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Abstract: Obesity in children and adolescents has increased globally. Increased body mass index
(BMI) during adolescence carries significant long-term adverse health outcomes, including chronic
diseases such as cardiovascular disease, stroke, diabetes, and cancer. Little is known about the
metabolic consequences of changes in BMI in adolescents outside of typical clinical parameters.
Here, we used untargeted metabolomics to assess changing BMI in male adolescents. Untargeted
metabolomic profiling was performed on urine samples from 360 adolescents using UPLC–QTOF-MS.
The study includes a baseline of 235 subjects in a discovery set and 125 subjects in a validation set.
Of them, a follow-up of 81 subjects (1 year later) as a replication set was studied. Linear regression
analysis models were used to estimate the associations of metabolic features with BMI z-score in
the discovery and validation sets, after adjusting for age, race, and total energy intake (kcal) at
false-discovery-rate correction (FDR) ≤ 0.1. We identified 221 and 16 significant metabolic features in
the discovery and in the validation set, respectively. The metabolites associated with BMI z-score in
validation sets are glycylproline, citrulline, 4-vinylsyringol, 3′-sialyllactose, estrone sulfate, carno-
sine, formiminoglutamic acid, 4-hydroxyproline, hydroxyprolyl-asparagine, 2-hexenoylcarnitine,
L-glutamine, inosine, N-(2-Hydroxyphenyl) acetamide glucuronide, and galactosylhydroxylysine. Of
those 16 features, 9 significant metabolic features were associated with a positive change in BMI in
the replication set 1 year later. Histidine and arginine metabolism were the most affected metabolic
pathways. Our findings suggest that obesity and its metabolic outcomes in the urine metabolome
of children are linked to altered amino acids, lipid, and carbohydrate metabolism. These identified
metabolites may serve as biomarkers and aid in the investigation of obesity’s underlying pathological
mechanisms. Whether these features are associated with the development of obesity, or a consequence
of changing BMI, requires further study.
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1. Introduction

More than 379 million children and adolescents worldwide are overweight or obese [1].
In the United States from 2017 to 2020, the prevalence of obesity was 19.7% in the age group
of 2–19 years and affected about 14.7 million children and adolescents [2]. Up to 80% of
obese children become obese adults, indicating that childhood obesity typically extends
into adulthood [3]. Obesity is a common, serious, and multifactorial disease associated
with genetics [4], environment [5], physiology [6], increased consumption of hypercaloric
foods [7], and sedentary lifestyles [8]. Increased body mass index (BMI) and obesity during
adolescence carry significant long-term adverse health outcomes, including the develop-
ment of chronic diseases and mortality, such as cardiovascular disease, stroke, insulin
resistance diabetes, and cancer [9–13]. Therefore, efficient interventions and predictive
biomarkers for the development of obesity are needed. As children grow, the assessment
of body mass index (BMI) requires adjustment for age and gender [14]. While a study
of BMI typically categorizes adolescents as normal, overweight, or obese based on BMI
percentile [15,16], a better measure of body mass index is the BMI z-score as a continuous
variable because the BMI z-score is age and gender-specific [17]. In this study, we used the
BMI z-score to investigate the association between the urinary metabolome and obesity.

Untargeted metabolomics profiles low-molecular-weight metabolites (<1500 Da) in
biospecimens to elucidate cell physiology and disease mechanisms, and to identify biomark-
ers of disease risk [18,19]. This approach helps identify the molecular mechanisms of com-
plex diseases, as well as for disease monitoring and risk assessment. In the past, targeted
and untargeted metabolomics studies have been used to study the metabolome signature
of obesity in response to dietary intake [20], the effects of specific dietary patterns or weight
loss [21,22] or gain interventions, and body fat (%) [23].

In our comprehensive literature review, we identified 41 studies on adolescent metabolomics
and obesity [10]. Out of the total studies, 33 specifically focused on blood (plasma, serum),
3 studies examined umbilical cord blood, and 1 study used saliva samples, while 6 studies
utilized urine samples [10,24–29]. Urine contains diverse metabolites reflecting the overall
metabolic status of an individual, offering a comprehensive view of obesity-related changes
including the excretion of metabolites derived from various biological processes [30]. Un-
like plasma and serum, urine is less affected by factors such as diet, medication, or circadian
rhythms [31]. Metabolomics studies in adolescent populations are still limited. To gain a
deeper understanding of obesity’s development, it is essential to validate previous research
and examine metabolic changes in obese children who have not yet manifested disease
symptoms.

Here, we examined the association of adolescent urinary metabolic signature with BMI
z-scores to investigate the mechanisms of progression of childhood obesity at a metabolite
level, which may aid in identifying adverse effects of obesity. This is the largest study of
untargeted metabolomics in adolescents and is strengthened by longitudinal assessment.

2. Materials and Methods
2.1. Study Recruitment and Design

A total of 1220 male youths were enrolled in the Buckeye Teen Health Study (BTH)
from January 2015 to June 2016, a longitudinal cohort study focusing on lifestyle and
tobacco use behaviors [32–38]. Out of this, a total of 360 subjects additionally provided
urine samples as a “biomarker cohort” based on age, county, and date of sample collection
(Figure 1). Eligible male youths were aged 11 to 16 years and lived in either urban Franklin
County, Ohio, or 1 of 9 Appalachian Ohio counties. One year follow-up metabolomics
study, referred to as a replication set, was conducted with eighty-one participants from
the biomarker cohort (Figure 1). All participants in this study were informed in writing
regarding collecting their samples for research aims and given the right to refuse such
uses. Male youths provided consent, and their parents provided permission for them to
enroll in the study. Exclusion criteria included any hearing or vision impairments or the
inability to read and speak English. The baseline and one-year follow-up sessions were
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completed in person at participants’ homes or a mutually agreed-upon public location. The
anthropometric measurements and data collection was conducted by a trained interviewer
who resided in the same region as the participants. Data collected include demographic,
family, and socioeconomic characteristics, as well as anthropometric measurements, such
as height, body weight, and dietary records. BMI (kg/m2) or BMI percentile, and BMI
z-score (https://zscore.research.chop.edu/calcbmi.php, accessed on 22 May 2022) were
calculated based on the measured height and weight data. The questionnaire included
both interviewer-administered and audio-administered items, depending on the level
of sensitivity of the item to provide the boy’s privacy when their parents were around.
Participants listened to these questions on a headset and responded on the computer
without the assistance of the interviewer. The study protocol was approved by the Ohio
State University Clinical Scientific Research Committee and Institutional Review Board
(2014C0030).
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Figure 1. The flow diagram describes the discovery set, validation set, and replication set (1-year
follow-up), data processing, statistical analysis, and a number of significant metabolites determined
in each experiment that were used for pathway enrichment analysis.

2.2. Urine Sample Collection

Each study subject submitted a random single-void urine sample for analysis in a
sterile container. Urine samples collected were shipped using an ice pack after freezing to
OSU. Samples were stored at −80 ◦C for long-term storage until further analysis.

