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Abstract: Alterations in metabolism following radiotherapy affect therapeutic efficacy, although
the mechanism underlying such alterations is unclear. A new imaging technique—named dynamic
nuclear polarization (DNP) carbon-13 magnetic resonance imaging (MRI)—probes the glycolytic
flux in a real-time, dynamic manner. The [1-13C]pyruvate is transported by the monocarboxylate
transporter (MCT) into cells and converted into [1-13C]lactate by lactate dehydrogenase (LDH). To
capture the early glycolytic alterations in the irradiated cancer and immune cells, we designed a
preliminary DNP 13C-MRI study by using hyperpolarized [1-13C]pyruvate to study human FaDu
squamous carcinoma cells, HMC3 microglial cells, and THP-1 monocytes before and after irradiation.
The pyruvate-to-lactate conversion rate (kPL [Pyr.]) calculated by kinetic modeling was used to
evaluate the metabolic alterations. Western blotting was performed to assess the expressions of
LDHA, LDHB, MCT1, and MCT4 proteins. Following irradiation, the pyruvate-to-lactate conversion
rates on DNP 13C-MRI were significantly decreased in the FaDu and the HMC3 cells but increased in
the THP-1 cells. Western blot analysis confirmed the similar trends in LDHA and LDHB expression
levels. In conclusion, DNP 13C-MRI non-invasively captured the different glycolytic alterations
among cancer and immune systems in response to irradiation, implying its potential for clinical use
in the future.

Keywords: cancer metabolism; dynamic nuclear polarization; glycolysis; immune system; magnetic
resonance imaging; radiation
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1. Introduction

Radiotherapy is an important treatment for various cancer types. The ionizing ra-
diation kills cancer cells directly by damaging DNA or indirectly by producing reactive
oxygen species, which cause DNA breaks [1]. Although ionizing radiation is an effective
anticancer modality, tumor cells may acquire resistance, leading to treatment failure. The
metabolic reprogramming of cancer and stromal cells in the tumor microenvironment is an
important mechanism of radioresistance [2–4]. In cells under stress, glucose metabolism is
modified to facilitate energy production and anabolism. This metabolic alteration plays a
major role in not only tumor progression, but also tumor resistance to chemotherapy and
radiotherapy [2–4].

The enhanced cellular utility of glucose, termed the Warburg effect, is a metabolic
alteration that takes place to satisfy the energy needs of cancer cells [5]. Pyruvate, the
product of glycolysis, is reduced to lactate by lactate dehydrogenase (LDH), while lactate
is further used as a metabolic shuttle to generate more energy [6]. The upregulation of
key molecules and products in the multiple steps of the Warburg effect, including GLUT1
transporter, LDH isoenzymes, and lactate, are associated with radioresistance [7–9]. These
molecules serve as biomarkers for radioresistance or targets for new anticancer agents [3].
The expression levels of these molecules are indirect indicators of the Warburg effect;
however, clinically applicable in vivo biomarkers remain unestablished.

Although the Warburg effect was first described in cancer cells, immune cells may also
undergo substantial metabolic reprogramming during cancer treatment [10,11]. Immune
cells in the tumor microenvironment may constitute up to 50% of the tumor mass and
play an essential role in tumor metabolism [12]. Tumor-associated immune cells are
recruited from peripheral blood cells (e.g., circulating monocytes) or derived from locally
self-maintained progenitor cells (e.g., microglia in the brain) [13,14]; however, the metabolic
interaction between cancer cells and tumor-associated immune cells is unclear [15].

Hyperpolarized carbon-13 magnetic resonance imaging (13C-MRI) is a new non-
invasive, real-time imaging technique used for detecting the glycolytic flux in cells and
tissues both in vivo and in vitro [16,17]. Dynamic nuclear polarization (DNP) aims to
considerably increase the polarization of solid-state compounds under an extremely low
temperature and a high magnetic field, which is followed by rapid liquid dissolution [16,18].
The technique increases the signal-to-noise ratio of 13C-labeled probes by up to 50,000-fold,
which is adequate for generating 13C spectra through magnetic resonance (MR) spectro-
scopic imaging [18]. The monocarboxylate transporter (MCT) in the cellular membrane
enables the uptake of [1-13C]pyruvate, which is converted into [1-13C]lactate by lactate
dehydrogenase (LDH), or to a lesser extent into [1-13C]alanine by alanine aminotransferase
(ALT) in the cytosol (Figure 1).

