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Abstract: Metabolite annotation has been a challenging issue especially in untargeted metabolomics
studies by liquid chromatography coupled with mass spectrometry (LC-MS). This is in part due to
the limitations of publicly available spectral libraries, which consist of tandem mass spectrometry
(MS/MS) data acquired from just a fraction of known metabolites. Machine learning provides the
opportunity to predict molecular fingerprints based on MS/MS data. The predicted molecular finger-
prints can then be used to help rank putative metabolite IDs obtained by using either the precursor
mass or the formula of the unknown metabolite. This method is particularly useful to help annotate
metabolites whose corresponding MS/MS spectra are missing or cannot be matched with those in
accessible spectral libraries. We investigated a convolutional neural network (CNN) for molecular
fingerprint prediction based on data acquired by MS/MS. We used more than 680,000 MS/MS spectra
obtained from the MoNA repository and NIST 20, representing about 36,000 compounds for training
and testing our CNN model. The trained CNN model is implemented as a python package, MetFID.
The package is available on GitHub for users to enter their MS/MS spectra and corresponding
putative metabolite IDs to obtain ranked lists of metabolites. Better performance is achieved by
MetFID in ranking putative metabolite IDs using the CASMI 2016 benchmark dataset compared to
two other machine learning-based tools (CSI:FingerID and ChemDistiller).

Keywords: metabolite identification; deep learning; molecular fingerprint; metabolomics

1. Introduction

Liquid-chromatography coupled with mass spectrometry (LC-MS) is one of the most
common technologies used to evaluate the levels of small molecule metabolites in biological
samples. However, metabolite annotation continues to be a major challenge in LC-MS
for untargeted metabolomics studies. Whereas spectral matching of experimental tandem
mass spectrometry (MS/MS) data against those in spectral libraries is the gold standard for
metabolite annotation, the limitations of spectral libraries create a bottleneck in untargeted
metabolomics studies. This is because the MS/MS spectra in publicly accessible spectral
libraries cover only a fraction of known compounds [1–3]. In addition to the limited number
of spectra acquired by analysis of reference compounds, the difference in instrument
methods between those in spectral libraries and those acquired by users seeking to annotate
unknown metabolites poses a significant challenge.

Machine learning (ML) has been used for metabolite annotation based on experimental
MS/MS spectra [4]. The approach involves designing a machine learning model to teach
(train) the computer to predict fingerprints from training spectra and use the trained
model to curate samples based on the learned fingerprints. A fingerprint of a compound
indicates the presence or absence of a particular property or substructure of the compound,
which is represented in binary digits [5]. The training involves multiple steps including
MS/MS data pre-processing, feature selection, and model parameter section to capture the

Metabolites 2022, 12, 605. https://doi.org/10.3390/metabo12070605 https://www.mdpi.com/journal/metabolites

https://doi.org/10.3390/metabo12070605
https://doi.org/10.3390/metabo12070605
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com
https://orcid.org/0000-0003-3684-4195
https://orcid.org/0000-0001-9296-2132
https://doi.org/10.3390/metabo12070605
https://www.mdpi.com/journal/metabolites
https://www.mdpi.com/article/10.3390/metabo12070605?type=check_update&version=2


Metabolites 2022, 12, 605 2 of 13

unknown relationships between molecular fingerprints of compounds and experimental
MS/MS spectra associated with the compounds [6]. After the training is completed, the
trained model is used to predict a fingerprint based on MS/MS spectrum. The metabolite
candidates corresponding to the MS/MS spectrum are then retrieved from a compound
database(s) based on its precursor mass. The corresponding candidates are ranked on the
basis of the similarities between the fingerprints of the candidates and the predicted one.