2.3. Reagents and Chemicals

All reagents and solvents were of HPLC grade. Formic acid, acetonitrile (ACN),
4-nitrobenzoic acid (4-NBA), and 13 C-labelled phenylalanine were purchased from Sigma-

https://zscore.research.chop.edu/calcbmi.php
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Aldrich (St. Louis, MO, USA) and water was purchased from Fisher Optima grade (Fisher
Scientific, Waltham, MA, USA).

2.4. Urine Sample Preparation for Metabolomics

Urine was thawed at room temperature for 15 min and centrifuged for 10 min at
15,000 rpm at 4 ◦C. For positive mode sample analysis, the supernatant of the urine (20 µL)
sample was diluted with water (180 µL) containing formic acid (0.1%) and 13 C-labelled
phenylalanine (1.0 µM) as internal standard. For negative mode sample analysis, the
supernatant of the urine (20 µL) sample was diluted with water (180 µL) containing formic
acid (0.1%) and 4-NBA (2.0 µM) as internal standard. The final solution was vortexed for
30 s, transferred into HPLC vials, and placed into an autosampler tray for analysis.

2.5. UPLC–QTOF-MS Analysis

The metabolite separations of the urine sample were obtained on the Agilent 1290
Infinity Quaternary LC System (Agilent Technologies, Santa Clara, United States) using
the ACQUITY UPLC HSS T3 column (2.1 × 100 mm, 1.8 µm). The injection volume was
1 µL, followed by a standard needle wash. The mobile phase (A) consisted of 100% water
(H2O) with 0.1% formic acid and a mobile phase (B) consisted of 100% ACN with 0.1%
formic acid with the following gradient elution. The flow rate was set as 0.5 mL/min and
the gradient consisted of 100% A; 0–1.5 min, 0% B; 1.5–7.5 min, 50% B; 7.5–8.5 min, 95% B;
8.5–10 min, 95% B; 10–10.1 min, 0% B; and 10.10–12 min, 0% B. The column eluent (1 µL)
was introduced directly into the mass spectrometer by electrospray. The autosampler tray
temperature was set to 4 ◦C and the column temperature was 40 ◦C. The metabolic profiling
analysis of the urine sample was conducted on an Agilent 6550 iFunnel Q-TOF LC/MS
(Agilent Technologies, USA) with Dual Agilent Jet Stream Electrospray Ionization (Agilent
Technologies), and its parameter was set as follows: for positive mode, dry gas temperature,
150 ◦C; dry gas flow, 18 L min−1; nebulizer pressure, 30 psig; sheath gas temperature, 300 ◦C;
and sheath gas flow, 12 L min−1, and for negative mode, the instrument parameter settings
are dry gas temperature, 200 ◦C; dry gas flow, 18 L min−1; nebulizer pressure, 35 psig;
sheath gas temperature, 320 ◦C; and sheath gas flow, 12 L min−1. Mass spectrometry was
performed in both positive-ion (ESI+) or negative-ion (ESI−) electrospray ionization mode
with a capillary voltage of 4000 V and a sampling cone voltage of 65 V in both negative
mode and positive mode. The scan range was adjusted to centroid mode using a scan rate
of 3.00 spectra/second, and a mass range of 50–1700 m/z.

A quality control (QC) sample was prepared by mixing an equal volume of a pooled
urine sample of subjects containing 4-NBA (2.0 µM) and 13 C-labelled phenylalanine
(1.0 µM) as internal standard, which was then aliquoted into small vials. The pooled QC
samples were used to condition the analytical platform at the beginning of the run, placed
as every tenth sample, and analyzed periodically after 10 sample runs to check the perfor-
mance of the analytical system in terms of retention times, accurate mass measurements,
and signal intensities.

2.6. Data Analysis

After completing the metabolomics run on the instrument, we processed the raw
data from both the discovery and validation set together. The raw data (.d file) from the
ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry
(UPLC-QTOF-MS) instrument were converted to mzML files using the MS convert program
from ProteoWizard (https://proteowizard.sourceforge.io/, accessed on 22 May 2022). In
the resulting mzML files, intensity and m/z values were stored as 32-bit floating points with
zlib compression, and the “vendor peak picking” option was selected to convert data to
centroid mode. The mzML files were imported into the R statistical computing environment
using the R package XCMS [39]. XCMS was used for data processing including retention
time alignment, peak detection, peak grouping, and peak filling to obtain a sample-feature
matrix. Retention time alignment was performed using the ObiWarp algorithm. Each

https://proteowizard.sourceforge.io/
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sample was aligned against the pooled QC sample in both EIC+ and EIC−modes. Peak
detection was performed using the CentWave algorithm (parameters: peak width = 2–30 s,
signal-to-noise ratio = 3, mzdiff = −0.005, integration method = 1, prefilter = 3 peaks,
10 intensity). Peak grouping was performed using the peak density method (parameters:
minFraction = 0, minSamples = 2, bw = 5, binSize = 0.015). Integration of signal from
peaks missing after grouping peaks across samples was performed with the fillChromPeaks
function and default parameters (expandMz = 0, expandRt = 0, ppm = 0, fixedMz = 0,
fixedRt = 0). The resulting data contained a set of features corresponding to peaks which
were found in multiple samples each with an approximate m/z and retention time. The
matrix of intensity values by feature and sample was used for further analysis. During
the profiling, the analytical robustness of UPLC-QTOF-MS QC samples was repeatedly
analyzed. Metabolite features that were missing in more than one pooled QC sample or
showing a large coefficient of variation (CV) in the pooled QC samples greater than 30%
were discarded as unreliable before conducting the statistical analysis. Intensity values
were normalized by the mass spectrometry total usable signal (MSTUS). Briefly, an MSTUS
value was calculated by summing the intensity of all features, excluding those features
which were either found in less than half of the samples, in the bottom 20th percentile of
peak intensities, in more than 80% of samples, or were in the 90th percentile in at least one
but less than 10% of samples. Feature intensities for each sample were then multiplied
by a scaling factor calculated as the median MSTUS value over the sample MSTUS value.
Missing feature intensities after peak filling were then imputed as half of the minimum
value by feature [40].

2.7. Statistical Analysis

Before metabolomics analyses, patients were randomized into a modeling set for the
discovery (n = 235), validation (n = 125), and one-year follow-up as replication sets (n = 81)
(Figure 1).

JMP Pro 15 (100 SAS Campus Drive Cary, NC, USA) was used for statistical analysis.
Data of normal distribution are expressed as mean ± SD. Measurement data of non-normal
distribution are expressed as median (interquartile range). Before statistical analyses,
urinary metabolomics peak intensity data were log10-transformed. Preliminarily annotated
metabolites present in both cohorts were analyzed. The Partek Genomics suite was used
for the principal component analysis [41]. Linear regression analysis models were used
to estimate the associations of metabolic features with a BMI z-score in the discovery and
validation set, after adjusting for age, race, and total energy intake (kcal). In the present
study, smoking status was less than 4.2%, and smoking status and socioeconomic status
were initially included in the models but were removed due to the lack of significance of
the effect (Supplement Tables S4 and S5).