Representative 13C-MR spectra and images of the cell experiments are presented
in Figure 3. The data for the pyruvate-to-lactate conversion rate (kPL [Pyr.]) obtained
through kinetic modeling are summarized in Table 1. In the non-irradiated cell ex-
periments, the pyruvate-to-lactate conversion rates were highest in the FaDu cancer
cells, followed by the HMC3 microglial cells, then they were relatively lower in the
THP-1 monocytes. In the irradiated cell experiments, the irradiated FaDu cancer cells
showed a significant decrease in the pyruvate-to-lactate conversion rate from 38.1 ± 3.6 to
22.9 ± 11.6 nM/s/106 cells (mean ± standard deviation, p = 0.049). The irradiated HMC3
microglial cells also showed a significant decrease in the pyruvate-to-lactate conversion
rate from 25.7 ± 3.4 to 16.4 ± 2.2 nM/s/106 cells (p = 0.008). In contrast, the irradiated
THP-1 monocytes showed an increase in the pyruvate-to-lactate conversion rate from
17.9 ± 11.1 to 24.6 ± 5.2 nM/s/106 cells, albeit not statistically significant (p = 0.199). More-
over, [1-13C]alanine was observed in both irradiated and non-irradiated HMC3 microglial
cell experiments. In short, following irradiation, the pyruvate-to-lactate conversion rates
were decreased in the FaDu cancer cells and the HMC3 microglial cells but increased in the
THP-1 monocytes (Figure 4).
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Figure 1. Diagram of the metabolic fates of [1-13C]pyruvate that were detected by hyperpolarized 13C-MR spectroscopy in 
this study. Note—MCT, monocarboxylate transporter; LDH, lactate dehydrogenase; ALT, alanine transaminase. 

2. Results 
2.1. Cancer and Immune Cells 

Cell suspensions, including one cancer and two immune cell lines, were included in 
this study. Human FaDu squamous carcinoma from hypopharyngeal cancer was selected 
for the cancer cell model, because head and neck cancers are commonly treated with 
radiotherapy. To evaluate the tumor-associated immune cells following irradiation, 
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cells recruited from peripheral blood cells. The three cell lines were split into samples that 
were or were not subjected to 15 Gy X-ray irradiation. After 30–79 min (mean, 53 min) 
following irradiation, the samples were analyzed through DNP 13C-MRI to evaluate their 
glycolytic activity and through Western blot to determine the expressions of related 
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constants, respectively. The solutions of P(t) and L(t) were solved numerically. The 
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Figure 1. Diagram of the metabolic fates of [1-13C]pyruvate that were detected by hyperpolarized 13C-MR spectroscopy in
this study. Note—MCT, monocarboxylate transporter; LDH, lactate dehydrogenase; ALT, alanine transaminase.

Studies have demonstrated that DNP 13C-MRI may be a vital approach for evaluating
tumor responses to irradiation in tumor models [19,20]; however, the measured 13C signal
from the tumor mass is possibly contributed by both cancer and immune cells because
tumor-associated immune cells may constitute a major proportion of the tumor mass. We
hypothesized that in response to irradiation, cancer and immune cells may have different
alterations in glycolytic flux. To understand the potential contributions of the overall
glycolytic activities in tumors in response to irradiation, we designed a DNP 13C-MRI
study by using [1-13C]pyruvate to probe cancer and immune cell lines. Western blot
analysis was used to determine the expressions of LDH and MCT proteins. The DNP
13C-MRI revealed the different glycolytic alterations among cancer and immune systems in
response to irradiation, implying its potential use in clinical settings.