A large family of linear and nonlinear models including logistic regression (LR),
support vector machine (SVM), and artificial neural networks (ANNs), etc. have been
investigated for compound fingerprint prediction and metabolite annotation. For example,
SIMPLE is a hybrid machine learning model for predicting MS/MS peak relationships [7].
CSI:FingerID applies SVM for metabolite annotation from MS/MS spectral data [8]. Deep
neural network is implemented in a model SIRIUS 4 for isotope patterns detection from
MS/MS spectral data [9]. While selecting the architecture of the machine learning model is
critical, selecting the features and factors that affect the relationship between a compound
and its MS/MS spectrum is also important. For example, factors that may vary the spectral
pattern include analytical and experimental settings such as collision energy, ionization
mode, MS resolution, adduct, and the type of MS being used [10,11].

We previously applied multi-layer perceptron (MLP) to predict compound fingerprints
and rank metabolite candidates obtained from compound databases based on mass values
or formulae of the unknown compounds [12]. We reported a comparison among differ-
ent machine learning models on annotating metabolites from NIST 17 and CASMI 2016
datasets. In this paper, we investigated the use of a convolutional neural network (CNN) for
compound fingerprint prediction. The architecture of the CNN is more complex (containing
convolutional layer, pooling layer, nonlinear activation function, fully connected layer, and
dropout layer) than MLP (that contains input layer, hidden layer and output layer) [13].
One of the common characteristics of MLP and CNN is that the number of total parameters
can grow remarkably high as each node is fully connected with every node in the receding
layer. This may cause redundancy, overfitting, and inefficiency when the number of param-
eters and data size increases. CNN has a pooling layer in between each convolutional layer
and the main purpose of these pooling layers is to reduce data dimension and lower the
amount of calculation [13]. This results in a higher efficiency during the training process
as well as avoiding overfitting problems [13]. CNN has two major advantages over MLP.
First, CNN has a parameter sharing mechanism. Since CNN and MLP all have the same
filter for different regions, they share the same set of parameters. A filter is used to detect a
feature that is likely to appear in more than one place. Parameter sharing mechanism, so
that the number of parameters of our network greatly reduced. In this way, we can train
a better model with fewer parameters and effectively avoid overfitting. Therefore, CNN
is more promising for accurately mapping the relationships between MS/MS spectra and
molecular fingerprints [14].

The CNN has a rising application in metabolomics including peak recognition [14].
For instance, Zhang et al. trained DeepSpectra, a CNN module for pattern recognition from
raw near infrared spectral data [15]. Kim et al. applied CNN and developed SMART-Miner
for identifying 2D NMR peaks from a mixture sample for metabolite identification [16].
Fedorova et al. applied and found one-dimensional CNN predicts the most accurate
retention time in reversed-phase liquid chromatography [17]. DeepEI, a CNN-based
method, was designed to predict molecular fingerprints from the electron ionization mass
spectrometry (EI-MS) spectrum [18]. DEEP Picker applies eight hidden convolutional
layers for peak picking and spectral deconvolution of two-dimensional NMR spectra
purposes [19].

In this paper, we evaluated multiple machine learning models in mapping the relation-
ships between molecular fingerprints and MS/MS spectra. In addition to cross-validation
based on training and testing data sets from MoNA and NIST 20, we used models trained
by combining all the MoNA and NIST 20 MS/MS datasets for evaluation via the CASMI
2016 benchmark dataset. Due to its superior performance compared to other machine
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learning models, we chose to implement the trained CNN into a python package, Met-
FID. We compared the performance of MetFID against CSI:FingerID and ChemDistiller in
ranking metabolite candidates using the CASMI 2016 dataset. Instead of using the CASMI
candidates for ranking, each tool was subjected to generate its own candidates based on
precursor m/z of the MS/MS spectra in the CASMI 2016 benchmark datasets. We also
investigated the use of three inputs (collision energy, mode, and resolution) in addition to
the peak intensities. Furthermore, we explored the use of eight separate CNN models for
each permutation of three instrument methods instead of one CNN model. We observed
the use of eight separate models leads to more promising performance than a single model
in ranking the candidates.

