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Abstract: Despite surpassing lung cancer as the most frequently diagnosed cancer, female breast
cancer (BC) still lacks rapid detection methods for screening that can be implemented on a large scale
in practical clinical settings. However, urine is a readily available biofluid obtained non-invasively
and contains numerous volatile organic metabolites (VOMs) that offer valuable metabolic information
concerning the onset and progression of diseases. In this work, a rapid method for analysis of VOMs
in urine by using high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS)
coupled with dynamic purge injection. A simple pretreatment process of urine samples by adding acid
and salt was employed for efficient VOM sampling, and the numbers of metabolites increased and
the detection sensitivity was improved after the acid (HCl) and salt (NaCl) addition. The established
mass spectrometry detection method was applied to analyze a set of training samples collected
from a local hospital, including 24 breast cancer patients and 27 healthy controls. Statistical analysis
techniques such as principal component analysis, partial least squares discriminant analysis, and the
Mann–Whitney U test were used, and nine VOMs were identified as differential metabolites. Finally,
acrolein, 2-pentanone, and methyl allyl sulfide were selected to build a metabolite combination model
for distinguishing breast cancer patients from the healthy group, and the achieved sensitivity and
specificity were 92.6% and 91.7%, respectively, according to the receiver operating characteristic curve
analysis. The results demonstrate that this technology has potential to become a rapid screening tool
for breast cancer, with significant room for further development.

Keywords: high-pressure photoionization mass spectrometry; urine; volatile organic metabolites;
breast cancer; rapid detection

1. Introduction

The global prevalence of female breast cancer (BC) has surged to 11.7%, accounting
for approximately 2.3 million cases, thus surpassing lung cancer as the most frequently di-
agnosed malignancy. Additionally, it stands as the fifth major contributor to cancer-related
fatalities worldwide, claiming the lives of 685,000 individuals [1,2]. The incidence and
mortality rates of breast cancer exhibit an upward trend. Prior research indicates that the
fatality rate associated with breast cancer could be significantly reduced through timely
detection and comprehensive treatment [1–3]. Presently, mammography serves as the con-
ventional modality for breast screening; however, it exhibits diminished sensitivity towards
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detecting small tumors, is constrained by patient age limitations, and cannot yield definitive
disease outcomes [4,5]. Furthermore, ultrasound and magnetic resonance imaging (MRI)
are commonly employed in conjunction with mammography to identify minute lesions
that may evade detection through mammography alone. However, these methods exhibit
relatively lower specificity, and their costly nature can potentially contribute to instances
of overdiagnosis [6–8]. Therefore, there exists a pressing demand for novel operational
strategies that can be readily implemented on a wide scale within practical clinical settings
for breast cancer screening.

Over the past few decades, a multitude of platforms leveraging omics technology have
been developed and extensively employed in the realm of disease diagnosis and screen-
ing, encompassing not only cancer but also its distinct subtypes. Numerous molecular
constituents, such as genes, proteins, and metabolites, have been proposed as potential
biomarkers for breast cancer [9–12]. Metabolomics represents a robust and auspicious
avenue for examining the intricate interplay between metabolites and physiopathological
alterations through comprehensive qualitative and quantitative analysis of all organismic
metabolites [10,12–14]. This approach harbors immense potential to discern and identify
heterogeneous tumor diseases during their nascent stages [9]. Urine, serving as an optimal
biofluid for metabolomic investigations, boasts several advantages, including non-invasive
sampling, easy accessibility, and lower protein content, thereby reducing complexity. In
addition, compounds produced by the body’s metabolism need to be concentrated by the
kidneys before being excreted, making urine a rich source of metabolites [15]. Numerous
volatile organic metabolites present in urine offer abundant insights into the onset and
progression of diseases. Previous research has demonstrated that tissues generate distinct
VOMs or exhibit altered concentrations of VOMs in pathological states, encompassing
infections, neoplasms, and metabolic disorders [15–17].