2. Results
2.1. Cancer and Immune Cells

Cell suspensions, including one cancer and two immune cell lines, were included
in this study. Human FaDu squamous carcinoma from hypopharyngeal cancer was se-
lected for the cancer cell model, because head and neck cancers are commonly treated
with radiotherapy. To evaluate the tumor-associated immune cells following irradiation,
HMC3 microglial cells (specialized macrophages in the brain) were used to represent the
tissue-resident immune cells, while THP-1 monocytes were used to represent the immune
cells recruited from peripheral blood cells. The three cell lines were split into samples
that were or were not subjected to 15 Gy X-ray irradiation. After 30–79 min (mean, 53
min) following irradiation, the samples were analyzed through DNP 13C-MRI to evaluate
their glycolytic activity and through Western blot to determine the expressions of related
metabolic enzymes and transporters.

2.2. Glycolytic Flux Alterations Following Radiotherapy in Cancer and Immune Cells

In the cancer and immune cells, the conversion of hyperpolarized [1-13C]pyruvate
to [1-13C]lactate was probed using DNP 13C-MRI. The intensities of the labeled pyruvate
and lactate from 13C-MR spectra were fit to a two-site exchange model. The forward
(pyruvate-to-lactate) and backward (lactate-to-pyruvate) reactions and the non-recoverable
hyperpolarized 13C signal loss due to spin-lattice relaxation and applied excitation radiofre-
quency pulses were included in the coupled equations as follows:

dP(t)
dt

= kLPL(t)− kPLP(t)− ρP(t) (1)

dL(t)
dt

= kPLP(t)− kLPL(t)− ρL(t) (2)

In Equations (1) and (2), P and L are the relative pyruvate and lactate signal inten-
sities, respectively; kPL and kLP are the forward and backward conversion rate constants,
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respectively. The solutions of P(t) and L(t) were solved numerically. The conversion rate
constants, kPL and kLP, were fitted into these solutions and data. The relaxivity rates of the
labeled pyruvate and lactate (ρP and ρL, respectively) were assumed to be the same in this
model, given in the following equation:

ρ =
1

T1 eff
=

1
T1

− 1
tR

ln(cos θ) (3)

In Equation (3), T1 is the relaxation time for the metabolites in medium, tR is the
repetition time, and θ is the flip angle. The timeline used for kinetic modeling is presented
in Figure 2.
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Figure 2. A schematic plot of the delivery timeline of hyperpolarized [1-13C]pyruvate. Three stages
described the delivery steps: (I) dissolution and export of hyperpolarized [1-13C]pyruvate from
the polarizer; (II) mixing of hyperpolarized [1-13C]pyruvate with the cell suspensions; (III) start of
13C-MR spectroscopy acquisition. Step (II) was defined as “t = 0”.
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Figure 3. Representative data from an in vitro study. (A) Orange dots represent the data for [1-13C]pyruvate (I) and
[1-13C]lactate (II) obtained from the spectroscopy-based 13C-MRI acquisition. Blue dots represent best fit lines calculated by
kinetic modeling. (B) Imaging-based 13C-MRI acquisition of the investigated metabolites displayed at a temporal resolution
of 2 s. Each row represents one metabolite: lactate (chemical shift, 392 Hz), pyruvate–hydrate (267 Hz), alanine (177 Hz),
pyruvate (0 Hz), and bicarbonate (−324 Hz). Hyperpolarized 13C signals of lactate, pyruvate–hydrate, and pyruvate were
visually observed.
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Table 1. Conversion rates (kPL [Pyr.]) of hyperpolarized [1-13C]pyruvate to [1-13C]lactate in cells.