2. Results
2.1. Evaluation of the CNN’s Performance in Metabolite Annotation

Table 1 shows the evaluation results of the CNN model compared with other models
including LR, SLP, SVM, and MLP in predicting fingerprints based on five-fold cross
validation on training MS/MS spectra acquired from 29,588 compounds. We used multi-
output regression for linear model. Also, for the Multi-Layer Perceptron (MLP) and SVM,
the input transformed spectra consisted of 1174 bins after the binning process. We also
removed bins that consisted of all 0′s across all the spectra in the training set to reduce
the dimension of the input. The removal did not cause any loss of information from
those bins since all the training sets were 0′s in those bins and there was no information
for classification. For the CNN model, we did not remove the bins with 0′s. Table 1
presents the F1 score and Tanimoto similarity score between the true fingerprint and
the predicted fingerprint for the validation dataset using the five-fold cross validation.
The cross-validation method was also used when we tuned the hyperparameter for the
CNN model.

Table 1. Comparison of CNN with other machine learning models based on F1 score, Tanimoto
similarity score, and the top-k ranking of the candidates selected by mass-based and formula-based
search against compound databases for 29,588 training and 6290 testing compounds. The result of
the best performing model under each category is shown in bold.

LR SLP SVM MLP CNN

F1 61% 59% 66% 67% 71%
Tanimoto 45% 43% 52% 53% 58%

Mass-Based Formula-Based

Rank LR 1 SLP SVM MLP CNN LR SLP SVM MLP CNN

Top 1 32% 35% 39% 40% 43% 45% 47% 49% 48% 50%
Top 3 59% 61% 66% 66% 69% 68% 68% 70% 71% 71%
Top 5 71% 72% 75% 75% 77% 75% 75% 77% 77% 78%
Top 10 81% 82% 83% 82% 84% 81% 82% 82% 81% 82%

1 LR: Logistic Regression; SLP: Single-Layer Perceptron; SVM: Support Vector Machine; MLP: Multilayer Percep-
tron; CNN: Convolutional Neural Network.

We use top-k ranking performance to evaluate the CNN model’s performance in
metabolite annotation. The ranking accuracy in Table 1 refers to the percentage of testing
cases in which the correct metabolite appears in the top-k of the ranked candidate list.
The results show that the CNN model successfully ranked the correct identification in
more than 40% of the cases. We also evaluated the CNN assuming that the formula of
the unknown compounds is known; in this case, CNN successfully ranked the correct
identification in 50% of the cases. For these datasets, we observed that the use of formula
information helps shrink the average length of candidate lists from a large number to about
6 to 12 candidates.
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We compared the performance of CNN against SLP, SVM, and MLP in annotating ana-
lytes in the CASMI 2016 benchmark datasets. Each model was trained with 35,878 spectra
extracted from the NIST 20 and MoNA libraries. Table 2 presents the annotation results.
While all four models have great performance, the SLP model has the lowest F1 and Tani-
moto values. Both SVM and MLP yielded lower F1 and Tanimoto scores than CNN. All
models show better performance on formula-based ranking than mass-based ranking.

Table 2. Performance comparison of SLP, MLP, SVM, and CNN models that were trained using
MS/MS spectra acquired from NIST 20 and MoNA and tested on the CASMI 2016 dataset. F1 score,
Tanimoto similarity score, and top-k ranking of metabolite candidates are calculated for mass-based
and formula-based approaches. The result of the best performing model under each category is
shown in bold.

Dataset CASMI 2016
Libraries NIST 20 + MoNA

SLP SVM MLP CNN

F1 49% 52% 53% 56%
Tanimoto 33% 36% 38% 41%

Mass-Based Formula-Based

Rank SLP SVM MLP CNN SLP SVM MLP CNN

Top 1 35% 32% 48% 52% 60% 59% 68% 71%
Top 3 61% 59% 71% 76% 81% 81% 87% 88%
Top 5 78% 75% 83% 87% 88% 86% 90% 91%
Top 10 93% 89% 93% 95% 94% 92% 94% 95%