To detect VOMs in urine, certain analytical techniques based on gas chromatography-
mass spectrometry (GC-MS) have been utilized by integrating static/dynamic head-space-
solid phase microextraction or stir bar extraction methodologies [18]. Some potential
biomarkers for cancers, such as lung cancer [13], prostate cancer [19], breast cancer [4], and
gastric cancer [20] have been successfully identified. Nevertheless, the GC-MS methods
necessitate intricate pretreatment procedures and prolonged analysis durations, render-
ing them unsuitable for high-throughput and large-scale disease screening. Direct mass
spectrometry based on soft ionization techniques, such as proton transfer reaction mass
spectrometry (PTR-MS), selected ion flow tube mass spectrometry (SIFT-MS), and photoion-
ization mass spectrometry (PI-MS) has been successfully used for rapid detection of trace
volatile organic compounds in a complex matrix. Huang et al. used SIFT-MS to analyze
urine headspace of gastro esophageal cancer patients and found seven statistically different
VOMs [14]. PTR-MS was used in gastric cancer patients for VOM analysis in breath gas
by Yoon et al. [21]. A high-pressure photoionization time-of-flight mass spectrometry
(HPPI-TOFMS) has recently been developed with the advantages of high sensitivity, fast
response, and good moisture resistance, which is especially suitable for rapid detection
of trace volatiles and has been widely used in other fields [22–25]. It has shown excellent
performance in the detection of exhaled breath, with the limits of detection (LODs) as
low as 0.015 ppb for aliphatic and aromatic hydrocarbons [23], and has been successfully
applied in the early screening of lung and gastroesophageal cancers [26,27]. HPPI-TOFMS
has also been successfully used in the detection of VOMs in human urine with the LOD
for trimethylamine as low as 100 ng L−1 under alkaline conditions, and a new biomarker
2,5-dimethylpyrrole was exclusively found in the smoker’s urine sample in addition to
toluene [24].

In this study, the integration of HPPI-TOFMS with the dynamic purge-injection method
was employed for the rapid and highly sensitive detection of volatile compounds in urine.
A straightforward pretreatment approach involving the addition of acid and salt was
implemented and investigated for VOM sampling from urine samples. After optimizing
the experimental conditions, the method was applied to analyze urine samples obtained
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from 24 breast cancer patients and 27 healthy controls. The resulting MS data were subjected
to statistical analysis to identify distinctive VOMs in urine samples between breast cancer
patients and the healthy control group. Subsequently, the model’s classification efficacy
was assessed by constructing a receiver operating characteristic (ROC) curve.

2. Materials and Methods
2.1. Instrumentation

The home-built HPPI-TOFMS was composed of a HPPI ion source, an ion transmission
system, and an orthogonal acceleration reflectron mass analyzer (see Supporting Informa-
tion, S1). As shown in Figure 1, the HPPI ion source consisted of a vacuum ultraviolet
krypton (VUV-Kr) lamp (Heraeus Noblelight Ltd., Shenyang, China) and a high-pressure
photoionization region, which was constructed by five annular stainless steel electrodes: a
repelling electrode (6 mm i.d., 5 mm thick), two identical transmission electrodes (14 mm
i.d., 5 mm thick), a focusing electrode (14 mm i.d., 5 mm thick), and a Skimmer-1 elec-
trode (1 mm i.d., 4 mm thick). Three 1 mm thick polyether-ether-ketone (PEEK) insulation
annular washers (16 mm i.d.) were employed to separate the electrodes, except for the
space between the last focusing electrode and Skimmer-1 electrode for an excess neutral
exhaust. All the electrodes were electrically connected by using a 1 MΩ resistor string, and
additionally, the Skimmer-1 electrode was further connected by another 1 MΩ resistor to
the ground. The voltages applied on the repelling electrode and Skimmer-1 electrode were
18 V and 12 V, respectively, while a voltage of 16 V was applied on the focusing electrode
to form a nonuniform electric field in the ionization region, which was utilized for ion
focusing and higher ion transmission efficiency. A mass resolving power of 5000 (full width
at half-maximum, FWHM) was achieved with a 0.5 m field-free drift tube. All the mass
spectra were accumulated for 10 s at a repetition rate of 25 kHz, and all data were obtained
by averaging results from six parallel measurements.
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A dynamic purge-injection apparatus, composed of a thermostat water bath cauldron
and a bubbling bottle with 20 mL inner volume, was employed for VOM sampling from
urine samples into gaseous phase, as shown in Figure 1. The structure of the bubbling
bottle was basically the same as that in our previous work [24], except for the addition of
a porous glass cushion in the middle of the bottle, which was used to prevent the foam
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generated by bubbling from entering the sampling tube. A heated transfer line, containing
a stainless steel capillary, 250 µm i.d. and 50 cm length, was used as the sampling tube to
directly introduce gaseous VOMs from the outlet of the bubbling bottle into the ion source.