Cells
Non-RT RT

p-Value *
kPL [Pyr.] R2 kPL [Pyr.] R2

FaDu 0.049
34.1 0.821 25.6 0.963
41.2 0.780 10.2 0.901
39.0 0.948 33.0 0.923

HMC3 0.008
29.2 † 0.827 17.6 0.298
22.5 0.980 13.9 † 0.988
25.5 0.945 17.7 0.900

THP-1 0.199
17.2 0.996 22.6 0.993
29.3 0.990 30.5 0.984
7.2 0.928 20.6 0.746

R2 is the coefficient of determination of each model fitting to [1-13C]lactate data. * Comparison of kPL [Pyr.] between the non-RT and RT
cells using Student’s t-test. † The [1-13C]alanine signal was detected in the experiment. Note—kPL [Pyr.] unit: nM/s/106 cells; non-RT,
non-irradiated; RT, irradiated.
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Figure 4. Comparison of the conversion rates (kPL [Pyr.]) of hyperpolarized [1-13C]pyruvate to
[1-13C]lactate between the non-irradiated (non-RT) and irradiated (RT) FaDu, HMC3, and THP-1
cells (* p < 0.05; ** p < 0.01). Note—kPL [Pyr.] unit: nM/s/106 cells.

2.3. The Changes of LDH Corresponding to the Changes of kPL [Pyr.] on DNP 13C-MRI

Since the conversions between hyperpolarized [1-13C]pyruvate and [1-13C]lactate
are mediated by LDHA (forward reaction) and LDHB (backward reaction), Western blot
was performed to evaluate the expression of these key metabolic proteins before and
after irradiation (Figure 5a). In the non-irradiated cell experiments, the expression levels
of LDHA and LDHB were highest in the HMC3 microglial cells, followed by the FaDu
cancer cells, then they relatively lower in the THP-1 monocytes. Regarding the irradiated
cell experiments, the changes in the expressions of LDHA and LDHB are presented in
Figure 5b. The irradiated FaDu cancer cells showed significantly decreased expression
levels of LDHA and LDHB (p = 0.049 and 0.001, respectively). The irradiated HMC3
microglial cells also showed significantly decreased expression levels of LDHA and LDHB
(p = 0.002 and 0.014, respectively). In contrast, the irradiated THP-1 monocytes showed
increased expression levels of LDHA and LDHB, albeit not statistically significant (p = 0.092
and 0.107, respectively). Following irradiation, the decreased expression levels of LDHA
and LDHB in the FaDu cancer cells and the HMC3 microglial cells corresponded to the
decreased pyruvate-to-lactate flux on DNP 13C-MRI. Moreover, the upregulated LDHA
and LDHB expression levels in the irradiated THP-1 monocytes also reflected the enhanced
pyruvate-to-lactate flux on DNP 13C-MRI. On the other hand, the expression levels of the
transmembrane transporters, including MCT1 (influx of pyruvate) and MCT4 (efflux of
lactate), were also analyzed (Figure S1). In the FaDu cancer cells, the expression levels of
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MCT1 and MCT4 were not detectable in either non-irradiated or irradiated cells. In the
irradiated HMC3 microglial cells, there was no significant change in the expression of MCT1
or MCT4 (p = 0.301 and 0.159, respectively). The irradiated THP-1 monocytes showed
significantly increased expression of MCT4 (p = 0.009), while there was no significant
change in the expression of MCT1 (p = 0.173).
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3. Discussion

The present study demonstrates the potential for monitoring early metabolic alter-
ations in both cancer and immune cells following radiation treatment by using hyperpo-
larized 13C-MRI. We demonstrated that cancer cells (human FaDu squamous carcinoma)
and immune cells (HMC3 microglial cells and THP-1 monocytes) had distinct metabolic
responses to ionizing radiation. MR spectroscopy with a 13C-labeled substrate was applied
to study cancer cell metabolism in preclinical settings [21,22]. We furthered the knowledge
of metabolic alterations resulting from not only cancer cells but also immune cells in the
tumor microenvironment [13].