2.2. Evaluation of Single vs. Multiple CNNs

Based on the top-k ranking, we observed that the performance of eight separate models
trained by splitting the spectra based on instrument methods (collision energy, resolution,
and ionization mode) is slightly better (2–5%) than the single CNN model trained with
or without the additional three inputs. The performance of the trained model by adding
entries to the input vector is similar to that of a model trained without the additional
inputs. We used 80% of the spectra as the training set and the remaining spectra excluding
the training (structurally disconnected) compounds for testing. Results are presented in
Table S1 in the Supplementary Materials. The results indicate that the Eight CNNs overall
perform best among the three approaches. Furthermore, we trained the Eight CNNs by
combining the training and testing MoNA and NIST 20 spectra. The top-k performance
of the trained Eight CNNs were then compared with the One CNN model by using the
CASMI 2016 dataset for testing. As shown in Table S2 of the Supplementary Materials, the
One CNN model performed better.

2.3. Evaluation of MetFID’s Performance Compared to Other Tools

To compare with ChemDistiller and CSI:FingerID, we packaged into MetFID the One
CNN model that was trained using spectra obtained from NIST 20 and MoNA and selecting
those that are structurally-disjoint to the CASMI 2016 benchmark dataset. We used the
CASMI 2016 testing set to compare MetFID vs. CSI:FingerID and ChemDistiller. Details of
the tools and all the parameters are listed in Table S3 of the Supplementary Materials. We
tested ChemDistiller and CSI:FingerID that were trained with their own testing spectra.
ChemDistiller was compared with MetFID using the mass-based method and CSI:FingerID
was compared with the formula-based method. We did not use our library testing to
compare these three models because NIST 20 spectra were involved in the training of the
current version of CSI:FingerID. For performance evaluation, we used the CASMI 2016
benchmark dataset that consists of 208 peak lists from 188 substances, 127 peak lists were
acquired in the positive mode 81 in the negative mode. A list of candidate metabolites is
provided along with SMILES, InChI, and InChIKey for each peak list.
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For CSI:FingerID, we performed metabolite annotation by using SIRIUS 4, software for
analyzing metabolites from tandem mass spectrometry(MS) data which combines isotope
pattern analysis in MS with fragment pattern analysis in MS/MS and uses CSI:FingerID as
a web service to search in molecular structure database. We accessed this tool and provided
information with processed peak lists, exact mass, and precursor adduct of each of the
challenge (peak list) in the CASMI 2016 dataset. The 208 peak lists were entered into SIRIUS
4 as a benchmark data set for three parts computation, SIRIUS, ZODIAC, and CSI:FingerID.
SIRIUS identifies the molecular formula for the measured precursor ions and annotates the
spectrum by providing the molecular formula for each fragment peak. ZODIAC improves
the ranking of the formula candidates provided by SIRIUS. CSI:FingerID identifies the
structure of a compound by searching a molecular structure database. After computing, we
obtained a formula-based top-k rank which included candidate’s InChIKey for each peak
list. Then, we compared the candidate’s InChIKey and the compound true InChIKey to
perform top-k ranking of the candidates. When we used the candidate list from the CASMI
2016 data, CSI:FingerID was able to rank the true candidate at the top consistently for all
208 peak lists. We assumed this is because the CASMI 2016 spectra may have been included
in the training of the SVM model used by CSI:FingerID. To evaluate the performance of
the CNN model with previously unseen MS/MS data, we ensured that all training spectra
are structurally disjointed compared to the compounds corresponding to the CASMI 2016
dataset. When we used the candidates of CSI:FingerID, 21 compounds were not annotated
in the ranked result or not considered as true candidates. Table 3 presents the ranking
results calculated in two ways: (1) excluding the CASMI 2016 spectra for which the true
compound is missing in the candidate list; and (2) considering all CASMI 2016 spectra in
the testing set regardless of the presence of the true compound in the candidate list. As
shown in Table 3, MetFID has a better performance than CSI:FingerID.