After pooled QC filtering of CV < 30% and performing putative annotation, a total
of 1532 metabolite features were obtained in both positive and negative modes. These
features were then subjected to linear regression analysis in the discovery set. Subsequently,
221 features that exhibited significant association with BMI Z-score in the discovery set were
selected for further investigation of their association with BMI Z-score in the validation set.

Correction for multiple comparisons was performed using a false discovery rate
(FDR) [42] corrected alpha of ≤0.1. Graph Pad Prism version 8.4 was used to produce
the volcano plots. To identify pathways that may have been perturbated in adolescent
children, metabolic pathway analysis was performed using Metaboanalyst 5.0 [43,44] (http:
//www.metaboanalyst.ca/). Metabolites that showed an association with BMI Z-score
in the discovery set and validation set were queried against the human metabolome
database (HMDB, www.hmdb.ca, accessed on 22 May 2022). The list of putative metabolites
generated by HMDB was imported into Metaboanalyst and mapped based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG). Pathway enrichment ratio values > 1.0 and
a p-value < 0.05 was considered to define a perturbed pathway. The top 25 pathways were
reported as the most perturbated pathways.

http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
www.hmdb.ca
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3. Results
3.1. Characteristics of Study Subjects

The baseline characteristics of the discovery, validation set, and replication set study
participants are shown in Table 1. In total, 360 study participants were recruited into
the BTH study for urine metabolomics, including 235 in the discovery set and 125 in the
validation set. The average age (mean± SD) of the study participant was 14.80 ± 1.42 years,
14.84± 1.31 years, and 16.08± 1.20 years in the discovery set, validation set, and replication
set study participants, respectively. The age and height of the study participants in the
discovery and validation sets were similar, but the weight of the study participants in the
discovery (158.50 lb.) and validation set (149.85 lb.) slightly differed. As expected, we
observed an increase in weight (170.64 lb.) in the replication set study participants. The
average BMI (Kg/m2) of the study participants in the discovery set, validation set, and
replication set study were 24.64 ± 7.13, 23.28 ± 6.01, and 25.16 ± 6.91, respectively. At
baseline, 31.49 and 22.40% of the study participants were obese (Table 1).

Table 1. Characteristics of the study participants.

Parameter Discovery Set
(N = 235)

Validation Set
(N = 125)

Replication Set
(N = 81)

Age (Year) (Mean ± SD) Range 14.80 ± 1.42
(11.14–16.99)

14.84 ± 1.31
(11.06–16.99)

16.08 ± 1.20
(12.9–18)

Height (Inch) (Mean ± SD) Range 66.82 ± 4.10
(56.00–75.67)

66.97 ± 3.87
(57.25–75.25)

68.88 ± 3.18
(60–75)

Weight (lb) (Mean ± SD) Range 158.50 ± 54.36
(72.93–334.13)

149.85 ± 45.14
(78.2–304.6)

170.64 ± 50.59
(79–320)

BMI (Kg/m2) (Mean ± SD) Range
24.64 ± 7.13

(15.3–49)
23.28 ± 6.01
(15.5–44.10)

25.16 ± 6.91
(14.4–45.9)

BMI percentile (Mean ± SD) Range 68.2 ± 30.43
(2–99)

66.54 ± 30.39
(2–99)

68.82 ± 29.11
(1–99)

BMI z-score (Mean ± SD) Range 0.82 ± 1.23
(−2.07–3.01)

0.60 ± 1.18
(−2.04–2.84)

0.78 ± 1.23
(−3.06–2.96)

Positive change in BMI (Kg/m2)
Mean/Median (Range)

--- --- 0.54/0.6
(−11.6–5.8)

Obesity (n (%))
Underweight (<5 percentile)

Healthy weight (5 to <85 percentile)
Overweight (>85 to <95 percentile)

Obese (>95 percentile)

3 (1.28%)
129 (54.89%)
29 (12.34%)
74 (31.49%)

4 (3.20%)
70 (56.00%)
23 (18.40%)
28 (22.40%)

3 (3.70%)
47 (58.02%)
12 (14.81%)
19 (23.46%)

Race (n (%))
White
Black

Hispanic
Multiracial

Others

176 (74.47%)
36 (15.35%)

8 (3.39%)
12 (5.08%)
4 (1.69%)

99 (79.20%)
13 (10.40%)

4 (3.20%)
7 (5.60%)
2 (1.60%)

58 (71.60%)
13 (16.05%)

4 (4.94%)
5 (6.17%)
1 (1.23%)

County (n (%))
Franklin

Non-Franklin

121 (51.49%)
114 (48.51%)

64 (51.20%)
61 (48.80%)

44(54.32%)
37(45.68%)

Total energy intake (kcals)
(Mean/Median) Range

1883.84/1745.54
(204.05–5209.14)

1937.77/1873.41
(462.5–5549.48)

1778.03/1507.12
(236.91–4589.2)

Abbreviations: BMI, body mass index; SD, standard deviation.

3.2. Untargeted Metabolic Profiling of Urine by UPLC-QTOF-MS

In the UPLC-QTOF-MS dataset, a total of 4596 features were detected in the positive
mode (2537) and negative mode (2059) after pooled QC filtering of CV < 30%. Further, after
annotation using the Human Metabolome Database (HMDB) (https://hmdb.ca/spectra/
ms/search), we obtained that 1532 metabolite features in both positive mode and negative
mode were used for statistical analysis. The overall composition of the distributions of
these metabolites via principal component analysis found complex underlying correlations;

https://hmdb.ca/spectra/ms/search
https://hmdb.ca/spectra/ms/search
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in particular, the first principal component explained 17.7% of the total variation in the
levels of these 1532 metabolites (Supplementary Figures S1 and S2A,B).

3.3. Association of Metabolites with BMI Z-Score in Discovery and Validation Set, and Changes in
BMI at the 1-Year Follow-Up

In the discovery set, a total of 221 features were significantly associated with BMI
z-score after adjustment for covariables (age, race, and total energy intake) and multiple
comparisons (fdr ≤ 0.1). The estimates of the association of metabolites with BMI z-score
and their corresponding p-value after multiple test corrections are displayed in Figure 2A,
Supplement Table S1, and the top 30 are displayed in Table 2. Out of 221 significant features
associated with BMI z-score, 32 metabolites are negatively associated with BMI z-score,
and 189 metabolites were positively associated with BMI z-score (Supplement Table S1).
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Figure 2. The association between metabolites and BMI Z−score. Volcano plot: each point on the
volcano plot was based on estimates of beta (β) from linear regression analysis on the x−axis versus
the log10 FDR adj. p−value on the y−axis of the putatively identified metabolites. (A) Volcano plot
of association of metabolites with BMI z−score in the discovery set; (B) volcano plot of association of
metabolites with BMI z−score in the validation set (red dot for a positive association and blue dot for
a negative association, horizontal dotted lines set false discovery rate 10% corrected p−value).