2.2. Chemicals and Reagents

Concentrated hydrochloric acid (AR, 36~38%) was purchased from Xilong Scientific
Co., Ltd. (Guangdong, China). Sodium chloride (GR, 99.8%) was purchased from Shanghai
Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China). Purified water was purchased
from Hangzhou Wahaha Group Co., Ltd. (Hangzhou, China). Hydrochloric acid solution
(4 mol·L−1) was prepared by diluting concentrated hydrochloric acid with purified water.
High-purity nitrogen gas (99.999%) was provided by Dalian Institute of Chemical Physics,
Chinese Academy of Sciences (Liaoning, China) and used as the gas source for the dynamic
purge system.

2.3. Urine Sample Collection, Preparation, and Detection

The middle stream of morning urine samples was collected from 24 breast cancer
patients (BC, age 42–76 years, mean 52) and 27 healthy controls (CTL, age 18–61 years,
mean 44) at Affiliated Zhongshan Hospital of Dalian University. All the urine samples
were frozen at −80 ◦C immediately after sampling and thawed at 4 ◦C before detection.
The study protocol was approved by the local ethics committee of Affiliated Zhongshan
Hospital of Dalian University, and the method was carried out according to the approved
guideline (2022021). Informed consent was obtained from all participants.

The urine samples were analyzed in four different conditions: (1) pure urine; (2) salted
condition with addition of 1.0 g NaCl in 4 mL of pure urine; (3) acid condition with addition
of 100 µL HCl (4 mol·L−1) in 4 mL of pure urine to adjust pH at 1; and (4) acid–salted
condition with addition of 100 µL of HCl (4 mol·L−1) and 1.0 g NaCl in 4 mL of pure urine to
adjust pH at 1. These samples were well mixed under ice and water bath conditions, stored
at 4 ◦C and tested within 24 h. A urine pool noted as quality control (QC) was prepared
by mixing the urine specimens (each with a volume of 400 µL) of all the participants in
this study. The QC sample was processed in the same conditions and detected on every
ten samples.

For VOM analysis, 4 mL of each urine sample was loaded into the clean bubbling
bottle, which was sealed in 50 ◦C water bath. Subsequently, a high-purity nitrogen stream
with 100 mL·min−1 was purged into the urine sample and produced a large number
of small bubbles. Large quantities of VOMs were released into the gaseous phase by
bubbles bursting and taken into the HPPI source through the stainless steel capillary for MS
analysis. As the sampling flow rate of the inlet capillary was 50 mL·min−1, the extra gas
was exhausted by a stainless steel tee connected before the capillary. The heated transfer
line and ionization region were maintained at 100 ◦C throughout the whole analysis process
to prevent condensation of the VOMs. Data acquisition of each mass spectrum was started
from the introduction of purge gas and accumulated for 2 min. The entire experimental
process, from the start of sample preparation to the end of data acquisition, took only about
4 min.

2.4. Statistical Analysis

The data were divided into two groups, i.e., BC group and CTL group. All the data
points with signal intensity values below 20 counts were set to 0 to avoid interference from
the background noise. Variables with non-zero values of intensity in at least 90% of each
group were included in the data set; otherwise, the variables were removed. Afterwards,
data filtering and normalization were performed to obtain a two-dimensional matrix
containing metabolite information (the data can be found in the Excel file named “DATA”
provided in the supporting materials). Multivariable analyses were carried out using
SIMCA-P software (version 14.0, Umetrics, Umea, Sweden) with unit variance scaling (UV
scaling). The principal component analysis (PCA) and partial least squares discriminant
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analysis (PLS-DA) models were built among different groups. The Mann-Whitney U
test was used for the nonparametric test and implemented by Multi Experiment Viewer
(MeV, version 4.9.0, TIGR, Boston, MA, USA). Mass peaks with variable importance of the
projection (VIP) > 1 and p-value < 0.05 were selected and used to determine the statistically
significant VOMs. Binary logistic regression analysis and ROC analysis of combinational
VOMs were figured out by using PASW Statistics 25 software (SPSS, Chicago, IL, USA).
Ten-fold cross validation was performed by an online metabolomics data analysis website
MetaboAnalyst 5.0 to test the discrimination power of the combination of statistically
significant VOMs.

