that all irreversible reactions must have a non-negative rate.

Since uptake fluxes are often constrained, the ratio of product formation over substrate
uptake plays an important role in FBA. This ratio is called the product-substrate yield, YS.
For a flux vector, v, the biomass yield on substrate S is given by YS = vBM/vS. Note that
this definition is completely general as to which product and which substrate is involved,
we can thus have product-glucose yields, product-sulfur yields, and so on.

Any vector of reaction rates that satisfies the first two constraints of Equation (1) can be
written as a combination of Elementary Flux Modes (EFMs) [3,26]. Since EFMs are minimal
sets of reactions that can sustain a steady-state, these correspond to minimal metabolic
strategies. To understand why a certain set of reactions is used in an FBA-solution, it is
therefore sufficient to explain why the used EFMs were selected.

2.1.1. FBA with One Constraint Selects the Maximal-Yield EFM

We here only consider active flux constraints, which means that vBM could increase
if the constraint was relaxed. This implies that vS = C in the optimal solution. By using
this and the definition of product-substrate yield, we can rewrite the FBA-optimization
problem as

max
v
{vBM | Nv = 0, virrev ≥ 0, vS = C} = max

v
{vSYS | Nv = 0, virrev ≥ 0, vS = C},

= max
v
{CYS | Nv = 0, virrev ≥ 0},

= C max
v
{YS | Nv = 0, virrev ≥ 0}.

This confirms that the solution v is found by selecting the steady-state flux distribution
with the highest yield. In Figure 1a, we show an example network with two EFMs and
only one active constraint. The EFM that uses the yellow reaction has a three times higher
product yield on the limiting substrate, and is therefore used in the FBA-solution.

It is thus easy to characterize solutions of Flux Balance Analyses with only one active
constraint. One could, in principle, find the solution by enumerating the EFMs, and
calculate the product-substrate yields for each of them. The EFM with maximal yield
will give an optimal flux distribution. It may occur that several EFMs attain the maximal
yield, and in that case, all combinations of these EFMs are optimal solutions, providing a
mathematical basis for “flux variability” [27], see also [28].

In practice, the number of EFMs increases rapidly with network size, often rendering
the above EFM-selection recipe infeasible [29]. Even though we are initially only interested
in the product-substrate yields of the EFMs, EFM theory provides no way to speed up the
enumeration by focusing only on that information. Elementary Conversion Modes (ECMs),
however, do give that option [22,23]. The set of ECMs not only provides a full overview
of all overall conversions from nutrients to products that a cell can catalyze; enumeration
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with the recently introduced ecmtool also allows focusing only on the conversions between
a selected set of nutrients and products [22]. This scales ECM enumeration to much larger
networks than can be handled by EFM enumeration. Although ECMs are defined in terms
of changes in external metabolite concentrations while FBA-constraints and -objectives are
in terms of reaction rates, the important reaction rates can always be found by coupling
the production of an external metabolite to each of these reactions. We will take a two-step
approach in this paper: first, we compute the ECMs and use the conversion information to
understand which ECMs constitute the FBA-solution. Then, we reconstruct a set of EFMs
that gives rise to these overall conversions, because EFMs can be more easily interpreted as
minimal metabolic strategies. Because these minimal strategies thus have both an EFM
and an ECM associated to them, we will from now on use Elementary Mode, or EM, when
the distinction does not matter.

Figure 1. Small networks show that the product-yields on limiting substrates in combination with
the values of the upper bounds determine which EMs are selected in an FBA-solution. Panels (a,c,e)
show networks of increasing complexity and the resulting FBA solutions. In (b,d,f), we show the
respective visualizations of the costs of the various EMs with respect to the limited nutrient supplies.
The dots indicate the fractions of the constrained supplies that the corresponding EM would use
for producing one P. The dashed vectors help to emphasize that the costs of a combination of EMs
can be visualized by using vector addition (as in [24]), but for visualization purposes, these dashed
vectors will not be used in subsequent figures. The solid vectors show the usage by the various EFMs
of the limited supplies in the FBA solution. The computation of the vector-positions is explained in
the main text, and a calculation example is shown in (e). (a,b) show that the maximal yield EM is
selected if there is only one active constraint. In (c,d) the uptake of S2 becomes limiting as well. Since
the yellow and blue EMs are now selected, this illustrates that the product-yields on both substrates
together determine which EMs are selected under two active constraints. We added the green EM
to contradict that the maximal-yield EMs would always be selected. By relaxing the limit on the
uptake of S2 in (e,f), we show that the precise values of the constraint bounds influence the selection
of EFMs as well.
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2.1.2. Under Two Constraints, EMs Are Selected on Two Different Yields

Can we now extend the above recipe—selecting the Elementary Mode with the maxi-
mal yield—to problems with several active constraints? Figure 1c shows that the answer is
no. Although EM2 produces more product per nutrient S1, the FBA solution is a combi-
nation of EM1 and EM2. This is because the uptake of S2 is now also actively constrained,
suddenly making the product-yield per S2 an important determining factor. We see that
EM1 has an infinite yield on S2, since it does not use it at all to produce P. So, while EM2
has higher yield on S1, EM1 is most efficient with S2. We can thus no longer simply say
that FBA maximizes yield, since the FBA solution has a lower yield on both substrates than
the individual EMs [30].

The FBA solution is also not a combination of the maximal-yield EMs with respect
to the various constraints. For example, the addition of EM3 in Figure 1c contradicts this
intuition. The maximal-yield EMs are now EM3 for S1 and EM1 for S2. EM2 is second best
in its usage of both substrates. Still, it is used in the FBA solution.

The examples in panels c and e of Figure 1 differ only in the value of one of the flux
bounds (v2 ≤ 1 versus v2 ≤ 3), but still the selected EMs change. This is because we
change ‘how limiting’ a constraint is by changing its bound, and with that the importance
of the various substrate-yields change. This shows that it is not generally possible to
have a rationale for the FBA-solution in terms of substrate yields only. Selection of the
best combination of metabolic strategies should at least combine information about their
substrate yields and the precise value of the bounds.

2.2. FBA Solutions Can Be Rationalized Using Cost Vectors

The above examples show that we can only understand which EMs are selected in
an FBA solution by considering their product-yields on all limiting substrates, weighted
by how limiting the various substrates are. It turns out that this is indeed all information
that we need, and that this can be visualized with an intuitive graphical formalism. The
derivation of this graphical formalism is based on a similar formalism that we developed
for understanding resource-allocation optimization problems [24].