These 221 putatively identified metabolites in discovery sets refer to 11 chemical
taxonomy super-class and 28 sub-class families (Supplemental Table S1). Out of these
11 super-class taxonomies, the most perturbated super-class of compounds belonged to
organic acids and their derivatives (amino acids, peptides, and analogues), lipids and lipid-
like molecules, organic oxygen compounds carbohydrates, and carbohydrate conjugates),
organoheterocyclic compounds (pyridines, indol, imidazoles, indolyl carboxylic acids, and
derivatives), nucleosides, nucleotides, and analogues (Figure 3, Supplement Table S1).

In the validation set analysis, we assessed 221 significant metabolites from the discov-
ery set, and after controlling for covariates and multiple comparisons, we found that 16 of
the 221 metabolites remained significantly associated with BMI z-score in the validation set
(FDR = 0.1) (Figure 2B, Table 3, Supplement Table S1). Among 16 significant metabolites
associated with a BMI Z-score in the validation set, 8 metabolites were negatively associated
and 8 were positively associated (Figure 2B, Table 3). The positive change in BMI in the
replication set (1 year of follow-up) indicated that among the 16 replicated in the validation
set, 9 were also found to be correlated with the positive change in BMI (Table 4).
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Table 2. Top 30 metabolic features associated with BMI z-score in the discovery set of samples.

ID Metabolite Mode MZ RT Adduct HMDB ID Super-Class Class Sub-Class
Discovery Set

Estimate
(95%CI) p-Value FDR adj

neg_FT17207 3′-Sialyllactose Neg 632.2 0.67 M − H HMDB0000825 Organic oxygen
compounds

Organooxygen
compounds

Carbohydrates and
carbohydrate
conjugates

0.05 (0.03–0.06) <0.0001 5.82 × 10−9

pos_FT29354 3′-Sialyllactose Pos 656.2 0.67 M + Na HMDB0000825 Organic oxygen
compounds

Organooxygen
compounds

Carbohydrates and
carbohydrate
conjugates

0.06 (0.04–0.07) <0.0001 6.56 × 10−9

pos_FT04847 Estrone sulfate Pos 176.06 0.58 M + 2H HMDB0001425
Lipids and
lipid-like
molecules

Steroids and
steroid
derivatives

Sulfated steroids −0.08
(−0.1–−0.05) <0.0001 1.38 × 10−7

pos_FT13024 N-Ribosylhistidine Pos 288.11 0.53 M + H HMDB0002089 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.16 (0.11–0.21) <0.0001 1.38 × 10−7

pos_FT04858 Citrulline Pos 176.1 0.78 M + H HMDB0000904 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.06 (0.04–0.08) <0.0001 5.77 × 10−7

neg_FT15762 PA(22:5(4Z,7Z,10Z,13Z,19Z)-
O(16,17)/2:0) Neg 539.24 6.53 M − H HMDB0266570 0.08 (0.06–0.11) <0.0001 5.77 × 10−7

pos_FT27056 Tetrahydroaldosterone-3-
glucuronide Pos 563.24 6.57 M + Na HMDB0010357

Lipids and
lipid-like
molecules

Steroids and
steroid
derivatives

Steroidal
glycosides 0.07 (0.05–0.1) <0.0001 8.64 × 10−7

neg_FT01967 Citrulline Neg 174.08 0.81 M − H HMDB0000904 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.13 (0.08–0.17) <0.0001 6.28 × 10−6

neg_FT15806 Cortolone-3-glucuronide Neg 541.26 6.18 M − H HMDB0010320
Lipids and
lipid-like
molecules

Steroids and
steroid
derivatives

Steroidal
glycosides 0.05 (0.03–0.07) <0.0001 1.34 × 10−5
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Table 2. Cont.

ID Metabolite Mode MZ RT Adduct HMDB ID Super-Class Class Sub-Class
Discovery Set

Estimate
(95%CI) p-Value FDR adj

neg_FT01921 Formiminoglutamic acid Neg 173.05 1.31 M − H HMDB0000854 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.13 (0.08–0.18) <0.0001 4.66 × 10−5

pos_FT04673 Glycylproline Pos 173.09 0.75 M + H HMDB0000721 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

−0.06
(−0.09–−0.04) <0.0001 7.46 × 10−5

neg_FT02197 Galactitol Neg 181.07 1.81 M − H HMDB0000107 Organic oxygen
compounds

Organooxygen
compounds

Carbohydrates and
carbohydrate
conjugates

0.09 (0.05–0.13) <0.0001 7.46 × 10−5

pos_FT27104 Cortolone-3-glucuronide Pos 565.26 6.1 M + Na HMDB0010320
Lipids and
lipid-like
molecules

Steroids and
steroid
derivatives

Steroidal
glycosides 0.05 (0.03–0.08) <0.0001 9.30 × 10−5

pos_FT09630 4-Vinylsyringol Pos 243.09 0.73 M + H HMDB0301746 Phenylpropanoids
and polyketides Stilbenes −0.05

(−0.07–−0.03) <0.0001 9.96 × 10−5

neg_FT07183 Fludiazepam Neg 301.05 2.36 M − H HMDB0015513 Organoheterocyclic
compounds Benzodiazepines 1,4-

benzodiazepines 0.12 (0.07–0.17) <0.0001 1.38 × 10−4

neg_FT02892 Adipoylglycine Neg 202.07 3.23 M − H HMDB0240731 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.06 (0.04–0.09) <0.0001 1.57 × 10−4

neg_FT11170 6-Hydroxymelatonin
glucuronide Neg 389.18 6.34 M + Cl HMDB0060786 Organic oxygen

compounds
Organooxygen
compounds

Carbohydrates and
carbohydrate
conjugates

0.17 (0.1–0.24) <0.0001 2.29 × 10−4

neg_FT15862 N-Acetylgalactosaminyl
lactose Neg 544.18 0.71 M − H HMDB0041622 Organic oxygen

compounds
Organooxygen
compounds

Carbohydrates and
carbohydrate
conjugates

0.08 (0.04–0.11) <0.0001 2.39 × 10−4

neg_FT02148 3-Chlorotyrosine Neg 180.06 1.81 M + Cl HMDB0001885 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.05 (0.03–0.08) <0.0001 2.55 × 10−4

pos_FT18573 Cephalexin Pos 370.08 5.82 M + Na HMDB0014707 Organoheterocyclic
compounds Lactams Beta lactams 0.12 (0.07–0.17) <0.0001 3.66 × 10−4
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Table 2. Cont.