The pyruvate-to-lactate conversion was investigated as a surrogate to monitor metabolic
response. In a DNP 13C-MRI study evaluating the irradiation effects on human breast cancer,
a decreased lactate-to-pyruvate ratio was captured in a cell model 96 h after irradiation [20].
Accordingly, in human squamous carcinoma, we postulated that radiation response could
be observed even earlier by using the decreased pyruvate-to-lactate conversion rate on DNP
13C-MRI. Radiation-induced cell death depends on the cytotoxic effects of free radicals, while
pyruvate is an effective free radical scavenger that neutralizes the reactive oxygen species
produced by ionizing radiation [23]. The pyruvate-to-lactate conversion determined by DNP
13C-MRI was utilized as an indirect measurement of the tumor-reducing potential; that is,
the ability to reduce radiation-induced oxidative stress [19]. Additionally, cancers can switch
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between glycolysis and oxidative phosphorylation to meet their energy needs. Although
enhanced glycolysis by converting glucose to lactate is a metabolic hallmark of cancer cells, it
has been demonstrated that the irradiated cancer cells may shift from glycolysis to oxidative
phosphorylation (termed the reverse Warburg effect) [24]. Moreover, radiation-induced
cell death and quiescence may also contribute to decreased glycolytic flux in the irradiated
cancer cells.

In the caner microenvironment, immune cells can be derived from locally self-maintained
progenitor cells (e.g., HMC3 microglial cells) or recruited from peripheral blood cells (e.g., THP-
1 monocytes) [13,14]. Both cell types may coexist in the tumor microenvironment and be
involved in diverse functions ranging from early carcinogenesis to tumor invasion and metas-
tasis [25,26]. Although the Warburg effect was first described in cancer cells, immune cells
may also undergo glycolytic reprogramming [10,11]. Microglia cells, as resident macrophages,
are triggered by irradiation [27]. Different degrees of dependance on glycolysis or oxidative
phosphorylation lead to different degrees of polarization of microglia cells [28]. We observed
that the HMC3 microglial cells showed downregulated glycolysis following irradiation. In
microglia cells, a preference for oxidative phosphorylation over glycolysis has been linked to
an anti-inflammatory phenotype [28]. Importantly, the production of alanine was observed
solely in the HMC3 microglial cell experiments. The microglial cells in the human brain are
highly flexible in terms of energy production and may use glutamate as a fuel for energy [29].
Glutamate and pyruvate are converted into alanine and α-ketoglutarate, then α-ketoglutarate
enters the tricarboxylic acid cycle as an additional carbon supply. In addition, alanine can
be a precursor for gluconeogenesis in cells with a high energy demand. On the other hand,
monocytes can also switch between glycolysis and oxidative phosphorylation, displaying
diverse phenotypes that contribute to pro- and anti-inflammatory immunity [30,31]. In our
study, we found that the THP-1 monocytes displayed upregulated glycolysis following irra-
diation. A study showed that irradiation promotes an influx of circulating monocytes into
the tumor microenvironment, which is related to tumor recurrence after radiotherapy [32].
During the process, enhanced glycolysis plays an essential role in the adhesion of monocytes
to the vascular endothelium, which facilitates the infiltration of monocytes into the tumor [33].

In this study, our kinetic model was based on a two-site interaction between the hy-
perpolarized [1-13C]pyruvate and [1-13C]lactate, without considering the transmembrane
transport of the metabolites. We demonstrated that following irradiation, the changes
of pyruvate-to-lactate flux on DNP 13C-MRI reflected the changes of LDHA and LDHB
expression levels on Western blots. In many DNP 13C-MRI studies, the pyruvate-to-lactate
conversion could be attributed to LDH activity [34,35]; however, a recent study proved that
the transmembrane flux of pyruvate mediated by MCT1 is the rate-limiting step [36]. To
consider the transmembrane flux in cell studies, three-site models that include the extracel-
lular compartment have been proposed; however, in line with our data, their measurements
in kPL were not significantly different from those calculated from the less complex two-site
model [37].

Despite the novelty, certain limitations need to be addressed. First, our experiments
were performed with cell suspensions, which may not reflect the complex metabolic in-
teractions between cancer cells and the tumor microenvironment in the real world. The
results of our study should be further validated in three-dimensional cell cultures that
more closely resemble the in vivo microenvironment. Moreover, the expression levels
of related glycolytic proteins should be confirmed by using immunochemical staining,
not only for quantification, but also for localization. Second, a time gap existed between
the manual mixing and the initiation of 13C-MRI acquisition; thus, the metabolic process
during the first 50 s was not captured through 13C-MRI. Last, the complex tumor microen-
vironment includes not only immune cells but also endothelial cells, and their roles should
be considered and warrant future investigation.