Table 3. Performance comparison of ChemDistiller and CSI:FingerID with MetFID using the CASMI
2016 dataset as a testing dataset. The percentage that is outside the parenthesis includes the unan-
notated peak lists in the ranked result, which means 208 spectra in total. The percentages inside
parenthesis are calculated by excluding the peak lists whose candidate lists do not include the true
compounds, in order to account for the situation when the target compound cannot be found by
searching against compound databases. The result of the best performing tool under each category is
shown in bold.

CASMI 2016 Testing

Mass-Based Formula-Based

Rank ChemDistiller MetFID CSI:FingerID MetFID

Top 1 34% (44%) 52% (53%) 67% (73%) 71% (74%)
Top 3 47% (59%) 76% (76%) 71% (78%) 88% (91%)
Top 5 58% (73%) 87% (87%) 72% (79%) 91% (94%)
Top 10 63% (80%) 95% (96%) 72% (79%) 95% (99%)

ChemDistiller is a freely available metabolite annotation tool developed using a ma-
chine learning approach. Since there is no user interface available for this tool, the source
code (in Python) of ChemDistiller was downloaded and directly operated through Ana-
conda. Two pre-trained support vector machine-learning (SVM) models are available
in the ChemDistiller package, and each model was trained with fingerprints and frag-
mentation patterns. A linear SVM model and a radial SVM model were pre-trained with
MassBank and NIST14 spectra through fingerprints (FingerScorer) and fragmentation pat-
terns (FragScorer) [20]. There are also multiple databases made available by the authors
of ChemDistiller. We were able to use BMDB, ChEBI, DrugBank, EcoCycMINE, HMDB,
KEGGMINE, MassBank, YMDBMINE, and TestDB as the candidate databases of the run.
As a user, the precursor mass (m/z), precursor ion (adduct), exact mass, database source,
formula, InChI, ionization mode, and MS/MS peak data could be provided to the tool. With
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each CASMI 2016 sample, precursor mass, precursor ion, ionization mode, and MS/MS
peak data, which is the lowest requirement for ChemDistiller to be able to give a result,
were provided for annotation. ChemDistiller is capable of running sample data in bulk, so
the same candidate lists were used on all 208 CASMI 2016 samples with each SVM model,
and the same set of information was provided to the tool. After successfully running all
the samples, the final annotation results are reported in an HTML file and a .txt file. The
annotation results of each sample are ranked according to a score calculated by the tool.
Information like formula, mass, charge, isotope, SMILES, InChI, and InChIKey is used to
evaluate the performance of the tool.

As shown in Table 3, MetFID yielded far better performance in top-k ranking of puta-
tive metabolite IDs compared to CSI:FingerID and ChemDistiller. For example, assuming
the formula of the unknown compounds are known, the correct compound name was
ranked first in 71% of the cases by MetFID vs. 67% by CSI:FingerID. The correct compound
name was ranked in the top three in 88% of the cases by MetFID vs. 71% by CSI:FingerID.
When assuming the formula is unknown, MetFID outperformed the linear SVM model in
ChemDistiller in all rankings as shown in Table 3. The radial SVM model of ChemDistiller
achieved less top-k ranking performance than the linear model as illustrated Table S4 in the
Supplementary Materials. In addition to testing MetFID using candidates generated by
itself, we evaluated its top-k ranking performance based on candidates provided by CASMI
2016 as shown in Table S5 in the Supplementary Materials.

3. Discussion

It has been a long debate and search about which machine learning model is capable
of carrying more accurate compound fingerprint prediction for metabolite annotation.
Here, we introduce a convolutional neural network (CNN) for fingerprint prediction.
Briefly, we used 650,553 MS/MS spectra obtained from the MoNA repository and NIST 20
representing 35,878 compounds for training and testing the CNN model. About 80% of
the MS/MS spectra representing 29,588 compounds were used for training. The trained
model was evaluated using the remaining MS/MS spectra representing 6290 compounds
that are structurally disjointed to those used for training. Compared to other machine
learning methods, including support vector machine (SVM) and multi-layer perceptron
(MLP), the proposed CNN model achieved better performance in predicting compound
fingerprints and ranking metabolite putative metabolite IDs. Also, we observed very
promising results in the ability of the CNN model for fingerprint prediction and ranking
metabolite candidates. We demonstrated that the use of the CNN model leads to improved
fingerprint prediction accuracy and ranking of metabolite candidates compared to the
previously used MLP and SVM models. The trained CNN model is implemented as a
python package, MetFID. The package is available on GitHub for users to enter their
MS/MS spectra and putative metabolite IDs to obtain ranked lists of metabolites.