ID Metabolite Mode MZ RT Adduct HMDB ID Super-Class Class Sub-Class
Discovery Set

Estimate
(95%CI) p-Value FDR adj

neg_FT08222 Dihyroxy-1H-indole
glucuronide I Neg 324.07 3.91 M − H HMDB0059997 Organic oxygen

compounds
Organooxygen
compounds

Carbohydrates and
carbohydrate
conjugates

0.07 (0.04–0.1) <0.0001 3.66 × 10−4

neg_FT14008
3-alpha-hydroxy-5-alpha-
androstane-17-one
3-D-glucuronide

Neg 465.24 7.84 M − H HMDB0010365
Lipids and
lipid-like
molecules

Steroids and
steroid
derivatives

Steroidal
glycosides 0.06 (0.03–0.09) <0.0001 3.84 × 10−4

neg_FT14066 Clozapine glucuronide Neg 467.19 6.92 M + Cl HMDB0060901 Organic oxygen
compounds

Organooxygen
compounds

Carbonyl
compounds 0.08 (0.05–0.12) <0.0001 3.84 × 10−4

neg_FT01695 Quinolinic acid Neg 166.01 1.17 M − H HMDB0000232 Organoheterocyclic
compounds

Pyridines and
derivatives

Pyridinecarboxylic
acids and
derivatives

0.05 (0.02–0.07) <0.0001 3.84 × 10−4

neg_FT08456 Hydroxytyrosol
3′-glucuronide Neg 329.08 3.78 M − H HMDB0240531 Organic oxygen

compounds
Organooxygen
compounds

Carbohydrates and
carbohydrate
conjugates

0.09 (0.05–0.13) <0.0001 4.50 × 10−4

neg_FT01863 Glycylproline Neg 171.07 0.91 M − H HMDB0000721 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

−0.08
(−0.11–−0.04) <0.0001 4.68 × 10−4

neg_FT09551 5-Caffeoylquinic acid Neg 353.08 6.84 M − H HMDB0240477 Organic oxygen
compounds

Organooxygen
compounds

Alcohols and
polyols 0.13 (0.07–0.19) <0.0001 4.68 × 10−4

neg_FT00341 (R)-3-Hydroxyisobutyric
acid Neg 103.04 2.02 M − H HMDB0000336 Organic acids

and derivatives
Hydroxy acids
and derivatives

Beta hydroxy acids
and derivatives 0.04 (0.02–0.06) <0.0001 4.75 × 10−4

neg_FT02346
1-(Malonylamino)
cyclopropanecarboxylic
acid

Neg 186.04 3.48 M − H HMDB0031700 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.08 (0.04–0.12) <0.0001 7.96 × 10−4

neg_FT14465
11-beta-
Hydroxyandrosterone-3-
glucuronide

Neg 481.24 6.63 M − H HMDB0010351 Organoheterocyclic
compounds

Indoles and
derivatives Hydroxyindoles 0.05 (0.02–0.07) <0.0001 8.07 × 10−4

Model: metabolites = age + race + BMI z-score + total energy intake. Abbreviations: ID, metabolic feature identification; MZ, mass-charge; RT, retention time; HMDB, human
metabolome database.
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Figure 3. A pie chart summarizing the range and classes of compounds (super-class annotated by
HMDB) demonstrates a significant association of metabolites with BMI z-score in the discovery set of
urine samples from adolescents.

3.4. Differential Mapping of Metabolites in Pathway Analysis

To explore the metabolic pathways that potentially contribute to obesity progres-
sion in adolescent children, we carried out a metabolomic pathway enrichment analysis
using MetPA (www.metaboanalyst.ca) with 221 significant features from the discovery
set and 16 significant features from the validation set. p-values < 0.05 and enrichment
ratios > 0.1 were considered to indicate highly influential pathways. For the discovery
set, pathway enrichment results showed that 25 metabolic pathways were identified in
KEGG. The highest enrichment ratios were obtained for the histidine metabolism pathways,
beta-Alanine metabolism, aminoacyl-tRNA biosynthesis, arginine biosynthesis, arginine
and proline metabolism, and pyrimidine metabolism are the most enriched metabolic
pathways, as shown in Figure 4A, and detailed pathway enrichment results are displayed
in Supplement Table S2. Similarly, in the validation set, arginine biosynthesis, histidine
metabolism, D-glutamine and D-glutamate metabolism, and nitrogen metabolism were
the most significantly enriched metabolic pathways (Figure 4B and Supplement Table S3).
In both instances of pathway enrichment analysis, arginine biosynthesis and histidine
metabolism were the most enriched metabolic pathways.

www.metaboanalyst.ca
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Table 3. List of significant metabolic features associated with BMI z-score in the validation set of samples.

ID Metabolite Mode MZ RT Adduct HMDB ID Super-Class Class Sub-Class
Validation Set

Estimate
(95%CI) p-Value FDR adj

pos_FT04673 Glycylproline Pos 173.09 0.75 M + H HMDB0000721 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

−0.105
(−0.145–0.064) <0.0001 2.29 × 10−4

neg_FT01967 Citrulline Neg 174.08 0.81 M − H HMDB0000904 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.117
(0.065–0.168) <0.0001 0.002

pos_FT09630 4-Vinylsyringol Pos 243.09 0.73 M + H HMDB0301746 Phenylpropanoids
and polyketides Stilbenes −0.079

(−0.117–0.041) <0.0001 0.004

neg_FT01863 Glycylproline Neg 171.07 0.91 M − H HMDB0000721 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

−0.076
(−0.114–0.039) <0.0001 0.005

neg_FT17207 3′-Sialyllactose Neg 632.2 0.67 M − H HMDB0000825 Organic oxygen
compounds

Organooxygen
compounds

Carbohydrates and
carbohydrate
conjugates

0.055
(0.026–0.084) 0.0003 0.012

pos_FT04847 Estrone sulfate Pos 176.06 0.58 M + 2H HMDB0001425
Lipids and
lipid-like
molecules

Steroids and
steroid
derivatives

Sulfated steroids −0.056
(−0.087–0.025) 0.0004 0.014

pos_FT10083 Carnosine Pos 249.09 0.49 M + Na HMDB0000033 Organic acids
and derivatives Peptidomimetics Hybrid peptides −0.151

(−0.234–0.069) 0.0004 0.014

neg_FT01921 Formiminoglutamic acid Neg 173.05 1.31 M − H HMDB0000854 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.075
(0.032–0.118) 0.0007 0.020

pos_FT04858 Citrulline Pos 176.1 0.78 M + H HMDB0000904 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.048
(0.019–0.077) 0.001 0.028

neg_FT00788 4-Hydroxyproline Neg 130.05 1.4 M − H HMDB0000725 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.082
(0.031–0.132) 0.002 0.033

pos_FT09878 Hydroxyprolyl-Asparagine Pos 246.1 0.69 M + H HMDB0028858 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

−0.059
(−0.097–0.022) 0.002 0.033

pos_FT13592 2-Hexenoylcarnitine Pos 296.12 6.85 M + K HMDB0013161
Lipids and
lipid-like
molecules

Fatty Acyls Fatty acid esters 0.104 (0.04–0.167) 0.002 0.033

pos_FT03157 L-Glutamine Pos 147.07 0.52 M + H HMDB0000641 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

−0.065
(−0.106–0.024) 0.002 0.033
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Table 3. Cont.