Consider a general EM with corresponding reaction rates v; EMs are defined up to a
positive constant, i.e., if we multiply v with an overall positive factor, it will still represent
the same EM. To facilitate comparing the costs of making biomass between EMs, we start
by rescaling all EMs such that one unit biomass is made: v→ v/vBM. The resulting vector
thus gives the reaction rates that are needed to produce one unit biomass via that EM. This
can also be expressed in terms of the biomass-substrate yields:

vSj =
vSj

vBM
vBM =

1
YSj

vBM =
1

YSj

,

where we used vBM = 1 in the last equality. (Note that we could scale to any other objective
flux.) The next step is to write this needed reaction rate as a fraction of the available rate.
This gives a cost value, di

j, for EM i with respect to the jth constraint:

di
j =

1
Yi

Sj

Cj
=

1
Yi

Sj
Cj

.

We can gather these costs in a so-called cost vector [24] for the ith EM: di =
[
di

S1
· · · di

SK

]ᵀ
=[ 1

Yi
S1

C1
· · · 1

Yi
SK

CK

]ᵀ
. These cost vectors can be compared in a K-dimensional cost vector

plot (solid vectors in Figure 1b,d,f. The jth coordinate of the cost vectors thus shows
the fraction of the jth constraint that is needed to produce one unit product with that
EM. Cost vectors that are far from the origin thus indicate that the EM is inefficient in its
substrate-usage and vice versa.
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To see how the information in the cost vectors helps us understand the FBA solu-
tions, we rephrase the FBA-optimization as: choose a combination of the rescaled EMs,
∑M

i=1 λiEFMi, such that the sum of multiples vBM = ∑M
i=1 λi is maximized and all K con-

straints are satisfied: ∑M
i=1 λidi

j ≤ 1. For the cost vectors, this is equivalent to: find the sum
of cost vectors that uses the largest number of vectors and stays within the unit square
(indicated by the gray dashed lines).

An important property of this type of optimization problem is that the solution is
always a combination of a number of EFMs that does not exceed the number of active
uptake constraints [24]. Recall that a constraint is called active if relaxing this constraint
will lead to an increase in growth rate. We prove in Appendix A that this result remains
valid if we use ECMs. We thus state that: when K constraints are active, then there is an
optimum with at most K EMs. In the examples of Figure 1a,c,e, we, respectively, had 1, 2, and
2 active constraints, and indeed this was matched by the number of used EMs.

In problems with fewer than four constraints, we can even visually examine which
combination of EMs is optimal [24], as we will describe below. However, even though
this visual analysis was very useful in the case of resource-allocation because these prob-
lems often have few active constraints, FBA-problems may have many more constraints.
Therefore, a visual optimization is often impossible, simply because we can only make
3-dimensional plots. Still, we will illustrate with various genome-scale examples that the
cost vector formalism remains very useful in these multi-constraint cases: the cost vectors
indicate the strengths and weaknesses of all EMs; a vector coordinate is low when the EM
is very efficient with respect to that constraint.

In a case with two constraints (such as in Figures 1–3), the visual optimization relies
on the knowledge that at most two EMs will be used in the optimum. Therefore, we only
have to compare all candidate solutions using either a single EM or a pair of EMs. In [24],
we have proven that we can rank all candidates by ordering them on the diagonal of the
cost vector plot (see Figure A1 for an illustration of this scoring procedure). All EMs with
a cost vector below the diagonal are scored by projecting their cost vector vertically to
the diagonal, all EMs with an above-diagonal cost vector are scored by projecting the
cost vector horizontally. Intuitively, this projection quantifies that the production rate of
a single EM is limited by its weakest point, i.e., it is limited by the constraint that it uses
most inefficiently (the largest coordinate of the cost vector). All pairs of EMs are scored
by connecting their cost vectors by a line, and marking the intersection with the diagonal.
As such, all candidates have been scored by a projection on the diagonal of the cost vector
plot. The optimal candidate is the one that led to the lowest projection on the diagonal.
This procedure immediately implies that all EMs that can be selected by FBA must have
cost vectors that lie on the Pareto-front between efficient usage of the constraints. This can
be clearly seen in Figures 2 and 3, as we will discuss shortly. When there are three active
constraints, the visual optimization procedure is similar: each candidate combination of
three EMs is projected to the diagonal by finding the intersection of the plane spanned by
the three cost vectors and the diagonal. Eventually, the combination of EMs that gave rise
to the lowest projection is the optimal one.

Although we here focused on the case where both the objectives and constraints
involve only single reaction rates, cost vectors can be used whenever the objective and the
constraints can be written as linear combinations of reaction rates. For example, when a
combination of ATP production and biomass production is to be maximized (max vBM +
vATP), or when the summed uptake of glucose and lactose is bounded (vglc + vlac ≤ C).
In Figure A2, we show that even when a ratio of fluxes is bounded (v1/v2 ≤ C) we can
still use cost vectors by rewriting this as v1 − Cv2 ≤ 0. The case in which a ratio of fluxes
(or yield) is to be maximized (max v1/v2) under a set of different constraints (vi ≤ C), is
thoroughly analyzed in [30]. Often, such a maximal yield will be attained in a single EFM,
and therefore we could find the optimal solution by just picking the EM with the highest
yield. However, when the constraints prohibit the use of only this EM, the analysis needs to
be extended. As far as we can see, this, however, does not fit inside our cost vector analysis.
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Figure 2. A core model of Escherichia coli is used to introduce our analysis of FBA solutions. We
analyze the FBA solutions of the e_coli_core-model [31] with a constraint on glucose- and oxygen-
uptake in (a), and add an ATP-maintenance demand in (b,c). In (a), for each of the 689 ECMs, each
dot represents the fraction of the constraints that the ECM takes up when it produces biomass at
a rate of 0.5. We scale to 0.5 for visualization only; it does not change the analysis. The green dots
represent the costs of the ECMs that are obtained using the hide-method of ecmtool. We explain in
the main text (and in [22]) that these “hide”-ECMs are extreme with respect to the chosen constraints,
and can therefore always form the optimal solution. The vectors show that the red and blue EMs
constitute the FBA solution. This could have been found by the visual optimization procedure
as well: when all pairs of cost dots are connected by a line, the line connecting the blue and red
dot intersect the diagonal closest to the origin (see text and Figure A1 for an explanation). (b) An
ATP-maintenance demand can be imposed as a constraint, but it is better to view it as setting a
secondary objective: the demanded ATP should be produced as efficiently as possible. We therefore
make an additional plot that indicates the costs of the EMs for meeting this demand. Not all EMs
appear in both plots, e.g., an EM that does not produce ATP will not appear in the right plot because
it has ‘infinite costs’. The selection of the optimal EMs can now be understood: the red EM produces
ATP most efficiently; the rest of the available glucose- and oxygen-supply can be used by the blue
EM to produce biomass. However, the red and blue EM cannot exactly use all of the supply: the
remainder is used by the seemingly inefficient brown EM that produces both biomass and ATP.
(c) With more than two constraints or secondary objectives, an alternative visualization will be better
suited. We only visualize optimal EMs; their dots still indicate the relative usage of the constraints,
but are no longer normalized with respect to an objective. The vectors show which EM uses which
fractions of the constraints. In turn, the bar plot indicates which EM contributes to which objective.
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Figure 3. The full flexibility of E. coli under glucose- and oxygen-limitation can be visualized with
10 EMs. We used the set of elementary conversions between glucose, oxygen, and biomass production
that are possible in a genome-scale model of E. coli reported in [22]. For each ECM the demand of
the constraints per 0.5 unit biomass is plotted in (a) and characterized with its oxygen per glucose
requirement. (b) By reconstructing for each ECM a corresponding EFM (see Methods), we could
reconstruct which products are secreted by each ECM. This information is given for all shown ECMs
as a function of the oxygen/glucose requirement. The three different oxygen-bounds show that
under increasing oxygen-limitation, the number of different fermentation products increases. When
two neighboring dots are far from each other (a), there is a large regime of oxygen-limitation in which
the corresponding EMs are used together. Some dots are so close together that the co-utilization of
the EMs is highly unlikely.