The performance of the trained MetFID in ranking putative metabolite IDs was com-
pared with two other machine learning-based tools (CSI:FingerID and ChemDistiller) using
the CASMI 2016 benchmark dataset, which consists of 208 MS/MS spectral representing
188 compounds. Although the level of improvement achieved by MetFID compared to
ChemDistiller and CSI:FingerID was small, we anticipate promising potential for further
improvement as more MS/MS data from reference compounds become available for train-
ing the CNN model. Also, we observed improved performance when multiple CNN
models are used by segmenting the spectra according to the instrument type/settings
(e.g., collision energy, instrument resolution, and positive/negative ionization mode). With
the availability of more MS/MS spectra from different platforms, we will investigate the
use of multiple CNN models.

Future work will focus on updating the CNN architecture to improve its prediction
performance. Specifically, we will investigate the use of 2D CNN for compound fingerprint
prediction. Our initial implementation of a 2D CNN by converting the input vector
representing a spectrum into a data matrix did not yield better performance than the
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1D CNN. Since a 2D CNN is more complex structurally than 1D CNN and typically
used for image classification, further investigation is needed to adopt it for fingerprint
prediction. Furthermore, we will investigate to better understand the relationships between
molecular fingerprints with tandem MS fragmentation patterns and the potential use of
other properties to calculate compound fingerprints such as the extended-connectivity
fingerprints (ECFPs) that have been recently developed to capture molecular features
relevant to molecular activity [9,21]. Finally, we will investigate feature selection methods
to determine the most relevant m/z bins, instrument settings, and fingerprints prior to
training a deep learning model.

4. Materials and Methods
4.1. Workflow Overview

The workflow consists of three phases: spectral processing, model training, and per-
formance evaluation, as depicted in Figure 1. In the spectral processing phase, the MS/MS
data collected from spectral libraries are transformed into vectors of intensity values based
on predefined m/z bins. The vectors are amenable to be used as inputs to a computational
model. In the training phase, the model is trained to map the relationship between MS/MS
spectra and compound fingerprints. In the performance evaluation phase, previously
unseen MS/MS spectra are converted into vectors and used as inputs to the trained model
to predict the fingerprints of the unknown metabolites. In addition, candidate metabolite
IDs are retrieved from compound databases based on the precursor m/z’s corresponding
to the MS/MS spectra. The list of candidates can be narrowed if the molecular formulae
for the unknown metabolites are known or calculated. For each candidate, the molecular
fingerprint is calculated using OpenBabel [5]. The similarity between the molecular fin-
gerprint predicted by CNN and the calculated molecular fingerprint is used to rank the
candidates. Specifically, Tanimoto similarity score is used for ranking. If the true metabolite
ID is known, the Tanimoto score, F1 score, and top-k ranking accuracy are used to evaluate
the performance of the CNN model in molecular fingerprint prediction and metabolite
annotation. In the subsequent sections, dataset preparation and the steps of the workflow
are discussed.
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4.2. Data Processing

Spectral libraries. We downloaded MS/MS spectra acquired by LC-MS/MS from
libraries available in the MoNA repository including Vaniya/Fiehn Natural Products
Library, GNPS, RIKEN PlaSMA, MassBank, HMDB, MetaboBASE, Pathogen Box, Fiehn
HILIC, etc. In addition, we obtained the NIST 20 library from one of NIST’s MS/MS library
distributors. In the remainder of this paper, we will refer to MS/MS data downloaded
from MoNA as MoNA spectra and those downloaded from NIST 20 as NIST 20 spectra.
For each spectrum extracted from MoNA and NIST 20, 16 factors were extracted from
the raw file, including InChIKey, SMILES, spectrum ID, source, ionization mode, adduct,
precursor mass, exact mass, instrument type, instrument, collision energy, mass accuracy,
library, external IDs, peak masses, and peak intensity. The peak list we obtained from
each spectrum was processed and transformed into a vector for use as input to a machine
learning model.