In conclusion, this preliminary study demonstrated the ability of DNP 13C-MRI to
capture the different glycolytic alterations among cancer and immune systems following
irradiation, indicating its potential use in clinical settings. The investigated cells, including
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cancer and immune cells, exhibited distinct glycolytic reprogramming in response to
irradiation; however, our understanding of the metabolic interactions between cancer
and immune cells is rather limited based on this preliminary study. Future studies are
warranted to validate to role of DNP 13C-MRI in monitoring the early metabolic response
following treatment.

4. Materials and Methods
4.1. Cell Preparation and Irradiation

Human FaDu squamous carcinoma cells, HMC3 microglial cells, and THP-1 mono-
cytes were purchased from the American Type Culture Collection (Frederick, MD, USA)
and maintained in minimum essential medium (MEM), Roswell Park Memorial Institute
1640 (RPMI 1640), and Dulbecco’s modified Eagle’s medium (DMEM) (Thermo Fisher
Scientific, Waltham, MA, USA), respectively. All culture media contained 10% fetal bovine
serum and 1% penicillin–streptomycin (Thermo Fisher Scientific, Waltham, MA, USA). The
cells were incubated at 37 ◦C in a humidified 5% CO2 and 95% air atmosphere. They were
trypsinized after phosphate-buffered saline (PBS) wash and their numbers and viability
were determined using the LUNA-FL dual-fluorescence cell counter (Logos Biosystems,
Anyang-si, Gyeonggi-do, Korea). The cell numbers ranged from 2.2 × 107 to 9.4 × 107, with
cell viability being approximately 80% for each cell line. The cells were then centrifugated
and resuspended in 9 mL of the mixed medium (1 mL of used medium and 8 mL of fresh
medium) at a cell density of >1 × 107 viable cells/mL. The pH was adjusted to 6 through
the addition of 5 µL of acetic acid to the fresh medium before mixing. The cells were split
into samples that were or were not subjected to 15 Gy radiation using 6-MV X-rays from
a linear accelerator at a dose rate of 6 Gy/min. The time interval between the radiation
treatment and 13C-MRI acquisition ranged from 30 to 79 min (mean, 53 min).

4.2. [1-13. C]Pyruvate Hyperpolarization and In Vitro Experiments

Research-grade fluid paths (RFP; GE Healthcare, Chicago, IL, USA) were filled with
35 mg of [1-13C]pyruvic acid doped with 15 mM electron paramagnetic agent (trityl rad-
ical AH111501; GE Healthcare, Chicago, IL, USA) and 14 g of water containing 0.1 g/L
ethylenediaminetetraacetic acid (EDTA) dissolution medium. Samples were polarized
using a clinical hyperpolarizer (SPINlab; GE Healthcare, Chicago, IL, USA) at a temper-
ature of 0.8 K and a magnetic field of 5 T for an average of 180 min. Following rapid
dissolution, the pyruvic acid solution was neutralized and diluted with TRIS-buffered
NaOH solution to obtain approximately 5 mL of [1-13C]pyruvate solution at neutral pH.
Next, 1 mL of the fluid containing approximately 75 mM hyperpolarized [1-13C]pyruvate
was immediately added to 9 mL of the cell suspension in a syringe, resulting in a final
pyruvate concentration range of 7.0–7.5 mM. The time intervals between the dissolution
of hyperpolarized [1-13C]pyruvate and the start of 13C-MRI acquisition ranged from 62
to 77 s. The temperature of the samples was regulated at approximately 37.0 ◦C during
MR imaging. The pH levels of the samples ranged from 5.9 to 6.4. The experiments were
repeated three times for the non-irradiated and irradiated cells, including FaDu cancer
cells, HMC3 microglial cells, and THP-1 monocytes.