2.3. Understanding FBA Solutions for Genome-Scale Models

We illustrate how Elementary Modes can be used to understand FBA solutions using
several examples of increasing complexity.
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2.3.1. A Core E. coli-Model as an Introduction

We show for a core model of E. coli how FBA-optimization can be fully understood
with a two-dimensional plot when there are only two constraints Figure 2a. We plot the
costs of all EMs with respect to the uptake constraints on glucose and oxygen. Dots that
are placed closer to the origin represent EMs that are more substrate-efficient. Optimal
FBA solutions can therefore always be constituted from the extreme EMs, i.e., the minimal
set of EMs that spans the Pareto front that quantifies the trade-off between glucose- and
oxygen-efficiency. These extreme EMs can be efficiently found with the hide-method
of ecmtool (an explanation is given in Section 4). Because the hide-method facilitates
ECM enumeration on larger networks and still captures all potentially optimal minimal
strategies, we will often use this method on larger networks.

The full understanding of FBA solutions becomes harder, but not yet impossible, when
a lower bound on some reaction rate is added. For example, in Figure 2b,c we add a lower
bound on the production of ATP to model a non-growth related ATP maintenance. This
constraint acts as a secondary objective: the ATP-demand has to be satisfied in the cheapest
possible manner, so that the most substrate supply remains available for biomass synthesis.
The ranking of EMs should now thus be done based on their efficiency in producing
biomass, but also on their efficiency in producing ATP. We have therefore added a plot that
shows the latter efficiencies.

It remains possible to rationalize the FBA solution. Two of the EMs (blue and red) are
selected, respectively, for their substrate-efficiency in making biomass and ATP. However,
combining only these two EMs would leave some of the oxygen supply unexploited.
Therefore, the seemingly in-efficient brown EM can take over some of the ATP and biomass
production while using relatively more oxygen than the red EM.

In larger models, the number of constraints often becomes larger than two, for example,
because more nutrient uptakes are constrained. In addition, the number of secondary
objectives may rise, for example, because uptake rates are fixed to their experimentally
observed value, so that the uptake is forced. To facilitate the analysis in these more
complicated cases, we introduce a simplified way of plotting the costs in Figure 2c. The
left plot shows the costs of each EM with respect to all constraints; the right plot shows
the contribution of each EM to the various objectives. These plots can be combined to
understand why a certain EM was selected in the optimum.

2.3.2. Optimal Solutions under Glucose- and Oxygen-Limitation of a Genome-Scale E.
coli-Model Are Determined by Few Minimal Strategies

Figure 3a shows the 10 EMs that together span all optimal solutions under glucose-
and oxygen-limitation for the genome-scale E. coli model iJR904 [16]. Although ECM
enumeration is often not possible on genome-scale networks, Clement et al. used the
hide-method to only focus on conversions between glucose, oxygen, and biomass, and
parallelized the enumeration to produce this set. We have taken the reported ECMs and
reconstructed a corresponding Elementary Flux Mode for each of them (see Methods).
This enables us to reconstruct the consumption and excretion of metabolites that were first
hidden. Products that differ between the 10 EMs are shown in Figure 3b, as a function of
their oxygen per glucose requirement.

Figure 3 shows that when oxygen-limitation becomes more stringent, the optimal EMs
are increasingly selected for their oxygen-efficiency. Most optimal in terms of glucose yield
is full respiration: since CO2 is the most oxidized product, the electrons from glucose all
go to oxygen (Figure 3). This EM requires 1.84 oxygen per glucose. To save on oxygen
per glucose, some of the CO2 needs to be converted into something less oxidized, and
acetate is the next best candidate: compared to other fermentation pathways, acetate
production yields one additional ATP after glycolysis, and the EM only needs 1.385 oxygen
per glucose. Thus, this EM trades in a bit of the CO2, produced in the citric-acid cycle,
for acetate-production to maintain the redox balance. Since this also reduces the ATP
yield on glucose, more glucose flux is required to produce one unit of objective flux. A



Metabolites 2021, 11, 257 10 of 24

next oxygen-saving step is to replace CO2 by its more reduced form formate (H2CO2).
Again, the ATP yield drops, and more glucose is needed to produce biomass, but only
0.596 oxygen molecules are needed per glucose molecule. A further decrease in oxygen
(to 0.066 per glucose) is possible by the production of the more reduced ethanol, and,
finally, growth is possible under complete anaerobiosis by producing some succinate. Some
CO2-production is uncircumventable, as the citric-acid cycle needs to remain active for
synthesis of biomass components. For the same reason, ethanol production is increased,
as it oxidizes the additional electron-carrier NADH that is produced in the citric-acid
cycle. Note that, even though the number of products seems to increase incrementally,
we do see large shifts in product formation, most notably the replacement of almost all
CO2-production by formate-production. Incidentally, the production of formate requires
the enzyme pyruvate formate lyase, which is unstable in the presence of oxygen. Therefore,
this reaction can only be active in the last, anaerobic, EM in real E. coli cells, showing that
what is stoichiometrically feasible, may not always be possible due to kinetic constraints.

Figure 3 also shows how robust a certain optimal solution is to changes in the nutrient-
limitations. For example, at a fixed glucose-limitation of vglc ≥ −10 and all oxygen-
limitations between approximately Vox ≥ −7 and Vox ≥ −12, the FBA solution will
use a combination of the EM with oxygen/glucose requirement 1.368 and the EM with
0.596 oxygen/glucose requirement, producing CO2, acetate, formate, and relatively small
fractions of glycolate and ethanol. However, when oxygen-limitation is less stringent,
there is only a very small region in which formate is produced, but not glycolate. This
predicts that it is very unlikely to observe formate production without glycolate production.
These regions of qualitatively different behavior are equivalent to the phenotype phase
planes that were introduced in [32]. Our ECM-based method thus enables Phenotype
Phase Plane (PhPP)-analysis without having to numerically scan the parameter space. This
reduces potential numerical instabilities, and makes generalization to higher-dimensional
‘phenotype phase regions’ possible, where these could be defined as uptake rate regions
that lead to the same set of active EMs.