Scaling and filtering. Min-Max scaling was applied to the peak list each spectrum. We
scaled the peak intensities such that all intensity values lay between 0 and 100. Spectra that
consisted of fewer than five peaks with relative intensity above 2% were removed. Also,
we removed peaks whose m/z values were larger than the precursor mass.

Selecting. To make the training MS/MS data as homogeneous as possible, we selected
from the NIST 20 spectra those acquired via instrument types such as Orbitrap, QqQ,
Q-TOF, or ion trap (IT). We obtained 79,404 LC-MS/MS spectra in positive mode and
32,269 LC-MS/MS spectra in negative mode from MoNA. From NIST 20, we obtained
401,985 LC-MS/MS spectra in positive mode and 136,895 LC-MS/MS spectra in negative
mode from NIST 20. Thus, we considered a total of 650,553 MS/MS spectra representing
35,878 compounds.

Merging. Peak lists were merged into one if they were acquired from the same
compound using InChIKey as compound identifier. An additional filtering was applied for
selecting the spectra if the mass falls within a mass range of 100 to 1010 Da.

Binning. We binned the m/z range of each MS/MS spectrum into prespecified bins,
which are continuous integer m/z values, and calculated the accumulated intensities within
each bin as feature values. In machine learning models, each bin is considered as individual
unordered bins. A bin that consists of all 0′s across all the spectra were removed in the
train the training set for dimension reduction depends on the model selection. For example,
the bins that consisted of all 0′s were not removed since the bins should be consecutive
when running the convolution. This binning method has been applied previously [22,23].

Compound fingerprint calculation. Molecular fingerprints of all compounds in the
training set were determined by Openbabel [5]. Specifically, the MACCS, FP3, and FP4
fingerprints were mined and assembled into a vector consisting of 528 binary items.

4.3. Training

Following the data processing, we trained a CNN model to learn the relationship
between spectral patterns and compound fingerprints. Figure 2 depicts the architecture
of the one-dimensional CNN (1D CNN) we trained using the Keras Python package on
the back end of TensorFlow. As shown in Figure 2, a CNN model consists of 12 layers
(a Sequential layer, an Embedding layer, two Convolution1D layers, two MaxPooling1D
layers, a Dropout layer, a Flatten layer, and four Hidden layers) following the input layer.
Rectified Linear Unit (ReLU) was used as an activation function. We chose this activation
function to alleviate the large amount of computation and the disappearance of the gradient
when the error gradient is sought by the back propagation. Also, ReLU makes the output
of some neurons equal to 0, which results in the sparsity of the network and reduces the
interdependence of parameters, thus alleviating the occurrence of overfitting problem. The
model uses multiple nodes in the output layer to predict all entries of fingerprint vector
simultaneously without the need to build a separate model for each entry. The fingerprint
prediction is a dichotomy problem, and the predicted output of the model is a vector with
zeroes and ones. We therefore used Sigmoid as the final layer classification function of
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the CNN model and the binary cross-entropy as the loss function, rather than the usual
combination of Softmax activation and the classification cross-entropy loss function used
for single-tag tasks. For training, we used ‘Adam’ optimizer and ‘binary accuracy’ metrics.
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4.4. Testing

We used MetaboQuest to retrieve candidates along with compound names, InChIKeys,
formulae, etc. from compound databases such as HMDB, MMCD, MELIN, LIPID MAPS,
KEGG based on the precursor m/z’s of MS/MS spectra with 20 ppm tolerance and consid-
ering different adduct forms. For each compound in the candidate list, we calculated the
fingerprint. The candidate list was shortened if the formula of the compound is known
by excluding those with different formulae. In practical cases, where the formulae are
unknown for experimental MS/MS spectra, putative compound formulae can be calculated
based on m/z values of precursor ions using tools such as SIRIUS [9].