ID Metabolite Mode MZ RT Adduct HMDB ID Super-Class Class Sub-Class
Validation Set

Estimate
(95%CI) p-Value FDR adj

neg_FT05602 Inosine Neg 267.07 0.67 M − H HMDB0000195
Nucleosides,
nucleotides, and
analogues

Purine
nucleosides

0.038
(0.011–0.064) 0.005 0.073

neg_FT08407
N-(2-
Hydroxyphenyl)acetamide
glucuronide

Neg 328.06 3.81 M − H HMDB0240542 Organic oxygen
compounds

Organooxygen
compounds

Carbohydrates and
carbohydrate
conjugates

0.081
(0.023–0.139) 0.006 0.092

pos_FT15625 Galactosylhydroxylysine Pos 325.16 0.5 M + H HMDB0000600 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

−0.048
(−0.084–0.013) 0.007 0.096

Model: metabolites = age + race + BMI z-score + total energy intake. Abbreviations: ID: metabolic feature identification; MZ, mass-charge; RT, retention time; HMDB, human
metabolome database.

Table 4. List of significant metabolic features associated with positive change in BMI using the validation set feature in the replication set (1-year follow-up).

ID Metabolites Mode MZ RT Adduct HMDB ID Super-Class Class Sub-Class
Replication Set

Estimate
(95%CI) p-Value FDR adj

neg_FT01863 Glycylproline Neg 173.09 0.75 M + H HMDB0000721 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

−0.018
(−0.029–0.007) 0.002 0.031

neg_FT17207 3′-Sialyllactose Neg 632.2 0.67 M − H HMDB0000825 Organic oxygen
compounds

Organooxygen
compounds

Carbohydrates and
carbohydrate
conjugates

0.009
(0.002–0.016) 0.006 0.038

neg_FT01921 Formiminoglutamic acid Neg 173.05 1.31 M − H HMDB0000854 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.016
(0.004–0.028) 0.008 0.038

pos_FT04673 Glycylproline Pos 171.07 0.91 M − H HMDB0000721 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

−0.014
(−0.025–0.003) 0.01 0.038

neg_FT00788 4-Hydroxyproline Neg 130.05 1.4 M − H HMDB0000725 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.016 (0.003–0.03) 0.016 0.043

pos_FT04858 Citrulline Pos 174.08 0.81 M − H HMDB0000904 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.01 (0.002–0.018) 0.013 0.043
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Table 4. Cont.

ID Metabolites Mode MZ RT Adduct HMDB ID Super-Class Class Sub-Class
Replication Set

Estimate
(95%CI) p-Value FDR adj

pos_FT09630 4-Vinylsyringol Pos 243.09 0.73 M + H HMDB0301746 Phenylpropanoids
and polyketides Stilbenes −0.01

(−0.02–0.001) 0.022 0.049

neg_FT01967 Citrulline Neg 176.1 0.78 M + H HMDB0000904 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

0.012
(0.001–0.023) 0.025 0.049

neg_FT05602 Inosine Neg 267.07 0.67 M − H HMDB0000195
Nucleosides,
nucleotides, and
analogues

Purine
nucleosides

0.005
(0.0004–0.01) 0.033 0.058

pos_FT10083 Carnosine Pos 249.09 0.49 M + Na HMDB0000033 Organic acids
and derivatives Peptidomimetics Hybrid peptides −0.015

(−0.031–0.0004) 0.056 0.082

neg_FT08407
N-(2-
Hydroxyphenyl)acetamide
glucuronide

Neg 328.06 3.81 M − H HMDB0240542 Organic oxygen
compounds

Organooxygen
compounds

Carbohydrates and
carbohydrate
conjugates

0.015
(−0.0004–0.032) 0.056 0.082

pos_FT03157 L-Glutamine Pos 147.07 0.52 M + H HMDB0000641 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

−0.006
(−0.014–0.0001) 0.086 0.114

pos_FT04847 Estrone sulfate Pos 176.06 0.58 M + 2H HMDB0001425
Lipids and
lipid-like
molecules

Steroids and
steroid
derivatives

Sulfated steroids −0.004
(−0.011–0.001) 0.139 0.171

pos_FT09878 Hydroxyprolyl-Asparagine Pos 246.1 0.69 M + H HMDB0028858 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

−0.001
(−0.009–0.006) 0.751 0.858

pos_FT15625 Galactosylhydroxylysine Pos 325.16 0.5 M + H HMDB0000600 Organic acids
and derivatives

Carboxylic acids
and derivatives

Amino acids,
peptides, and
analogues

−0.0008
(−0.008–0.007) 0.83 0.885

pos_FT13592 2-Hexenoylcarnitine Pos 296.12 6.85 M + K HMDB0013161
Lipids and
lipid-like
molecules

Fatty Acyls Fatty acid esters 0.00
(−0.017–0.017) 1 1

Model: metabolites = age + race + BMI z-score + total energy intake. Abbreviations: ID, metabolic feature identification; MZ, mass-charge; RT, retention time; HMDB, human
metabolome database.
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Figure 4. Pathway analysis as generated by MetaboAnalyst 5.0 software package for metabolites
significantly expressed in adolescent children. The enrichment ratio is calculated as the number of
hits within a particular metabolic pathway divided by the expected number of hits. Metabolite set
enrichment analysis (MSEA). Top perturbed pathways are shown. (A) Metabolic pathway analysis
using the list of 221 significant features in the discovery set, and (B) a list of 16 significant features in
the validation set. The color depth and column length indicate the disturbance degree of the pathway.

4. Discussion

The purpose of the study was to identify the metabolomic signature of obesity in
adolescents. Prior studies in the field of metabolomics have predominantly focused on
characterizing metabolites linked to childhood obesity or BMI in contrast to non-obese
subjects [27,45–48]. Obesity mainly classifies adolescents as normal, overweight, or obese
based on their BMI percentile [15,16]. As children grow up, the measurement of body
mass index (BMI) requires adjustment for age and gender [14]. However, the BMI z-score
as a continuous variable, which is age and gender-specific in children, is considered a
more suitable metric for determining body mass index (BMI) than the conventional BMI
measurement and provides a better estimation of an individual’s adiposity status [17].

The present cross-sectional study demonstrated the perturbation of the urinary metabo-
lites associated with BMI z-score in male adolescents and replicated results in the longitudi-
nal analysis for changes in BMI. Additionally, metabolomic signatures were identified with
the potential to examine metabolic health in adolescents. To our knowledge, this is the first
longitudinal study to relate positive change in BMI to the urine metabolome in adolescents.
In this study, 1532 putatively annotated features were used to study the association analysis
with BMI Z-score in adolescents. Following the adjustment of age, race, and total energy
intake, 221 metabolites were identified as exhibiting a robust association with BMI z-score
within the discovery set. Out of 221 lists of significant features from the discovery set, 16
metabolites were found to be significantly associated with the BMI z-score in the validation
dataset in adolescents. Obesity is a serious and growing health problem that affects people
of all ages all over the world, including children. In the past, research on metabolomic
biomarkers in obesity has largely focused on targeted metabolomics and a specific group of
compounds rather than evaluating a large number of metabolites at the same time [49–52].
However, developing evidence indicates that not only absolute metabolite levels of spe-
cific compounds are important, but their relationship with other metabolites (profiles)
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and pathways play an important role in the biology of metabolism [53]. Therefore, it is
crucial to simultaneously investigate a larger number of metabolites to arrive at a more
accurate etiologic picture. Our findings highlight the presence of changes in the urine
metabolome associated with positive changes in BMI in adolescence. We observed that
the six urinary metabolites (3′-sialyllactose, formiminoglutamic acid, 4-hydroxyproline,
citrulline, inosine) showed a positive association with positive change in BMI and three
metabolites (glycylproline, 4-vinylsyringol) showed a negative association with positive
change in BMI. Accumulated evidence showed that the perturbated metabolites are amino
acids and carbohydrates.