3. Results
3.1. Influence of Acid and Salt Addition

Acidification and alkalization of urine are prevalent pretreatment methodologies uti-
lized for the extraction of VOMs during urine sampling. In our previous work, the VOMs
identified in alkalized urine predominantly consisted of nitrogen-containing alkaline com-
pounds, including dimethylamine, trimethylamine, piperidine, and dimethyl pyrazine [24],
which were absent in the potential biomarker list from previous works by others [28,29].
Therefore, the pretreatment method for acidification (HCl) of urine was employed and
investigated in this work. Adding acid can lower the pH of urine, which enhances the
volatilization of acidic compounds, such as carboxylic acids, aldehydes, ketones, alco-
hols, etc., from the urine into the headspace, thus improving the detection sensitivity of
these compounds [4,30]. In addition, NaCl was added in the urine sample to promote
the volatilization of VOMs in urine, as the solubility of VOMs would decrease when the
concentration of salt increased in the solution, known as the “salting-out effect” [31]. The
addition of salt modifies the matrix of the sample by increasing ion activity. A significant
quantity of the water molecules will exist as hydration associated with the ions in the solu-
tion under a high concentration of salt. VOMs do not dissolve well in the solution, which
is bonded to the ions. Therefore, the solubility of VOMs in the liquid phase will decrease,
and more VOMs move into the gas phase [31]. A mixed urine sample from four healthy
volunteers (each with a volume of 20 mL) was used to evaluate the influence of HCl and
NaCl addition. The signal intensities of over 33 mass peaks increased by more than 2-fold,
and the signal enhancement of mass peaks with m/z 48, 59, 65, 77, and 94 even reached 11-
to 21-fold after acidification of the mixed urine, as shown in Figure 2. Furthermore, 19 new
peaks appeared in the acidified urine. After adding salt into the acidified urine, the signal
intensity of mass peaks was further enhanced up to 62-fold (m/z = 94), compared with the
pure mixed urine. Finally, based on putative annotation (level 2) [32], the measured masses
of the characteristic ions were compared with their theoretical masses with a mass error of
less than 30 ppm, resulting in the identification of several compounds as shown in Table 1.

Table 1. A list of 24 metabolites that appeared in the spectra of QC sample under acid-salted condition.

Measured Mass (Th) Theoretical Mass (Th) Mass Error (ppm) Characteristic Peaks Chemicals

47.0495 47.0496 −2 C2H6O·H+ ethanol

45.0328 45.0340 −27 C2H4O·H+ acetaldehyde

48.0031 48.0033 −4 CH4S+
methanethiol49.0106 49.0112 −12 CH4S·H+

57.0338 57.0341 −4 C3H4O·H+ acrolein

59.0498 59.0496 3 C3H6O·H+

acetone77.0603 77.0602 1 C3H6O·H3O+

117.0915 117.0915 0 (C3H6O)2·H+



Metabolites 2023, 13, 870 6 of 13

Table 1. Cont.

Measured Mass (Th) Theoretical Mass (Th) Mass Error (ppm) Characteristic Peaks Chemicals