2.3.3. Lactococcus lactis in Rich Medium: Elementary Modes-Based Analysis Can
Rationalize Solutions to Many-Constraint Optimizations

Often, many constraints are used to model an organism’s metabolism, for example
when the metabolic behavior of the organism is hard to predict from first principles. This
could be because we have insufficient understanding of the constraints and the objective
that determine this organism’s metabolic behavior. For example, not all organisms have
been selected for maximal growth rates, and it is a much debated question which constraints
shape metabolism the most [33]. In such cases, the goal of FBA can be shifted to deduce
why the measured metabolic behavior may appear. Intuitively, the research question shifts
from “What would the optimal metabolic behavior be given this set of constraints?” to “A
certain metabolic behavior is observed, can we understand why, by analyzing the costs
and benefits of this behavior?” In such cases, FBA can be used by fixing all measured
rates, and then infer the rest of the metabolic state through growth rate optimization. This
gives rise to a total of four constraint-types: (1) upper bounds on uptake rates (e.g., limited
glucose-uptake), (2) lower bounds on production rates (e.g., an ATP-maintenance demand),
(3) a lower bound on uptake rates (e.g., setting an uptake rate to its observed value), and
(4) an upper bound on production rates. Constraint-types (2) and (3) can also be seen as
secondary objectives: the FBA solution should satisfy these demands by using as little
resources (the constraints) as possible. Our EM-based method can be used to understand
the consequences of the various constraints, answering which constrained reaction is used
by which metabolic strategy to meet which objective.

As an example, we use a genome-scale model of Lactococcus lactis [18]). This lactic acid
bacterium has several amino acid auxotrophies [34,35], and is therefore grown in nutrient-
rich media. Amino acids are not only used for protein synthesis, but are also catabolized
to yield energy-equivalents [18,36]. It is therefore hard to explain from first principles
why L. lactis limits its uptake of amino acids, even when these are available at unlimited
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concentrations. Moreover, at high growth rates, lactic acid is used as a fermentation product,
while at lower growth rates, it uses mixed acid fermentation, which produces more ATP
per consumed carbon molecule [14,37]. It is unclear why the most carbon-efficient pathway
is not always used. To still investigate the metabolic behavior, we fix certain reaction rates
to their measured values, obtained from [37], in particular: amino acid uptake rates are
limited, and the measured fermentation products are demanded to be excreted. Because
the number of relevant metabolites is now very large (16), the hide-method is no longer
enough to compute all ECMs on this genome-scale model. Therefore, we have selected the
subnetwork containing only reactions that are active in the FBA-solution (see Methods for
an explanation). This still yielded 14792 ECMs, of which 16 were used in the FBA-solution
(as expected, because the number of ECMs is bounded by the number of constraints
Appendix A [24]).

A cost-benefit analysis of all active EMs in the FBA-optimum is shown in Figure 4.
Panels a–d indicate which EM takes up which part of the constraints, while panel e shows
to which (secondary) objective each EM contributes. When first focusing on biomass
formation, we note that the main contributor to biomass formation is EM 10651 (Figure 4e),
which uses—as expected—the lactic acid fermentation pathway. EM 1740 is very similar
to EM 10651, but differs in the asparagine and aspartate usage (see also the full ECMs
of L. lactis in the Supplementary Materials). The other Elementary Modes that produce
biomass do not produce lactate and differ in their relative amino acid usage, e.g., in the
uptake of threonine. These differences may be of interest for industrial applications since
threonine uptake has consequences for flavor formation (i.e., 2-Methylbutanal). Besides
that the uptake of some components is limited, the experimentally observed uptake rates
of some amino acids seem to be higher than needed, so that we must enforce these uptake
rates to describe reality (red objectives in Figure 4e). For example, the forced uptake of
arginine induces EM 10073 to produce ATP while ornithine is produced, which is shown to
be an efficient ATP yielding conversion when glucose uptake is limiting [18]. While most
of the other arginine consuming EMs use arginine in the same fraction, EM 2866 consumes
a very large fraction of the arginine pool and only contributes a little to biomass formation.
This gives rise to several questions: for example, would this EM be used to produce more
ATP if ornithine production was not bounded? Would that not have been more efficient
than currently consuming arginine with ECM 2866? If so, what inhibits L. lactis in doing
so, or is this a solution that has just not been found by evolution? As this example shows,
the Elementary Modes-based analysis facilitates the exploration of the metabolic strategies
that give rise to the optimal solutions, which could lead to further computational and
experimental investigations.

2.3.4. Lactobacillus plantarum

EFM analysis of FBA solutions has been used before to understand the growth strategy
of Lactobacillus plantarum. This analysis was done in a less systematic way, and could only
be done for a model of central metabolism where ATP-production was optimized, because
it was impossible to enumerate all EFMs for the genome-scale metabolic model. It is
therefore interesting to see if we still find the same conclusions when we use our approach
with a full-scale model and optimizing the biomass-production. In the original study,
L. plantarum was grown on glycerol, which initially allowed only for very slow growth.
After laboratory evolution, the growth rates and measured uptake fluxes turned out to
be in agreement with the FBA predictions. It was surprising, however, that both in the
experiments and in the FBA prediction, on glycerol, lactate was still produced rather than
oxidized to acetate. EFM analysis showed that this can be rationalized by an oxygen uptake
constraint: then it is optimal to ferment glycerol to lactate instead of acetate, because this
can be done without using the limiting oxygen.
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Figure 4. Elementary Modes-based analysis reveals the costs and benefits of all metabolic strategies
that constitute the optimal solution of Lactococcus lactis in rich medium. ECMs were enumerated for
the active network of a L. lactis genome-scale metabolic model [18] which was constructed based
on measurements from [37]. (a–d) The costs of all the used EMs for the 8 different constraints. The
pairing of the constraints in the plots is based on their scaled reduced costs, which quantifies how
strongly the constraint limits the production of biomass. Glucose-limitation forms the strongest
constraint, followed by formate, ammonium, etcetera. In principle, the relative costs between all pairs
of constraints can be plotted. The constraints written in red are special: these force L. lactis to produce
a certain minimal amount of product. (e) The contribution of each EM to the biomass objective
and the secondary objectives. The secondary objectives are ordered based on their scaled reduced
costs. Objectives written in red are special again: these do not demand the minimal production of
something, but rather demand a certain minimal uptake rate.