In several adolescent studies, the relationship between the metabolome and obesity
has been thoroughly described [1,17,21,27]. The present study's finding is consistent with
previous findings and most of the metabolites strongly influencing metabolic BMI are
documented in the present study. In the study by Cirulli et al. (2019), which included
1969 individuals from the TwinsUK cohort, 49 metabolites showed the strongest associ-
ations with BMI out of a total of 650 metabolites, and a majority of the 49 metabolites
were identified as significant predictors of BMI. These included glutamate, asparagine,
leucine, N2,N2-dimethylguanosine, and kynurenate, among others [17]. Thus, only 7.54%
of metabolites were replicated across multiple studies [17], a finding similar to that of the
present study, where 7.27% of metabolites were replicated in validation sets. Similarly,
Sohn et al. (2022) investigated metabolomic signatures associated with weight control
interventions in children with obesity using untargeted metabolomics in plasma samples
and observed 12 metabolites were significant at both time points including asparagine,
glutamine, O-acetylcarnitine, and most perturbated metabolic pathways was D-glutamine
and glutamate metabolism and arginine biosynthesis [1]. The present study results also
find D-glutamine and glutamate metabolism (L-Glutamine) and arginine biosynthesis
(L-Glutamine) were the most perturbated metabolic pathways. Another study by Cho
et al. (2017) included non-obese (n = 91) and obese (n = 93) adolescents from both sexes
and also conducted untargeted and targeted urinary metabolomics. Inflammation-related
metabolites were identified with strong predictive power to distinguish obese and non-
obese groups, and acylcarnitines (hexanoylcarnitine), amino acid (glutamine, asparagine),
amines (carnosine), glycerophospholipids, and sphingolipids were significantly high in
obese adolescents [27]. In our study, we found 2-hexanoylcarnitine, L-glutamine, carnosine,
and hydroxyprolyl-asparagine are associated with BMI Z-score. Obesity is associated
with increased acylcarnitine levels in blood plasma sample of Hispanic children, e.g.,
propionyl-, butyryl-, hexanoyl-, stearoyl-, and oleoylcarnitine [46], and in adolescence,
e.g., propionyl-, 2-methylbutyryl-, isovaleryl-, and isobutyrylcarnitine [54]. In this study,
2-hexenoylcarnitine was associated with the BMI z-score. Acylcarnitines play an important
role in many cellular energy metabolism pathways, e.g., transporting acyl groups (organic
acids and fatty acids) from the cytoplasm to the mitochondria for the production of en-
ergy [55,56]. Papandreou et al. (2021) reported acylcarnitine metabolites (hexanoylcarnitine,
hexadecenoylcarnitine) were associated with body fat% [57], indicating that higher body
fat correlates with upregulated beta-oxidation of fatty acids. Acylcarnitines are important
biomarkers in metabolic studies such as metabolic disorders, cardiovascular diseases, dia-
betes [56], kidney cancer [58], and hepatocellular carcinoma [59]. Observed elevated levels
of carnitine metabolites in adolescents require particular attention and may be a target for
obesity management to prevent the development of disease complications.

As previously reported by Brachem et al. (2020), the urinary level of glucuronide of
C10H18O2 (12) was positively associated with BMI and body fat in adolescents [23]. In
addition, in another study, Tchernof et al. (1997) reported the plasma level of androstane-
3α,17β-Diol glucuronide concentration was significantly higher in overweight men [60].
The liver is the primary site of altered glucuronidation, with the help of the UDP-glucuronyl
transferase enzyme in conjugation with glucuronate, resulting in the removal of toxic
substances, drugs, or other xenobiotics [61,62]. Glucuronides in adipose tissue have been
shown to demonstrate higher activity in obese individuals [60,63]. In the current study,
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N-(2-hydroxyphenyl) acetamide glucuronide was found to be positively associated with
BMI Z-score and positive change in BMI in adolescents. The current study observation
is consistent with previous studies in that the glucouronide product is associated with
obesity [64]. The mechanism of glucouronide products and their relationship with obesity
is currently unknown.

Increased adiposity is also associated with changes in amino acid metabolism [47]. In
the etiology of obesity and diabetes mellitus, amino acids (AAs) are emerging as a new class
of potent molecules. Amino acids (AA) are the building blocks of proteins and play essen-
tial roles in gene expression, cell signaling, inflammatory responses, metabolism, oxidative
stress, and detoxification [65]. Yamakado et al. reported that the change in the amino acid
profile was closely related to the development of metabolic complications such as insulin
resistance, diabetes, and visceral fat accumulation [66]. We observed a negative association
of BMI z-score with amino acids and their derivatives such as glycylproline, L-glutamine,
hydroxyprolyl-asparagine, and galactosylhydroxylysine. In contrast, formiminoglutamic
acid, 4-hydroxyproline, and citrulline were positively associated with BMI Z-score. These
findings are consistent with those of previous research, where obesity was associated with
higher levels of amino acids such as lysine, tryptophan, cystine, and glutamate, but lower
levels of asparagine, glutamine, glycine, and serine in Japanese adults [49]. In comparison
to children of normal weight, children with obesity had reported higher serum levels of
phenylalanine, proline, histidine, and lysine and lower serum levels of glutamine [67].
Citrulline is associated with the urea cycle. A previous study reported a decrease in cit-
rulline in obese adolescents [27,46,67]. While the present study results are inconsistent,
we found citrulline is positively associated with BMI z-score and a positive change in
BMI in adolescents. Moreover, branched-chain amino acids (BCAAs) and aromatic amino
acids have previously been proposed as biomarkers of metabolic syndrome [50]. BCAAs
promote protein synthesis and turnover, signaling pathways, and metabolism of glucose.
Oxidation of BCAAs may increase fatty acid oxidation and play a role in obesity. In the
present study, we also observed a significant positive association of 4-hydroxyproline with
BMI z-score and a positive change in BMI in a follow-up study in adolescents. Increasing
evidence has been reported that 4-hydroxyproline may play a significant role in protecting
mammalian cells from oxidative stress and injury [68]. Additionally, 4-hydroxyproline
enhances human nutrition and health, including metabolic, immune, and cardiovascular
health [69]. 4-hydroxyproline and carnosine from dietary sources are beneficial for pre-
venting and treating obesity, cardiovascular dysfunction, and aging-related disorders, as
well as inhibiting tumorigenesis in children and adults [69]. Our results are consistent with
Cho et al. (2017), where carnosine a dipeptide synthesized in the body from β-alanine
and L-histidine was found to decrease in obese adolescents [27]. In the current study,
we observed galactosylhydroxylysine was negatively associated with BMI Z-score. A
study conducted urine metabolic profiling in normal-weight young men and obese men
with hyperlipidemia. It was observed that glucosylgalactosyl hydroxylysine along with
eight other metabolites has a significant impact on the development and manifestation of
obesity-related disorders [70].