61.0280 61.0289 −15 C2H4O2·H+
acetic acid79.0398 79.0395 4 C2H4O2·H3O+

73.0652 73.0653 −1 C4H8O·H+
2-butanone91.0754 91.0759 −5 C4H8O·H3O+

144.1131 144.1150 −13 C8H16O2
+

octanoic acid145.1225 145.1228 −2 C8H16O2·H+

83.0715 83.0735 −24 C5H9N+ pentanenitrile

87.0808 87.0810 −2 C5H10O·H+

2-pentanone105.0915 105.0915 0 C5H10O·H3O+

173.1519 173.1542 −13 (C5H10O)2·H+

88.0346 88.0346 0 C4H8S+ methyl allyl sulfide

92.0629 92.0626 3 C7H8
+ toluene

93.0581 93.0578 2 C6H7N+ 3-methylpyridine

93.9908 93.9910 −2 C2H6S2
+ disulfide, dimethyl

96.0576 96.0575 1 C6H8O+ 2,5-dimethylfuran

97.0507 97.0527 −21 C5H7NO+ 2,5-dimethyloxazole

101.0599 101.0602 −3 C5H9O2
+ 2,3-pentanedione

101.0955 101.0966 −11 C6H12O·H+ 2-hexanone

107.0713 107.0735 −21 C7H9N+ 2,6-lutidine

110.0725 110.0731 −5 C7H10O+ 2-propylfuran

114.0135 114.0139 −4 C5H6OS+ 2-methoxythiophene

115.1112 115.1123 −10 C7H14O·H+ 2-heptanal

136.1240 136.1252 −9 C10H16
+ limonene

139.1120 139.1123 −2 C9H14O·H+ 2-pentylfuran
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3.2. Multivariate Statistical Analysis

The processed MS data of BC and CTL groups were imported into SIMCA-P for PCA
and PLS-DA analysis. During the urine sample analysis of BC and CTL, a QC detection
was inserted for every ten samples. Five QC mass spectra were obtained, and clustered
tightly together on the score plot of the PCA (see the Supporting Information, Figure S2a).
Furthermore, the relative standard deviations (RSDs) of about 94% of the mass peaks were
less than 30% for the QC sample (see the Supporting Information, Figure S2b), which
exhibited the satisfactory repeatability and reliability of the method. PLS-DA maximizes
the differences between samples by utilizing the biological measurements or category infor-
mation in the Y-matrix, which could effectively solve the classification problem of metabolic
phenotypes. As shown in Figure 3a, the BC group could be well separated from the CTL
group from the score plot of PLS-DA, which indicated that the metabolite profiles could be
well distinguished between the two groups. The cross validation with 200 iterations was
performed, and the result shown in Figure 3b indicated that the PLS-DA model was not
overfitted as the R2- and Q2-intercept values were 0.394 and −0.383, respectively.
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3.3. Differential Metabolites in Urine of BC Patients

Univariate analysis was performed on the Multi Experiment Viewer, and the Mann-
Whitney U test was used here to assess the significance of the selected candidate metabolites.
Generally, a p-value < 0.05 was considered significant for the selected metabolite with a
statistical significance. Furthermore, the variable importance for the projection (VIP) was
plotted to summarize the importance of MS peaks, and only VIP > 1 can be reserved in
the end. To further narrow down the range of significant candidate metabolites, the false
discovery rate (FDR), based on the Benjamini–Hochberg correction, was introduced as
another criterion. Metabolites that ultimately met a VIP > 1 and a p-value < 0.05 were
selected as the differential metabolites. Finally, nine VOMs were identified as differential
metabolites in the urine samples between BC patients and the CTL group, which could
be classified as unsaturated aldehydes, ketones, aromatic hydrocarbons, volatile sulfur
compounds, and heterocyclic compounds, as shown in Table 2.

Furthermore, hierarchical cluster analysis (HCA) was performed to better demonstrate
the differences at metabolic levels between BC patients and the CTL group. The alteration
of these VOMs in the urine of BC patients and the CTL group can be clearly observed in
the heatmap as shown in Figure 4. The urine of BC patients had increased amounts of
2-butanone, 3-methylpyridine, and acrolein, but reduced concentrations of 2-pentyfuran,
methyl allyl sulfide, 2-pentanone, 2-hexanone, octanoic acid, and 2-methoxythiophene.
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Table 2. Identification of differential metabolites in the urine samples between BC patients and
healthy controls (CTL).

VOMs Chemical
Formula

Characteristic
Peaks Ratio p-Value VIP Ref.

acrolein C3H4O C3H4O·H+ 2.00 2.57 × 10−5 1.63 [33]

2-butanone C4H8O C4H8O·H+ 1.92 8.66 × 10−5 1.54
[34,35]

C4H8O·H3O+ 1.58 0.0016 1.32

2-pentanone C5H10O C5H10O·H+ 0.53 0.0062 1.17
[34,35]

(C5H10O)2·H+ 0.38 2.51 × 10−4 1.47

methyl allyl sulfide C4H8S C4H8S+ 0.16 0.0012 1.37 [30,36]

3-methylpyridine C6H7N C6H7N+ 2.16 0.0043 1.14 [20]

2-hexanone C6H12O C6H12O·H+ 0.56 7.30 × 10−4 1.12 [3,37]

2-methoxythiophene C5H6OS C5H6OS+ 0.48 0.0097 1.11 [4,30]