Here, we redo this EM-based analysis for the full genome-scale network [19] with the
objective to make biomass. Where the model of central metabolism only had constraints
on glycerol, oxygen, and citrate, we now include constraints on amino acid uptakes as
well. In addition, a non-growth related ATP maintenance is demanded, giving a total of
20 constraints. We found 5541 ECMs that were enumerated for the active subnetwork, and
show the costs and benefits of the 20 ECMs that are active in the FBA-solution in Figure 5.
We here opted to show only the costs for the constraints with largest scaled reduced
costs: glycerol, oxygen, and citrate (see Figure A3 for an overview of all constraints).
Figure 5d shows that only two EMs (2295 and 2987) are used to satisfy the ATP maintenance
requirement. Although these consume all of the available citrate, and a large fraction of
the available glycerol, they still produce lactate. Why is it not better to produce acetate
and as such save some of the glycerol- and citrate-supply? The answer, confirming the
conclusions drawn in [4], is that it is better to save all oxygen for biomass synthesis. The
oxygen-limitation thus overrules the glycerol-limitation in this case, so that glycerol-yield
is traded off for oxygen-yield. Interestingly, the original analysis still predicted that some
ATP was produced with oxygen, while this is no longer predicted in our analysis. This
is a consequence of using the genome-scale model: not only the usage of constraints of
different EMs are important, but also their contributions to the various objectives.
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Figure 5. Lactobacillus plantarum produces ATP at lower carbon-yields to save oxygen for biomass
production. The ECMs in the active subnetwork of the genome-scale L. plantarum model [19] were
enumerated based on measured fluxes adapted from [38], and we focused on the costs of EMs for the
uptake of oxygen, glycerol, and citrate. (a–c) The uptake rates of oxygen, glycerol, and citrate by each
active EM are shown. To fully show the relation between the costs for these three constraints, we
made a different plot for each pair. (d) The contribution of the EMs to the production of non-growth
related ATP and to biomass production is shown. An ECM ID is written in green if the ECM produces
lactate. All citrate and a large fraction of the glycerol is used by ECMs 2295 and 2987 to meet
the ATP-maintenance demand. Still, this production is done without the use of oxygen and while
producing lactate, even though producing ATP with oxygen and by producing acetate would have a
higher carbon-yield. It thus seems that all oxygen is needed for biomass synthesis, and therefore ATP
is produced via a carbon-inefficient pathway.

3. Discussion

We have investigated the logic that underlies the optimality of FBA-solutions. It was
already known that there is a simple rationale explaining the solutions of FBAs when only
a single nutrient uptake rate is an active (limiting) constraint: FBA selects the Elementary
Mode with the maximal yield on the growth-limiting nutrient. However, even though
the modeling of many organisms requires multiple constraints, this rationale could not
simply be extended to multi-constraint models [30]. We found that, in general, the EMs that
constitute FBA solutions are selected for their production-yields with respect to all limiting
uptake rates; the importance of these different yields is dependent on the values of the flux
bounds. It turned out that these selection determinants could all be summarized in a cost
vector formalism that allows for a visual examination of the strengths and weaknesses of
all EMs, as such aiding the understanding of why a certain EM is selected by FBA or not.

We believe that this work forms a useful contribution to the field of genome-scale
stoichiometric modeling. User-friendly toolboxes [39–43] and automated reconstruction
algorithms [44–46] have made constraint-based metabolic models easy to run, but inter-
pretation of the solutions is still very hard. Pitfalls like the high redundancy of optimal
solutions [27,47], or high sensitivity of the solutions to user-defined constraints, remain
key challenges. Hopefully, this may be overcome by providing a deeper understanding of
the mathematical logic underlying the model outcomes.

In Figure 3, we showed, in one plot, all potential solutions to Flux Balance Analyses
with glucose- and oxygen-limitation for a genome-scale model of Escherichia coli. This
result extends a similar result by Carlson and Srienc to genome-scale [48,49]. In this plot,
we can for each combination of a glucose- and an oxygen-constraint, look up which EMs
are optimal and why. Since only 10 EMs were needed for this plot, the optimal metabolism
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of E. coli under glucose- and oxygen-limitation can be fully grasped by understanding
10 different minimal metabolic strategies. Additionally, the visual overview enables us to
test how much a certain solution would change if the glucose- or oxygen-limitation would
be relaxed or tightened. This may aid in examining which parts of the FBA-solution are
robust predictions, and which parts are coincidental results of the specific flux bounds that
were used.

In Figures 4 and 5, we have shown how solutions to multi-constraint models can
be analyzed using cost vectors. In the case of L. lactis, for example, we investigated the
amino acid usage by the various EMs. Comparing experimental observations with FBA-
predictions showed that some amino acids are taken up at a much higher rate than needed.
Our analysis gives an explanation: amino acids like arginine and serine can be used for ATP
generation to meet the ATP maintenance demand. With L. plantarum we confirmed with a
genome-scale model that it is optimal to anaerobically ferment glycerol and citrate to lactate
to produce ATP, probably to preserve the limited oxygen supply for biomass formation.
Studying the cost vectors of the same EMs for different pairs of constraints thus provides a
glimpse into the strengths and weaknesses of the different EMs. This can be used to shape
hypotheses answering why a certain metabolic strategy is selected, which can then be
further analyzed. Such hypotheses may be of guidance to experimental perturbations that
enhance or weaken the use of this strategy. Unfortunately, in this multi-constraint case, we
can no longer use the visual optimization procedure that makes it possible to immediately
see which EMs are used in the optimal solution under two constraints. This is simply due
to our inability to make high-dimensional plots, and can thus not be overcome.

Although in our examples we have considered only prokaryotes, there is no reason
that our analysis of FBA-solutions cannot be generalized to more complex cells or to
cases where, for example, proteome constraints are considered instead of flux constraints.
However, there may be cases in which no clear objective can be defined, for example, in
the constituent cells of multi-cellular organisms, in which case our approach clearly does
not work. We therefore only claim that our analysis works as long as we have a metabolic
network reconstruction, a linear objective function, and linear constraints.

Our analysis of multi-constraint FBA solutions in terms of Elementary Modes was
largely facilitated by two simplifying steps. First, Elementary Conversion Modes were
enumerated instead of Elementary Flux Modes, which facilitates the enumeration of
Elementary Modes on far larger networks [22,23]. This is mostly because there are generally
much fewer ECMs than EFMs as many different EFMs map to the same overall conversion.
In addition, ECM enumeration can focus on the conversions between a user-defined set of
external metabolites, by ‘hiding’ information about the other metabolites. This can speed
up the enumeration, and decrease the eventual number of ECMs by orders of magnitude
(see [22] for a more elaborate discussion of this hide-method). We exploited this by only
computing the Elementary Conversions from the limiting nutrients to biomass, since this
gave exactly the necessary information to decide which of the ECMs would be used in
the FBA solution. There seem to be some disadvantages to ECM-enumeration as well:
(1) it does not return any information on which reactions are used, and (2) it disregards
information on unconstrained metabolites that are taken up or secreted. However, this
information can be retrieved easily for each ECM. We implemented a small Linear Program
that finds an EFM for each enumerated ECM (described in Section 4). This shows which set
of reactions could lead to the ECM, and what will happen to the first disregarded external
metabolites.