Glycylproline, a dipeptide composed of glycine and proline, is considered a building
block for proteins. Glycine is also required for multiple metabolic pathways. Several
studies reported the level of glycine was found to decrease in children with obesity in
plasma samples [46,52]. Similarly, Wahl et al. (2012) reported the level of proline decreased
in children with obesity [47]. However, Short et al. investigated plasma profiles of amino
acid-related metabolites among Indian American adolescents and observed higher levels
of proline in obese children as compared to normal-weight children [67]. In the present
study, glycine-proline is negatively associated with BMI z-score and a positive change in
BMI after a 1-year follow-up. In vitro and in vivo studies reported cyclic glycine-proline
(cGP) mediates the homeostasis of insulin-like growth factor (IGF)-1 function and the
cGP/IGF-1 ratio, which determines IGF-1 bioactivity. Plasma IGF-1 is predominantly inac-
tive and slightly related to obesity and hypertension in humans [71]. Glycine and proline
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are non-essential amino acids (NEAAs) that play a crucial role in nutrition serving and
are closely related to the development of tumors. Glycine deficiency reduces the synthesis
of glutathione (GSH) and enhances reactive oxygen species (ROS) production. A decline
in GSH levels and accumulation of ROS promote lipid peroxidation ultimately leads to
tumor suppression through ferroptosis-mediated mechanisms [72]. Formiminoglutamic
acid is an intermediate metabolite in the degradative conversion of histidine to glutamic
acid [73]. Formiminoglutamic acid is not directly related to obesity, but increased levels of
urinary formiminoglutamic acid are associated with a deficiency of folic acid and vitamin
B12, which may lead to liver disease [74], CVD [75], and heart disease [76]. In this study,
formiminoglutamic acid is positively associated with BMI z-score and a positive change in
BMI. The pathway analysis report suggests which metabolic pathways might be altered in
individuals with different BMI z-scores and positive changes in BMI. The most perturbated
metabolic pathway in the current study is arginine biosynthesis. Arginine is synthesized
from citrulline and L-glutamine. Recent findings from human and animal-based research
suggested that arginine plays a crucial role in modulating the metabolism of energy sub-
strates [77]. Arginine metabolism stimulates the expression of specific genes in adipose
tissue, potentially increasing fatty acid and glucose oxidation [78]. Previous investigations
have exhibited that the intake of L-arginine can improve endothelial function, insulin secre-
tion and sensitivity, and inflammation, all of which are interconnected with obesity-induced
ailments such as type 2 diabetes mellitus and cardiovascular diseases [79–81].

Our study has some limitations. We evaluated a sample of individuals mainly con-
sisting of only male adolescents with normal/overweight/obesity, which could limit the
generalizability of our results to other populations and girls. Additionally, we provide no
information about the association of obesity and metabolomic features in adults, when BMI
is generally more stable and not impacted by changes in hormones (e.g., growth hormones).
Second, in our study, we used BMI z-score as a criterion for obesity, rather than body-fat
and waist circumference, which can be a more accurate parameter of adiposity. Third, since
metabolites were only measured at a one-time point (baseline) and one-year follow-up
with a limited sample size (n = 81), we could not provide any data regarding the stability
of the metabolome associated with BMI z-score and positive change in BMI over longer
times. Fourth, this study did not positively identify the metabolites and apply a targeted
approach so that the putative identifications may not be correct. Fifth, we used random
urine samples for metabolomics analysis and variability in the metabolite content may be
a limitation.

The present study has notable strengths. This current study focuses on adolescent
males, capturing what features remain associated with obesity over time. It incorporates
both cross-sectional and longitudinal analysis. Replication was enhanced by using a discov-
ery and validation set, which was then applied to longitudinal analysis. This increases the
confidence of true findings. Reasons why the sampling at two time points is not concordant
could be due to differences in lifestyle at the different time points, changing metabolomic
profiles as the participants age, and/or false negatives in spite of multiple comparison
corrections. Another strength is the use of the z-score, which is better reflective of future
health status as it accounts for age and gender. Additionally, comprehensive untargeted
metabolome profiling was performed on UPLC-Q-TOF-MS metabolomic platforms, which
provides maximum coverage as compared to targeted metabolomics and another approach
to qualitatively analyze a wide range of metabolites. It also helps in the identification of
new metabolites associated with obesity and obesity-related complications.

5. Conclusions

The present study assessed the metabolomic profile using an untargeted metabolomics
approach and most of the significant metabolic features observed in the current study are
consistent with the adolescent study. The current study indicates histidine metabolism as
a key mechanism related to obesity. The novel whole-metabolome approach evidenced
several biomarkers related to obesity, most of which are carboxylic acid derivatives (gly-
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cylproline, 4-hydroxyproline L-glutamine, citrulline, galactosylhydroxylysine), carnitines
(2-hexenoylcarnitine), lipids (N-(2-hydroxyphenyl) acetamide glucuronide), carbohydrates
(3′-sialyllactose), while several others have been evidenced in the discovery set. These
metabolites may directly or indirectly contribute to the development of obesity, partic-
ularly its effects, which can be studied in more detail in mechanistic studies. Obesity
is a multifaceted and complex health concern that arises from a combination of genetic,
behavioral, social, and environmental factors. While biological factors certainly play a
role in an individual’s susceptibility to obesity, the environment in which we live greatly
influences our food choices, physical activity levels, and overall lifestyle. Even though the
use of metabolomics in childhood obesity research is still in its early stages, the identified
metabolites have provided additional insight into the pathogenesis of some obesity-related
diseases. Furthermore, future research should attempt to replicate our findings in a dif-
ferent adolescent population and extend the analysis to a longitudinal design to better
understand the possible correlation of body composition with urine metabolome.
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Abbreviations

BMI Body mass index
UPLC–QTOF-MS Ultra-high performance liquid chromatography-quadrupole time-of-flight

mass spectrometry
FDR False-discovery-rate
BTH Buckeye Teen Health Study
OSU Ohio State University
HPLC High-performance liquid chromatography
ACN Acetonitrile
4-NBA 4-nitrobenzoic acid
ESI Electrospray ionization
QC Quality control
CV Coefficient of variation
MSTUS Mass spectrometry total usable signal
HMDB Human metabolome database
KEGG Kyoto Encyclopedia of Genes and Genomes
CV Coefficient of variation
MetPA Metabolomic pathway enrichment analysis
AAs Amino acids
BCAAs Branched-chain amino acids
IGF-1 Insulin-like growth factor-1
cGP cyclic Glycine-Proline
NEAAs Non-essential amino acids
ROS Reactive oxygen species
GSH Glutathione
CVD Cardiovascular diseases
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