2-pentylfuran C9H14O C9H14O·H+ 0.46 2.18 × 10−5 1.38 [3,37]

octanoic acid C8H17O2 C8H16O2·H+ 0.45 0.0108 1.21 [4]

Note: The value of “Ratio” is obtained by dividing the average concentration of BC by the average concentration
of CTL.
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3.4. Receiver Operating Characteristic Curve Analysis

The receiver operating characteristic curve is often used to evaluate the classification
effectiveness of the model. However, the specificity and sensitivity of models containing
a single differential metabolite for distinguishing BC patients from healthy controls were
not definitive (see the Supporting Information, Table S1). A feasible solution for this
problem is to combine more differential metabolites into a group for higher specificity
and sensitivity. Therefore, the binary logistic regression analysis was employed to screen
the differential metabolites to obtain an optimal metabolite combination. Eventually,
three statistically significant metabolites, including acrolein, 2-pentanone, and methyl
allyl sulfide were selected to build a metabolite combination model. This combination of
metabolites has not been reported previously. The area under the ROC curve (AUC) of
the statistically significant metabolic combination in the discovery set was 0.97, and the
sensitivity and specificity were 92.6% and 91.7%, respectively, as shown in Figure 5a. The
result indicated that this model has a good ability to identify BC patients. Subsequently,
10-fold cross-validation was performed to evaluate the model, as shown in Figure 5b,
with the AUC = 0.88, sensitivity = 85.2%, and specificity = 83.3%, respectively. The results
demonstrated the robustness of the model, which has the potential to be a useful tool for
early screening of breast cancer.
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4. Discussion
4.1. Potential Metabolic Pathway Analysis

The metabolic pathways of VOMs are pretty complex. As shown in Figure 4, the
concentration of these VOMs were different between the BC and CTL groups, which
is probably related to the increased oxidative stress and decreased apoptosis of cancer
patients [14]. The relationship between the VOMs and cancer metabolism was not fully
understood until now. The potential metabolic pathway of the five classes of the identified
differential metabolites in Table 2 were summarized here according to previous studies.

Ketones are very abundant in urine. As shown in Table 2, there are three ketone
compounds identified between the BC and CTL groups in this study: 2-butanone, 2-
pentanone, and 2-hexanone. Different studies have shown that the ketogenic pathway may
be directly related to tumor growth, and some ketones have been assigned as designated
biomarkers for different cancers. Two potential pathways could be involved in their
production: (i) oxidation of secondary alcohols catalyzed by ADHs (or cytochrome p450
(CYP2E1), and (ii) β-oxidation of fatty acids [20]. Therefore, 2-butanone, 2-pentanone, and
2-hexanone may be derived from 2-butanol, 2-pentanol, and 2-hexanol, respectively. But the
source of these secondary alcohols remains unclear. They might stem from the oxidation of
n-alkanes catalyzed by cytochrome p450 enzymes, microbial metabolism, or diet. Among
them, 2-butanone and 2-pentanone have been detected as potential biomarkers in the breath
gas of patients with gastric and ovarian cancers [34,35].

Although, only methyl allyl sulfide was identified as a differential sulfide compound,
as listed in Table 2, sulfide compounds are generated by the incomplete metabolism of
methionine and cysteine through the transamination pathway with high expression in
urine [38]. On the one hand, during the transamination cascade, the methyl mercaptan
produced by the conversion of methionine and cysteine is easily oxidized to produce a
variety of volatile sulfides [38,39]. On the other hand, gram-negative bacteria can also
produce these sulfur metabolites [40].

Additionally, there are volatile aldehydes in Table 2, which are common products of
lipid peroxidation [30]. Acrolein is produced from the oxidation of arachidonic, linolenic,
and linoleic acids in the presence of hydrogen peroxide and Fe2+ [35]. In addition to
oxidative stress on unsaturated lipids, spermine and spermidine are potential carbon
sources for acrolein. These compounds are oxidized by amine oxidase to corresponding
amino aldehydes and spontaneously form acrolein in situ [33].