Second, in the models of L. lactis and L. plantarum, we only computed the Elementary
Conversion Modes for the subnetwork that was active in the FBA solution. For an FBA
with only few constraints, this would have left us with a very small subnetwork, since the
FBA solution would have used only a few EFMs [24]. Indeed, the active subnetwork on
the core model of E. coli comprised only two EFMs. However, since we used the models of
L. lactis and L. plantarum with around 20 constraints, there were also around 20 EFMs that
thus gave rise to a much more versatile active network. Surprisingly, EFM enumeration



Metabolites 2021, 11, 257 15 of 24

was not even possible on the resulting active subnetwork. The enumeration of ECMs
while using the hide-method to ignore all unconstrained external metabolites still returned
14,792 ECMs for the L. lactis model and 5541 ECMs for the L. plantarum model. This once
again illustrates the almost impermeable complexity of genome-scale models. Again, there
seems to be a disadvantage to this simplification: when the active subnetwork is selected,
we can no longer get the complete overview of why the selected metabolic state was better
than all the alternatives. This is because there may be alternatives that are missing because
they use a reaction that was not part of the active subnetwork. This is a challenge that we
cannot solve at this moment, since the number of alternatives in genome-scale models with
many constraints is just too large even for ECM enumeration.

The cost vectors that we used here were previously introduced for kinetic resource-
allocation models. Although their translation to FBA-type problems was relatively straight-
forward, it still led to new insights that we did not obtain from their original application.
This motivates their generalization to more types of models. We suspect that they can be
used for any constraint-based model as long as Elementary Modes can be defined, and
the costs of a certain mode scale proportionally to the usage of the mode. In the current
case, this demand was satisfied: if the flux through an EFM increases by a factor, then the
uptake of all limiting nutrients increases by the same factor. However, we have also tried
to use cost vectors for Elementary Growth Modes [50], but the inherent non-linearity of
self-fabrication made it impossible to use cost vectors. The cost vectors may thus not be
readily applicable for self-fabrication models like Metabolism and Expression-models [51].
On the other hand, they may very well be applicable to the various extensions to FBA (for
example described in [52]).

In the past decades, there have been several efforts to use an Elementary Modes-
based perspective at FBA solutions. Poolman et al. [53] proposed a method that estimates
how much each Elementary Flux Mode is used for a general flux distribution. Wiback
et al. [54] extended this reconstruction by obtaining the lower and upper bounds of the
possible usage of each Elementary Mode. However, both of these approaches made no
attempt to explain why a certain set of EFMs was selected. There have also been various
approaches where the yield values of all EFMs were plotted in a so-called yield space [55–57]
to visualize the metabolic capabilities of a network. Our work may be seen as extending
these approaches by focusing specifically on those yields that determine the FBA solution,
and by quantifying the importance of the different yields by taking into account the flux
bound value.

The usage of the cost vectors for FBA with only two constraints reproduces results
that could have been obtained through Phenotypic Phase Plane (PhPP) analysis [32]. In
this approach, the rates of two uptake reaction rates are varied and for each combination an
FBA is run; the resulting biomass production rate is plotted in a 3D-plot. By considering the
derivatives of the biomass rates with respect to the uptake reaction rates, the plane spanned
by the variation of the uptake rates could be split into distinct regions with qualitatively
different metabolic behavior. Similarly, in Figures 2 and 3, we could identify for which
combinations of the flux bounds the FBA-solution would switch to a different pair of
Elementary Modes. The Phenotypic Phase Planes are thus given by those regions in the
space of constraint values for which the same Elementary Modes are selected. This makes
it possible to generalize PhPP to FBAs with more than two constraints. Two additional
advantages of our method is that it does not suffer from numerical instabilities when two
EMs are very similar since the results of ecmtool are exact (working with fractions instead
of floats), and that non-optimal Elementary Modes can also be plotted, so that it becomes
clear why the optimal metabolic behavior is better than the alternatives.

4. Materials and Methods
4.1. The Use of ECMs Instead of EFMs

In this paper, we have consistently used ECMs in computations, even though we
discuss EFMs during the interpretation. To understand why this is acceptable, we should
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quickly recapitulate the definitions of the two Elementary Modes. To facilitate readability,
we will not go into details here, but an elaborate explanation of the difference between
ECMs and EFMs is given in [22]. We start with the steady-state flux cone:

F = {v | Nintv = 0, virrev ≥ 0}, (2)

where Nint comprises the rows of the stoichiometry matrix N that correspond to internal
metabolites. This cone thus comprises all steady-state flux vectors. The EFMs are defined
as the elementary vectors of the flux cone, meaning that the set of EFMs is the minimal set
such that each flux vector in F can be written as a positive conformal sum of the EFMs. It
is not necessary to go into the meaning of “conformal” here, but the interested reader is
referred to [58].

Analogously, the Elementary Conversion Modes are defined as the elementary vectors
of the conversion cone:

C = {ċ = Nv | Nintv = 0, virrev ≥ 0} = NF , (3)

where the last equality indicates that the conversion cone is the image of the flux cone
under the stoichiometry matrix. This means that C contains all overall conversion between
external metabolites that a cell can catalyze while in steady-state.

There are two facts about EFMs and ECMs that are important for this work. First,
each ECM, ċ, there exists an EFM, e, such that ċ = Ne. In other words, for each Elementary
Conversion, there is at least one Elementary Flux Mode that leads to that overall conversion.
If we thus find an optimal minimal conversion, we know that we can find a corresponding
minimal metabolic strategy. Second, all information about whether an EFM will be selected
in the FBA solution is contained in the ECM it maps to.

The above two facts enable us to first use the ECMs to find out which overall conver-
sions are optimal, and then reconstruct which EFMs lead to these conversions. It is true
that many EFMs may lead to this one ECM, but this just reflects that there are often many
optimal FBA-solutions [5,27].

As a final note, some EFMs do not map to a single ECM, but for example to a combi-
nations of two ECMs. However, the yield-properties of such EFMs are interpolations of the
two EFMs that lead to the ECMs, and therefore this intermediate EFM is never essential in
constituting the FBA solutions. This is according to the intuition that everything that this
EFM can do can also be done by at least one of the two other EFMs.

4.2. Different Levels of Detail Can Be Used to Study FBA Solutions

In Figure 2, we have illustrated that we can use different sets of Elementary Conversion
Modes to understand FBA solutions. We here describe the details of the three main sets of
ECMs that we have used.

4.2.1. ECMs between All External Metabolites for the Full Network

For small enough networks, we can use ecmtool to enumerate all minimal overall
conversions from nutrients to products and biomass. For example, this gave 689 ECMs
for the e_coli_core-model. Unfortunately, even though the number of ECMs scales
better with network size than the number of EFMs, the enumeration of all ECMs on
genome-scale networks is not yet feasible. The largest model for which all ECMs were
enumerated until now is the iiT341-model of Helicobacter pylori comprising 485 metabolites
and 554 reactions [22].