4.3. Imaging Acquisition

Imaging was performed using a clinical 3T MRI system (Discovery MR750w; GE
Healthcare, Chicago, IL, USA) with imaging sequences from the Multinuclear Spectroscopy
(MNS) research pack. Cell suspension syringes were imaged using a 35-mm-diameter
13C/1H multinuclear transmit–receive coil (RAPID Biomedical, Rimpar, Bavaria, Germany).
The 13C-MRI was performed using spectroscopy-based acquisition followed by imaging-
based acquisition. The spectroscopy-based 13C data were initially acquired using a pulse-
and-acquire sequence with a nominal flip angle of 10◦. The imaging parameters were
as follows: read bandwidth, 5000 Hz; repetition time, 2000 ms; slice thickness, 20 mm;
spectral points collected, 2048; repetition, 40 times. The aforementioned procedures were
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immediately followed by 32 s of imaging-based acquisition using iterative decomposition with
echo asymmetry and least squares estimation (IDEAL) spiral chemical shift imaging (CSI) [38].
Each excitation was followed by single-shot spiral imaging, with echo time shifting of 1.12 ms
between the excitations. Seven time-shifted echoes plus a single free induction decay (FID)
spectrum were acquired for each time step, with the chemical shift information from the
FID spectra providing prior knowledge for the reconstruction. The temporal resolution was
2 s. Other imaging parameters were as follows: repetition time, 250 ms; slice thickness,
20 mm; flip angle, 10◦; field of view, 200 mm; nominal matrix resolution, 32 × 32 points.
The raw spectroscopy data were reconstructed, apodized, phase-corrected, and background-
subtracted using SAGE software (GE Healthcare, Chicago, IL, USA). The data acquired using
the pulse-and-acquire sequence were used for kinetic modeling.

4.4. Western Blot

The cells were washed in PBS and lysed in ice-cold radioimmunoprecipitation as-
say (RIPA) buffer (Thermo Fisher Scientific, Waltham, MA, USA) with protease inhibitor
cocktail (Roche, Penzberg, Bavaria, Germany) for 5 min. The extracts were centrifuged
at 14,000 g for 15 min at 4 ◦C. The protein concentration was determined using the bicin-
choninic acid (BCA) assay (Thermo Fisher Scientific, Waltham, MA, USA). The lysates
were boiled for 5 min in the presence of sodium dodecyl sulfate (SDS) sample buffer,
electrophoresed by 10% dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE),
and transferred to polyvinylidene fluoride membranes (Immun-Blot PVDF; Bio-Rad Lab-
oratories, Irvine, CA, USA). The membranes were incubated with a blocking buffer (5%
nonfat dry milk and Tris-buffered saline with 0.1% Tween 20) for 1 h at room temperature
and incubated overnight at 4 ◦C with primary antibodies for LDHA (Rabbit Ab; Cell Sig-
naling Technology, Danvers, MA, USA; #3582; 1:1000 dilution), LDHB (Rabbit Ab; Novus,
Centennial, CO, USA; #NBP2-53421; 1:400 dilution), MCT1 (Rabbit Ab; Novus, Centennial,
CO, USA; #NBP1-59656; 1:250 dilution), and MCT4 (Rabbit Ab; Novus, Centennial, CO,
USA; #NBP1-81251; 1:1000 dilution). This was followed by incubation with secondary
goat antirabbit IgG or goat antimouse IgG antibody conjugated to horseradish peroxidase
(Thermo Fisher Scientific, Waltham, MA, USA). The bands were visualized using a super
signal chemiluminescence Western blot kit (Thermo Fisher Scientific, Waltham, MA, USA).
An anti-glyceraldehyde-3-phosphate dehydrogenase (anti-GAPDH) antibody was used to
verify equal protein loading.

4.5. Statistics

All data were analyzed using PRISM (version 8.0; GraphPad Software, San Diego, CA,
USA). All data are represented as means ± standard deviation. Continuous variables were
compared using Student’s t-test. Two-tailed p < 0.05 was considered statistically significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11080518/s1, Figure S1: Analysis of the expressions of MCT1 and MCT4 in the
non-irradiated and irradiated cancer and immune cells.
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