2-Pentylfuran was identified as the differential furan compound between the BC and
CTL groups. Furans can be found in different exogenous sources, such as various foods.
Furans are considered to be potential carcinogens, and high concentrations of furans can
increase the probability of bile duct tumors in rats [41]. Additionally, furans have also
been reported to be involved in anti-cancer defense mechanisms [42]. 2-Pentylfuran was
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found in the breath of patients with aspergillus fumigatus infections and human skin
emanation [43]. Its production by natural dehydration of monosaccharides and oxidation
of some fatty acids catalyzed by lipoxygenases could take place in adipocytes in the context
of lipid peroxidation [43].

The last two differential metabolites in Table 2 are heterocyclic compounds,
2-methoxythiophene and 3-methylpyridine were detected in several reports and can even
be considered as metabolic markers [4,20,30]. In Silva’s report, the concentration of 2-
pentylfuran in BC patients is significantly higher than that in normal people, and it is
considered as a biomarker of BC [4].

4.2. Methods Comparison and Limitations

GC-MS has become a core technology in metabolomic analysis due to its satisfac-
tory performance in sensitivity and specificity [44]. Many researchers have utilized
this technique to discover biomarkers for breast cancer in urine, achieving promising
results [3,4,37,45–47]. Nevertheless, sample preparation is complex and time-consuming,
involving multiple steps that restrict its application in high-throughput analysis and rapid
screening. PTR-MS, as a highly sensitive direct MS technique, has also been applied to the
detection of VOMs in urine [48,49]. However, the vast amount of water vapor from urine
samples makes the ionization process more complicated and increases the difficulty of data.

Compared to other methods, HPPI-TOFMS is more suitable for high-throughput urine
sample analysis. Firstly, HPPI-TOFMS offers fast analysis speed and requires simple sample
treatment steps such as acidification and salting. There is no enrichment or desorption
process, and samples are directly detected after gasification. Secondly, a HPPI ionization
source is less affected by humidity, enabling effective ionization of different compound
types. As a soft ionization source, it avoids excessive fragmentation ions, making spectrum
interpretation simpler. Thirdly, the instrument is easy to operate and has low maintenance
costs. However, one drawback of HPPI-TOFMS is its reliance on high-resolution TOFMS for
accurate qualitative analysis. Additionally, due to the lack of GC, it is unable to differentiate
structural isomers.

Achieving positive results in a pilot study is encouraging; however, there are also
some limitations of this study that need to be further addressed. The small sample size
and lack of external validation in this study may limit the generalizability of the findings.
Increasing the sample size would enhance statistical power and confidence in the results.
External validation should be included to improve the reliability of the findings.

Additionally, confounding factors such as diet, medication, lifestyle, and clinical vari-
ables may influence metabolomic characteristics and introduce bias. Future research should
employ appropriate methods to control for these factors and improve the reliability of the
conclusions. Further research is needed to confirm the metabolic pathways and mecha-
nisms underlying the associations between specific VOMs and breast cancer risk. In vitro
and in vivo experiments are necessary to establish causal relationships and understand the
biological significance of these findings.

5. Conclusions

This pilot study showcases a robust method for high-throughput analysis of VOMs
in urine using the integration of high-pressure photoionization time-of-flight mass spec-
trometry with dynamic purge-injection. Its preliminary application in rapid breast cancer
screening is demonstrated. VOMs present in urine samples are effectively volatilized and
introduced into the HPPI-TOFMS system through dynamic purge-injection following the
simple addition of acid and salt to the samples. The obtained mass spectrometry data were
analyzed using partial least squares discriminant analysis and the Mann-Whitney U test, re-
sulting in the identification of nine differential metabolites in the urine samples of 24 breast
cancer patients and 27 healthy controls. Furthermore, a metabolite combination model
was constructed using acrolein, 2-pentylfuran, and methyl allyl sulfide, which exhibited a
satisfactory discriminatory performance (sensitivity = 92.6%, specificity = 91.2%) in distin-
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guishing between breast cancer patients and healthy controls. Currently, the combination
of HPPI-TOFMS with dynamic purge-injection has shown potential as a tool for breast
cancer screening. In the future, efforts will be focused on expanding the sample size for
external validation and employing appropriate methods to control the influence of clinical
factors, further enhancing the reliability of this method.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo13070870/s1, Figure S1: Schematic diagram of the HPPI-
TOFMS.; Figure S2: (a) Principal component analysis (PCA) score plot; (b) RSD distribution for ion
features in QC samples. Table S1: The result of ROC analysis for individual metabolites.
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