4.2.2. ECMs between a Subset of External Metabolites for the Full Network

To facilitate our Elementary Mode based-analysis on genome-scale networks, we can
use the hide-method that was implemented in ecmtool. This method gives all stoichiomet-
ric relations between a user-defined set of external metabolites, while the information about
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the other metabolites is not shown (again we refer to [22] for an elaborate explanation). We
no longer compute the elementary vectors of the conversion cone (Equation (3)), but of

Cshown = {ċshown = Nshownv | Nintv = 0, virrev ≥ 0}, (4)

where Nshown is the matrix with only the rows of non-hidden external metabolites. Impor-
tantly, no information about the stoichiometric coupling between non-hidden metabolites
is lost during this procedure. Therefore, if we hide all external metabolites of which the
uptake or production is not constrained, we still get the full information that decides
which overall conversions are selected in the FBA-solution. This information is sufficient to
reconstruct an EFM that leads to this conversion, which also reveals the information about
the hidden metabolites.

The hide-method generally leads to a smaller set of ECMs, and to faster enumeration.
Logically, this effect increases with the number of external metabolites that are hidden.
Therefore, this simplification step is most useful when we have few constraints, thus
requiring few unhidden metabolites. For this reason, we could enumerate the ECMs on the
full genome-scale iJR904-model of E. coli when we focused only on conversions between
glucose, oxygen, and biomass (see Figure 3).

4.2.3. ECMs between a Subset of External Metabolites for the Active Network

In case we want to understand FBA solutions for genome-scale networks that also
have many constraints, we have to make another simplification. For the models of L. lactis
and L. plantarum, we have chosen to focus only on the subnetwork of reactions that are
used in the FBA solution. For this subnetwork, it then becomes possible to enumerate the
ECMs and to analyze which of these ECMs are used in the optimum. In this case, we can
no longer compare the optimal ECMs with all other ECMs, but the cost vector analysis
remains useful to rationalize what each of the ECMs costs, and what it brings to the optimal
combination. Besides this active subnetwork, one can think of other useful subnetworks
that can be used. For example, we can select all reactions that can be active according to a
Flux Variability Analysis [27], or one may use experimental information to decide which
reactions may be active and should thus be taken into account.

4.3. Outline of the Code

We here give a coarse description of the code that allows for the visualization of the
costs with respect to the constraints.

• Load model and set constraints. Depending on the research question, one can leave the
default constraints that are set in the model, or one can change them. This and the
subsequent optimization steps are done with the cbmpy-package [39].

• Perform FBA. We initialize the model by performing an FBA. We use the minimization
of the sum of absolute reaction rates as a secondary objective. This ensures that the
number of Elementary Modes will indeed be bounded by the number of constraints.

• Perform reduced cost analysis. The reduced cost of a reaction can be defined as the
derivative of the objective function with respect to the reaction value. The reduced
costs thus capture what happens to the objective when the reaction value is increased.
When a reduced cost is nonzero in the optimum, it must have hit a constraint, and
these reactions are thus of interest to us. We then select only the inhomogeneous
constraints, i.e., constraints with a bound that is nonzero. Now we are left with
four categories of reactions: reactions can have a positive or a negative optimal rate,
and the reduced cost can also be positive or negative. A positive rate with positive
reduced cost indicates that the reaction is bounded from above, so this indicates a
limited production. A positive rate with negative reduced cost indicates a forced
production; negative rate with positive reduced cost indicates forced uptake, and
negative rate with negative reduced cost means that this uptake is limited. We mark
the reactions with forced production and uptake as secondary objectives, and the
limited production and uptake reactions as constraints.
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• Coupling an external metabolite to each constraint. Most constraints are on exchange
reactions and therefore we can immediately use the exchange of the metabolite as a
marker of the reaction flux when we compute ECMs. When an internal reaction rate
is constrained, we use the tag-method of ecmtool to add an external metabolite that
is produced in this reaction.

• Optional: Simplifying the network for ECM-enumeration. As explained above, we can
use two simplifications: (1) we can choose to consider only the active network. This
means that all reactions that are zero in the FBA-solution are deleted from the model.
(2) We can choose to compute the ECMs only between the external metabolites related
to a constraint. If we choose this option, we here find all ECMtool-indices of the
metabolites that are to be hidden.

• ECM enumeration. For this step, we used ecmtool as a Python library (as opposed to
running it via the command line), of which the code can be found at https://github.
com/SystemsBioinformatics/ecmtool accessed on 14 April 2021. Our computations
were done with a version available at 14 April 2021. It can also be installed via the
Python package manager pip.

• Compute costs for all ECMs with respect to each constraint normalized to each objective. If we
have necm ECMs, nobj objects, and ncons constraints, we thus eventually get nobj tables
of dimensions necm by ncons. The rows of these tables give for each ECM the fraction
of the various constraints that are used for the production of one unit objective.

• Calculation of the activities of the ECMs in the FBA solution. We first compute the
overall conversion (ċFBA) that is induced by the FBA solution for the non-hidden
metabolites. Then, we perform an LP that finds this conversion as a sum of ECMs:
ċFBA = ∑i λiECMi. We minimize the sum of the λ’s in this LP under the constraint
that λi ≥ 0 for all i. In principle, we could also compute the α-spectrum [47] for the
various ECMs to see if they could contribute to the FBA solution, but we have not
done that.

• For each ECM, find a corresponding EFM. Given an ECM ECMi, we can reconstruct
an EFM by solving another LP: choose reaction rates v such that Nshownv = ECMi,
with vi ≥ 0, and where vi is minimized. The minimization of vi ensures that we get a
minimal solution, which will be an EFM.

• Optional: reconstruct the full conversion if some metabolites were hidden. Given the EFM,
EFMi, we can now reconstruct the full conversion by multiplying with the full stoi-
chiometry matrix: ċ = N EFMi. As such, we get for each ECM a possible conversion
between all external metabolites (i.e., including the first hidden metabolites).

4.3.1. Code Availability

The full Python-code that was used to make all figures is freely available on Github
at https://github.com/SystemsBioinformatics/elementary-mode-based-FBA-rationale
(accessed on 14 April 2021). This repository contains example scripts that were used to
generate the figures in this paper; these can be used to build upon.

5. Conclusions

We originally started this investigation with the question: “Does FBA maximize yield
or rate?”. One of the first things that we have realized is that this is a badly-stated question
for two reasons. First, we cannot speak of yield-maximization when we have more than one
limiting nutrient: our toy networks (Figure 1) showed that introducing a second limiting
nutrient immediately leads to different yields that are important. When discussing the
‘yield’ of a metabolic pathway, we must realize that we are merely discussing the ratio
of two reaction rates, and we must thus specify which two reaction rates are considered.
Second, FBA explicitly maximizes a production rate, so the question is rather trivial. A
better question turned out to be: “Based on what properties does FBA select its optima?”
That is what we have tried to answer here.

https://github.com/SystemsBioinformatics/ecmtool
https://github.com/SystemsBioinformatics/ecmtool
https://github.com/SystemsBioinformatics/elementary-mode-based-FBA-rationale


Metabolites 2021, 11, 257 19 of 24

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11050257/s1. The Supplementary Materials Folder Results.zip contains the raw figures
for the different models.