After the list of candidates and the corresponding fingerprints were obtained, Equation (1)
was used to calculate the Tanimoto similarity score between the predicted fingerprint of
unknown compounds and the fingerprint of each candidate. The similarity scores that
range from 0 to 1 were used to rank the candidates.

Tanimoto similarity score =
TP

TP + FP + FN
(1)

To evaluate the performance of the trained CNN, we used previously unseen com-
pounds in a structurally disjointed setting, which means the compounds in the training set
cannot have the same first part of InChIKey as the compounds in the testing set. The MS/MS
spectra from these compounds were processed in the same way as the training dataset, with
the exception of merging. Thus, the performance of the CNN is evaluated using individual
MS/MS spectra (without merging those acquired by different collision energies) in terms of
its ability to perform both fingerprint prediction and metabolite annotation.

To achieve a balance between precision and recall rate, F1 and Tanimoto similarity
scores were used to measure the fingerprint prediction performances of the CNN. Let
TN, TP, FN, and FP represent the number of true negative, true positive, false negative,
and false positive respectively. The precision equation was TP/P, and the recall equation
was TP/(TP + FN). Equation (2) was used to calculate the F1 scores. In calculating the
Tanimoto similarity score, we removed the part where the predicted fingerprint and the
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true fingerprint were both zeros, due to the significance of imbalance between the number
of zeros and ones in the fingerprint.

F1 score =
2 ∗ precision ∗ recall

precision + recall
(2)

To assess the performance of CNN in metabolite annotation, we ranked the retrieved
candidates based on Tanimoto similarity scores calculated using Equation (1). In order to
access the metabolite annotation accuracy of the top-k predicted candidates, we searched
the true compound InChIKey in the first k (e.g., 1, 3, 5, and 10) predicted lists. Finally,
we compared the performance of CNN against other models such as Logistic Regression,
Single-Layer Perceptron (SLP), Support Vector Machine (SVM), and Multi-Layer Perceptron
(MLP) models based on F1 score, Tanimoto similarity score, and top-k ranking results. Of
the 35,878 compounds, 29,588 compounds (~80%) were used for training the CNN and
other machine learning models. The remaining 6290 compounds, which were selected to
be structure-disjoint to the training set, were used for independent testing.

4.5. Single vs. Multiple CNN Models

We investigated the potential advantage of training CNN model using different subsets
of data on three features: collision energy, instrument types (LR-low resolution or HR-high
resolution), and adduct forms (positive or negative). First, we divided the raw data into
six separate datasets for low energy < 30 eV, high energy ≥ 30 eV, low resolution, high
resolution, positive adducts, and negative adducts. Specifically, we used the spectra from
the NIST 20 library, which provides collision energy information, at least one spectrum
corresponding to <30 eV collision energy, and one spectrum corresponding to ≥30 eV
collision energy, and for the MoNA library which contains more than 900 collision energy
formats, we considered < 30 eV for low energy and ≥30 eV for high energy to extract the
exact collision energy information from the MoNA library. We split the compounds with
low resolution and high resolution from the NIST 20 library and MoNA library according
to the instrument type. Instrument types such as Orbitrap and Q-TOF were considered
as high resolution, while Ion Trap and QQQ were considered as low resolution. Figure 3
depicts three approaches: (A) one CNN model as explained in Section 4.2 representing
the MS/MS spectrum with a vector consisting of 1174 bins that provide peak intensity
values; (B) one CNN model representing the MS/MS spectrum with a vector consisting of
1174 bins and additional three binary entries to designate the spectrum as low/high energy,
low/high resolution, positive/negative mode; and (C) eight CNN models each trained
with a subset of datasets corresponding to a specific combination of energy (low/high),
resolution (low/high), and ionization mode (positive/negative). The first two approaches
take advantage of training the CNN with large sample size without the need to split the
MS/MS spectra according to instrument type/setting.
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