Author Contributions: Conceptualization, E.v.P.-K., D.H.d.G. and B.T.; formal analysis, D.H.d.G.;
funding acquisition, B.T.; investigation, E.v.P.-K. and D.H.d.G.; methodology, E.v.P.-K. and D.H.d.G.;
project administration, B.T.; resources, B.T.; software, E.v.P.-K. and D.H.d.G.; supervision, B.T.;
validation, E.v.P.-K. and D.H.d.G.; visualization, E.v.P.-K. and D.H.d.G.; writing—original draft,
D.H.d.G.; writing—review and editing, E.v.P.-K., D.H.d.G. and B.T. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by NWO VICI grant 865.14.005 and NWO grant ALWTF.2015.4.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: D.H.d.G. wants to thank Steffen Klamt for pointing out that yield was not
always optimized in FBA, and thereby initiating this work.

Conflicts of Interest: The project is organized by and executed under the auspices of TiFN, a public–
private partnership on pre-competitive research in food and nutrition. The authors have declared
that no competing interests exist in the writing of this publication. Funding for this research was
obtained from Friesland Campina, CSK Food Enrichment and the Netherlands Organisation for
Scientific Research.

Abbreviations
The following abbreviations are used in this manuscript:

FBA Flux Balance Analysis
EFM Elementary Flux Mode
ECM Elementary Conversion Mode
EM Elementary Mode

Appendix A. An Upper Bound to the Number of Elementary Modes in the Optimum

We here provide a short mathematical proof that shows that the minimal number of
Elementary Modes that is needed to constitute the FBA-solution is always bounded by
the number of inhomogeneous constraints. This theorem is a small adaptations from the
work in [24]. We will therefore refer to that work for the full proof and show only the work
needed for the extension here.

We here use the term Elementary Modes to describe both EFMs and ECMs. To be able
to couple reaction rates to an ECM, we assume that for each reaction of interest, there is an
external metabolite that is uniquely produced in that reaction, such that the production
of the metabolite exactly equals the reaction rate. Indeed, we describe in Section 4 that
if such a metabolite does not exist in the original network, we can easily add one with
the tag-method of ecmtool. Therefore, for each reaction rate that comes up in one of the
constraints, we know that there is a corresponding reaction rate in each Elementary Mode.

As a prerequisite, we first define cost vectors, as they are most applicable to FBA-
problems.

Definition A1. Consider an objective reaction rate, vobj, and K linear constraints on reaction
rates:

r

∑
j=1

w(k)
j vj ≤ Ck, for k ∈ {1, . . . , K}. (A1)

https://www.mdpi.com/article/10.3390/metabo11050257/s1
https://www.mdpi.com/article/10.3390/metabo11050257/s1
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If Elementary Mode i corresponds to a set of reaction rates given by [v(i)1 , . . . , v(i)r−1, v(i)obj], then the
cost vector of Elementary Mode i has entries

di
k =

∑j wj
v(i)j

v(i)obj

Ck . (A2)

In addition, we define when a set of Elementary Modes is non-redundant.

Definition A2. A set of Elementary Modes is called non-redundant with respect to a set of
constraints, if none of the corresponding cost vectors can be written as a positive linear combination
of the others.

We are then ready to prove the theorem.

Theorem A1. Given a metabolic network with stoichiometry matrix N. Let vobj be an objective
flux which should be maximized at steady state, under K linear constraints on reaction rates:

r

∑
j=1

w(k)
j vj ≤ Ck, for k ∈ {1, . . . , K} (A3)

Then, at most, K non-redundant Elementary Modes are active in the optimal solutions.

Proof. We start by rescaling each Elementary Mode such that vobj = 1. Given an arbitrary
vector of reaction rates, we will in the following focus only on the objective rate and those
rates that have a non-zero weight in one of the constraints of (A3). By definition of ECMs
and EFMs, we can always write these combination of reaction rates as a conical sum of
EFMs or ECMs

v = ∑
i

λiEM(i). (A4)

Because we have rescaled the Elementary Modes, we know that the rate of the objective
reaction is given by ∑i λi. In addition, we can express the constraints in terms of the weights
λi and the cost vectors dk

i :

Ck ≥∑
j

w(k)
j vj = ∑

j
w(k)

j ∑
i

λiEM(i)
j = ∑

i
λi ∑

j
w(k)

j

v(i)j

v(i)obj

= ∑
i

λiCkdi
k, (A5)

so that we can rewrite all constraints as ∑i λidi
k ≤ 1. If we now collect the cost vectors

in a cost matrix D = [d1 · · · dM], then we can write the full optimization problem as

max
λ

{
∑

i
λi

∣∣∣∣∣ λi ≥ 0, Dλ ≤ 1

}
, (A6)

which is exactly the same optimization problem as described in Theorem 1 of [24]. We can
thus use the result proven there that in the optimal solution at most K entries of λ will be
non-zero, as long as the used EMs are non-redundant.
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Appendix B. Supplemental Figures

1) Rank single Flux Modes 3) Combine rankings

2) Rank combina�ons 4) Find best combina�on

Frac�on of constrained flux 1
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�

o
n

 o
f 

co
n

st
ra

in
ed

 fl
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x 
2

cost vector deno�ng the needed frac�on of constrained fluxes

ranking of green EFM; the closer to 0, the be�er

ranking of the combina�on of blue and green EFMs

Figure A1. The optimal combination of EMs can be found by visual inspection of the cost vectors, as
described in the main text.

Figure A2. Our visual analysis of FBA solutions using cost vectors even works when constraints
on ratios of reaction rates are used. The last toy network of Figure 1 is taken, and a constraint is
added on the ratio of the uptake rates (v1/v2 ≤ 2). By rewriting this as v1 − 2v2 ≤ 0, this becomes a
linear constraint for which we can calculate the cost vectors: the second coordinate now captures
the deviation from the imposed ratio that using this EM induces. A positive value indicates that the
ratio of reaction rates used in this EM is too high, and vice versa. Where in the original optimization
problem, the sum of cost vectors could not exceed the unit box, this sum may now not exceed the
horizontal axis.
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Figure A3. The costs of all the used EMs for the different constraints in Lactobacillus plantarum. The
pairing of the constraints in the plots is based on their scaled reduced costs, which quantifies how
strongly the constraint limits the production of biomass. Oxygen-limitation forms the strongest
constraint, followed by glycerol, citrate, etc.
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